def srm(run1, run2):
    # initialize model
    print('Building Models')
    n_iter = 50
    srm_k = 30
    srm_train_run1 = SRM(n_iter=n_iter, features=srm_k)
    srm_train_run2 = SRM(n_iter=n_iter, features=srm_k)

    # fit model to training data
    print('Training Models')
    srm_train_run1.fit(run1)
    srm_train_run2.fit(run2)

    print('Testing Models')
    shared_data_run1 = stats.zscore(np.dstack(srm_train_run2.transform(run1)),
                                    axis=1,
                                    ddof=1)
    shared_data_run2 = stats.zscore(np.dstack(srm_train_run1.transform(run2)),
                                    axis=1,
                                    ddof=1)

    # average test data across subjects
    run1 = np.mean(shared_data_run1, axis=2)
    run2 = np.mean(shared_data_run2, axis=2)

    return run1, run2
def corr2_coeff(A,msk,myrad,bcast_var):
    #if not np.all(msk):
    #    return None
    print('Assigning Masked Data')
    run1 = [A[i][msk==1] for i in np.arange(0, int(len(A)/2))]
    run2 = [A[i][msk==1] for i in np.arange(int(len(A)/2), len(A))]
    print('Building Model')
    srm = SRM(bcast_var[0],bcast_var[1])
    print('Training Model')
    srm.fit(run1)
    print('Testing Model')
    shared_data = srm.transform(run2)
    shared_data = stats.zscore(np.dstack(shared_data),axis=1,ddof=1)
    others = np.mean(shared_data[:,:,np.arange(shared_data.shape[-1]) != loo_idx],axis=2) 
    loo    = shared_data[:,:,loo_idx] 
    corrAB = np.corrcoef(loo.T,others.T)[16:,:16]
    corr_eye = np.identity(16)
    same_songs = corrAB[corr_eye == 1]
    diff_songs = corrAB[corr_eye == 0]	    
    avg_same_songs = np.mean(same_songs)
    avg_diff_songs = np.mean(diff_songs)
    same_song_minus_diff_song = avg_same_songs - avg_diff_songs
    # Compute difference score for permuted matrices
    np.random.seed(0)
    diff_perm_holder = np.zeros((1000,1))
    for i in range(1000):
        corrAB_perm = corrAB[np.random.permutation(16),:]
        same_songs_perm = corrAB_perm[corr_eye == 1]
        diff_songs_perm = corrAB_perm[corr_eye == 0]
        diff_perm_holder[i] = np.mean(same_songs_perm) - np.mean(diff_songs_perm)                
             
    z = (same_song_minus_diff_song - np.mean(diff_perm_holder))/np.std(diff_perm_holder)
    return z
def SRM_V3(run1, run2, srm_k, n_iter):
    # initialize model
    print('Building Models')
    n_iter = n_iter
    srm_k = srm_k
    srm_train = SRM(n_iter=n_iter, features=srm_k)

    # concatenate run1 and run2 within subject before fitting SRM
    runs = []
    for i in range(len(run1)):
        runs.append(np.concatenate((run1[i], run2[i]), axis=1))

    # fit model to training data
    print('Training Models')
    srm_train.fit(runs)

    print('Testing Models')
    shared_data_run1 = srm_train.transform(run1)
    shared_data_run2 = srm_train.transform(run2)

    # average test data across subjects
    run1 = sum(shared_data_run1) / len(shared_data_run1)
    run2 = sum(shared_data_run2) / len(shared_data_run2)

    return run1, run2
示例#4
0
def fit_srm(data_train, data_test, n_components):
    """Fit the shared response model
    Parameters
    ----------
    n_components: k
    data_train: 3d array (n_subj, n_features, n_examples/tps)
    data_test: 3d array (n_subj, n_features, n_examples/tps)

    Returns
    -------
    data_train_sr: 3d array (n_subj, n_components, n_examples/tps)
        the transformed training set
    data_test_sr: 3d array (n_subj, n_components, n_examples/tps)
        the transformed test set
    srm: the fitted model
    """
    assert len(data_train) == len(data_test)
    n_subjects = len(data_train)
    # fit SRM on the training set
    srm = SRM(features=n_components)
    data_train_sr = srm.fit_transform(data_train)
    # transform the hidden activity (on the test set) to the shared space
    data_test_sr = srm.transform(data_test)
    # calculate variance explained
    var_exp_train = calc_srm_var_exp(data_train, data_train_sr, srm.w_)
    return data_train_sr, data_test_sr, srm, var_exp_train
示例#5
0
def sfn(l, msk, myrad, bcast_var):
    # Arguments:
    # l -- a list of 4D arrays, containing data from a single searchlight
    # msk -- a 3D binary array, mask of this searchlight
    # myrad -- an integer, sl_rad
    # bcast_var -- whatever is broadcasted 

    # extract training and testing data
    train_data = []
    test_data = []
    d1,d2,d3,ntr = l[0].shape
    nvx = d1*d2*d3
    for s in l:
        train_data.append(np.reshape(s[:,:,:,:int(ntr/2)],(nvx,int(ntr/2))))
        test_data.append(np.reshape(s[:,:,:,int(ntr/2):],(nvx,ntr-int(ntr/2))))
    # train an srm model 
    srm = SRM(bcast_var[0],bcast_var[1])
    srm.fit(train_data)
    # transform test data
    shared_data = srm.transform(test_data)
    for s in range(len(l)):
        shared_data[s] = np.nan_to_num(stats.zscore(shared_data[s],axis=1,ddof=1))
    # run experiment
    accu = time_segment_matching_accuracy(shared_data)

    # return: can also return several values. In that case, the final output will be 
    # a 3D array of tuples
    return np.mean(accu) 
示例#6
0
def HMM(X,K,loo_idx,song_idx,song_bounds):
    
    """fit hidden markov model
  
       Fit HMM to average data and cross-validate with leftout subject using within song and between song average correlations              

       Parameters
       ----------
       A: voxel by time ndarray (2D)
       B: voxel by time ndarray (2D)
       C: voxel by time ndarray (2D)
       D: voxel by time ndarray (2D)
       K: # of events for HMM (scalar)
 
       Returns
       -------
       z: z-score after performing permuted cross-validation analysis      

    """
    
    w = 6
    srm_k = 45
    nPerm = 1000
    within_across = np.zeros(nPerm+1)
    run1 = [X[i] for i in np.arange(0, int(len(X)/2))]
    run2 = [X[i] for i in np.arange(int(len(X)/2), len(X))]
    print('Building Model')
    srm = SRM(n_iter=10, features=srm_k)   
    print('Training Model')
    srm.fit(run1)
    print('Testing Model')
    shared_data = srm.transform(run2)
    shared_data = stats.zscore(np.dstack(shared_data),axis=1,ddof=1)
    others = np.mean(shared_data[:,:,np.arange(shared_data.shape[-1]) != loo_idx],axis=2)
    loo = shared_data[:,song_bounds[song_idx]:song_bounds[song_idx + 1],loo_idx] 
    nTR = loo.shape[1]

    # Fit to all but one subject
    ev = brainiak.eventseg.event.EventSegment(K)
    ev.fit(others[:,song_bounds[song_idx]:song_bounds[song_idx + 1]].T)
    events = np.argmax(ev.segments_[0],axis=1)

    # Compute correlations separated by w in time
    corrs = np.zeros(nTR-w)
    for t in range(nTR-w):
        corrs[t] = pearsonr(loo[:,t],loo[:,t+w])[0]
       
    # Compute within vs across boundary correlations, for real and permuted bounds
    for p in range(nPerm+1):
        within = corrs[events[:-w] == events[w:]].mean()
        across = corrs[events[:-w] != events[w:]].mean()
        within_across[p] = within - across
        
        np.random.seed(p)
        events = np.zeros(nTR, dtype=np.int)
        events[np.random.choice(nTR,K-1,replace=False)] = 1
        events = np.cumsum(events)

    return within_across
def HMM(X, human_bounds, song_idx, song_bounds, srm_k, hrf):
    """fit hidden markov model
  
       Fit HMM to average data and cross-validate with leftout subject using within song and between song average correlations              

       Parameters
       ----------
       A: voxel by time ndarray (2D)
       B: voxel by time ndarray (2D)
       C: voxel by time ndarray (2D)
       D: voxel by time ndarray (2D)
       K: # of events for HMM (scalar)
 
       Returns
       -------
       z: z-score after performing permuted cross-validation analysis      

    """

    w = 3
    nPerm = 1000
    run1 = [X[i] for i in np.arange(0, int(len(X) / 2))]
    run2 = [X[i] for i in np.arange(int(len(X) / 2), len(X))]
    print('Building Model')
    srm = SRM(n_iter=10, features=srm_k)
    print('Training Model')
    srm.fit(run2)
    print('Testing Model')
    shared_data = srm.transform(run1)
    shared_data = stats.zscore(np.dstack(shared_data), axis=1, ddof=1)
    data = np.mean(shared_data[:, song_bounds[song_idx]:song_bounds[song_idx +
                                                                    1]],
                   axis=2)
    nTR = data.shape[1]

    # Fit to all but one subject
    K = len(human_bounds) + 1
    ev = brainiak.eventseg.event.EventSegment(K)
    ev.fit(data.T)
    bounds = np.where(np.diff(np.argmax(ev.segments_[0], axis=1)))[0] + 1
    match = np.zeros(nPerm + 1)
    events = np.argmax(ev.segments_[0], axis=1)
    _, event_lengths = np.unique(events, return_counts=True)
    perm_bounds = bounds.copy()

    for p in range(nPerm + 1):
        for hb in human_bounds:
            if np.any(np.abs(perm_bounds - hb) <= w):
                match[p] += 1
        match[p] /= len(human_bounds)
        np.random.seed(p)
        perm_bounds = np.cumsum(np.random.permutation(event_lengths))[:-1]

    return match
def SRM_V2(run1, run2, srm_k, n_iter):
    # initialize model
    print('Building Models')
    n_iter = n_iter
    srm_k = srm_k
    srm_train_run1 = SRM(n_iter=n_iter, features=srm_k)
    srm_train_run2 = SRM(n_iter=n_iter, features=srm_k)

    # fit model to training data
    print('Training Models')
    srm_train_run1.fit(run1)
    srm_train_run2.fit(run2)

    print('Testing Models')
    shared_data_run1 = srm_train_run2.transform(run1)
    shared_data_run2 = srm_train_run1.transform(run2)

    # average test data across subjects
    run1 = sum(shared_data_run1) / len(shared_data_run1)
    run2 = sum(shared_data_run2) / len(shared_data_run2)

    return run1, run2
def SRM_V1(train, test, srm_k, n_iter):
    # initialize model
    print('Building Models')
    srm_train_data = SRM(n_iter=n_iter, features=srm_k)

    # fit model to training data
    print('Training Models')
    srm_train_data.fit(train)

    print('Testing Models')
    shared_data = srm_train_data.transform(test)

    return shared_data
示例#10
0
def srm(train_data, test_data, n_features):
    # Z-score the data
    n = len(train_data)
    for subject in range(n):
        train_data[subject] = stats.zscore(train_data[subject], axis=1, ddof=1)
        test_data[subject] = stats.zscore(test_data[subject], axis=1, ddof=1)

    model = SRM(n_iter=10, features=n_features)
    model.fit(train_data)
    projected_data = model.transform(test_data)
    for subject in range(n):
        projected_data[subject] = stats.zscore(projected_data[subject], axis=1, ddof=1)

    return projected_data
def isc_srm(X,set_srm):
    
    """perform isc on srm searchlights

       Parameters
       ----------
       X: list of searchlights where searchlights are voxels by time
       
       Returns
       -------
       r: correlations for each searchlights timecourse correlated with all other timecourses      
    """
    
    run1 = [X[i] for i in np.arange(0, int(len(X)/2))]
    run2 = [X[i] for i in np.arange(int(len(X)/2), len(X))]
    data = np.zeros((run1[0].shape[0],run1[0].shape[1]*2,len(run1)))
    
    if set_srm == 0:
        for i in range(data.shape[2]):
            data[:,:,i] = np.hstack((run1[i],run2[i])) 
        # run isc
        isc_output = brainiak.isfc.isfc(data)
    elif set_srm == 1:
        # train on run 1 and test on run 2     
        print('Building Model')
        srm = SRM(n_iter=10, features=5)   
        print('Training Model')
        srm.fit(run1)
        print('Testing Model')
        shared_data = srm.transform(run2)
        shared_data = stats.zscore(np.dstack(shared_data),axis=1,ddof=1)
        # run isc
        isc_output = brainiak.isfc.isfc(shared_data)
        print(isc_output)
       
    # average isc results
    
    mean_isc = np.mean(isc_output)
 
    return mean_isc,isc_output
示例#12
0
def sfn(l, msk, myrad, bcast_var):
    # extract training and testing data
    train_data = []
    test_data = []
    d1, d2, d3, ntr = l[0].shape
    nvx = d1 * d2 * d3
    for s in l:
        train_data.append(
            np.reshape(s[:, :, :, :int(ntr / 2)], (nvx, int(ntr / 2))))
        test_data.append(
            np.reshape(s[:, :, :, int(ntr / 2):], (nvx, ntr - int(ntr / 2))))
    # train an srm model
    srm = SRM(bcast_var[0], bcast_var[1])
    srm.fit(train_data)
    # transform test data
    shared_data = srm.transform(test_data)
    for s in range(len(l)):
        shared_data[s] = np.nan_to_num(
            stats.zscore(shared_data[s], axis=1, ddof=1))
    # experiment
    accu = timesegmentmatching_accuracy(shared_data, 6)

    return np.mean(accu), stats.sem(
        accu)  # multiple outputs will be saved as tuples
    n_iter = 50
    features = 10
    # Initialize model
    print('Building Model')
    srm_train_run1 = SRM(n_iter=n_iter, features=features)
    srm_train_run2 = SRM(n_iter=n_iter, features=features)

    # Fit model to training data
    print('Training Model')
    srm_train_run1.fit(run1_list)
    srm_train_run2.fit(run2_list)

    # Test model on testing data to produce shared response
    print('Testing Model')
    shared_data_train_run1 = srm_train_run1.transform(run2_list)
    shared_data_train_run2 = srm_train_run2.transform(run1_list)

    avg_response_train_run1 = sum(shared_data_train_run1) / len(
        shared_data_train_run1)
    avg_response_train_run2 = sum(shared_data_train_run2) / len(
        shared_data_train_run2)

    ##################################################################################

    for i in range(16):
        print('song number ', str(i))
        # grab start and end time for each song from bound vectors. for SRM data trained on run 1 and tested on run 2, use song name from run 1 to find index for song onset in run 2 bound vector
        start_run1 = song_bounds_run2[songs_run2.index(songs_run1[i])]
        end_run1 = song_bounds_run2[songs_run2.index(songs_run1[i]) + 1]
        start_run2 = song_bounds_run1[i]
# grab first 4 songs from run 1 to train which is equal to first 628 seconds
for i in subjs:
    run1 = datadir + 'subjects/' + i + '/analysis/run1.feat/trans_filtered_func_data.nii'
    run2 = datadir + 'subjects/' + i + '/analysis/run2.feat/trans_filtered_func_data.nii'
    run1 = nib.load(run1).get_data()[:, :, :, 0:2511]
    run2 = nib.load(run2).get_data()[:, :, :, 0:2511]
    run2 = run2[mask == 1, :]
    train.append(run1[mask == 1, 0:628])
    test.append(run2[:, omit_mask == 1])

print('Building Model')
srm = SRM(n_iter=10, features=50)
print('Training Model')
srm.fit(train)
print('Testing Model')
shared_data = srm.transform(test)
shared_data = stats.zscore(np.dstack(shared_data), axis=1, ddof=1)

corrAB_holder = []
correct_songs = np.zeros((25, 12))

for i in range(len(subjs)):
    loo = shared_data[:, :, i]
    others = np.mean(shared_data[:, :,
                                 np.arange(shared_data.shape[-1]) != i],
                     axis=2)
    corrAB = np.corrcoef(loo.T, others.T)[12:, :12]
    corrAB_holder.append(corrAB)
    for j in range(len(corrAB)):
        mask2_idx = ma.masked_where(
            np.arange(len(corrAB)) != j, np.arange(len(corrAB))).mask
示例#15
0
        data_tr[cond].append(d_tr_i_s_ - mu_i_s_)
        data_te[cond].append(d_te_i_s_ - mu_i_s_)

# fit training set
data_tr_unroll = np.concatenate([data_tr[cond] for cond in all_conds], axis=2)
# organize the data for srm form
data_tr_all_conds = np.moveaxis([data_tr[cond] for cond in all_conds],
                                source=0,
                                destination=-1).reshape(n_subjs, nH, -1)

data_te_all_conds = np.moveaxis([data_te[cond] for cond in all_conds],
                                source=0,
                                destination=-1).reshape(n_subjs, nH, -1)

srm.fit(data_tr_all_conds)
X_test_srm_ = srm.transform(data_te_all_conds)
X_test_srm_bycond = np.moveaxis(np.reshape(X_test_srm_,
                                           newshape=(n_subjs, dim_srm, -1, 3)),
                                source=-1,
                                destination=0)

X_test_srm = {cond: None for cond in all_conds}
for i, cond in enumerate(all_conds):
    X_test_srm_cond_ = X_test_srm_bycond[i].reshape(n_subjs, dim_srm, -1,
                                                    n_examples_te)
    X_test_srm[cond] = np.moveaxis(X_test_srm_cond_, source=-1, destination=0)
'''Inter-subject pattern correlation, RM vs. cond'''


def compute_bs_bc_trsm(data_te_srm_rm_i, data_te_srm_xm_i, return_mean=True):
    _, m_, n_ = np.shape(data_te_srm_rm_i)
        train_roi[story] = np.nan_to_num(zscore(roi_data, axis=0))

# Time-series SRM on ROI data
if timeseries_srm:
    test_shared = {}
    for story in stories:
        srm = SRM(n_iter=n_iter, features=n_features)

        # Change subjects to list for SRM
        train_list = [train.T for train in np.moveaxis(train_roi[story], 2, 0)]
        test_list = [test.T for test in np.moveaxis(test_roi[story], 2, 0)]

        # Train SRM and apply
        srm.fit(train_list)

        test_transformed = srm.transform(test_list)
        test_shared[story] = np.dstack([test.T for test in test_transformed])

# Load in the whole-brain surface data
train_target, test_target = {}, {}
for story in train_stories:

    # Stack left and right hemispheres
    target_data = np.hstack((np.load(f'{story}_cortex_lh_data.npy'),
                             np.load(f'{story}_cortex_lh_data.npy')))

    # Remove zeroed vertices (medial wall)
    target_data = target_data[:, ~np.all(target_data == 0, axis=(0, 2))]

    # Split targets into training and test sets
    target_trs = target_data.shape[0]
示例#17
0
def HMM(X, human_bounds, song_idx, song_bounds, hrf, srm_k):
    """fit hidden markov model
  
       Fit HMM to average data and cross-validate with leftout subjects using within song and between song average correlations              
       Parameters
       ----------
       A: list of 50 (contains 2 runs per subject) 2D (voxels x full time course) arrays
       B: # of events for HMM (scalar)
       song_idx: song index (scalar)
       C: voxel by time ndarray (2D)
       D: array of song boundaries (1D)
 
       Returns
       -------
       wVa score: final score after performing cross-validation of leftout subjects      
    """

    w = 6
    nPerm = 1000
    within_across = np.zeros(nPerm + 1)
    run1 = [X[i] for i in np.arange(0, int(len(X) / 2))]
    run2 = [X[i] for i in np.arange(int(len(X) / 2), len(X))]
    print('Building Model')
    srm = SRM(n_iter=10, features=srm_k)
    print('Training Model')
    srm.fit(run1)
    print('Testing Model')
    shared_data = srm.transform(run2)
    shared_data = stats.zscore(np.dstack(shared_data), axis=1, ddof=1)
    others = np.mean(
        shared_data[:, song_bounds[song_idx]:song_bounds[song_idx + 1], :13],
        axis=2)
    loo = np.mean(shared_data[:,
                              song_bounds[song_idx]:song_bounds[song_idx + 1],
                              13:],
                  axis=2)
    nTR = loo.shape[1]

    # Fit to all but one subject
    K = len(human_bounds) + 1
    ev = brainiak.eventseg.event.EventSegment(K)
    ev.fit(others.T)
    events = np.argmax(ev.segments_[0], axis=1)

    # Compute correlations separated by w in time
    corrs = np.zeros(nTR - w)
    for t in range(nTR - w):
        corrs[t] = pearsonr(loo[:, t], loo[:, t + w])[0]

    # Compute within vs across boundary correlations, for real and permuted bounds
    for p in range(nPerm + 1):
        within = corrs[events[:-w] == events[w:]].mean()
        across = corrs[events[:-w] != events[w:]].mean()
        within_across[p] = within - across

        np.random.seed(p)
        events = np.zeros(nTR, dtype=np.int)
        events[np.random.choice(nTR, K - 1, replace=False)] = 1
        events = np.cumsum(events)
    print((within_across[0] - np.mean(within_across[1:])) /
          np.std(within_across[1:]))
    return within_across
    test_list_roi_2.append(test_roi_2[:,:,i])

    
# Initialize models
print('Building Model')
srm_roi_1 = SRM(n_iter=50, features=5)
srm_roi_2 = SRM(n_iter=50, features=5)

# Fit model to training data (run 1)
print('Training Model')
srm_roi_1.fit(train_list_roi_1)
srm_roi_2.fit(train_list_roi_2)

# Test model on testing data to produce shared response
print('Testing Model')
shared_data_roi_1 = srm_roi_1.transform(test_list_roi_1)
shared_data_roi_2 = srm_roi_2.transform(test_list_roi_2)

avg_response_roi_1 = sum(shared_data_roi_1)/len(shared_data_roi_1)
avg_response_roi_2 = sum(shared_data_roi_2)/len(shared_data_roi_2)

# Fit to ROI 1
ev1 = brainiak.eventseg.event.EventSegment(len(human_bounds) - 1)
ev1.fit(avg_response_roi_1[:,start:end].T)

bounds1 = np.where(np.diff(np.argmax(ev1.segments_[0], axis=1)))[0]

# Fit to ROI 2
ev2 = brainiak.eventseg.event.EventSegment(len(human_bounds) - 1)
ev2.fit(avg_response_roi_2[:,start:end].T)
示例#19
0
    train_list_vmPFC.append(train_vmPFC[:, :, i])
    test_list_vmPFC.append(test_vmPFC[:, :, i])

# Initialize models
print('Building Model')
srm_A1 = SRM(n_iter=10, features=50)
srm_vmPFC = SRM(n_iter=10, features=10)

# Fit model to training data (run 1)
print('Training Model')
srm_A1.fit(train_list_A1)
srm_vmPFC.fit(train_list_vmPFC)

# Test model on testing data to produce shared response
print('Testing Model')
shared_data_A1 = srm_A1.transform(test_list_A1)
shared_data_vmPFC = srm_vmPFC.transform(test_list_vmPFC)

avg_response_A1 = sum(shared_data_A1) / len(shared_data_A1)
avg_response_vmPFC = sum(shared_data_vmPFC) / len(shared_data_vmPFC)

A1_no_srm = np.mean(test_A1, axis=2)
vmPFC_no_srm = np.mean(test_vmPFC, axis=2)

X_MIN = 0
X_MAX = spect_corr.shape[0]
Y_MIN = spect_corr.shape[0]
Y_MAX = 0
X_VALS = range(X_MIN, X_MAX)

fig, ((ax1, ax2, ax3, ax4), (ax5, ax6, ax7, ax8)) = plt.subplots(2, 4)
示例#20
0
def HMM(X, K, loo_idx, song_idx, song_bounds):
    """fit hidden markov model
  
       Fit HMM to average data and cross-validate with leftout subject using within song and between song average correlations              

       Parameters
       ----------
       A: voxel by time ndarray (2D)
       B: voxel by time ndarray (2D)
       C: voxel by time ndarray (2D)
       D: voxel by time ndarray (2D)
       K: # of events for HMM (scalar)
 
       Returns
       -------
       z: z-score after performing permuted cross-validation analysis      

    """

    w = 6
    srm_k = 45
    nPerm = 1000
    within_across = np.zeros(nPerm + 1)
    run1 = [X[i] for i in np.arange(0, int(len(X) / 2))]
    run2 = [X[i] for i in np.arange(int(len(X) / 2), len(X))]
    print('Building Model')
    srm = SRM(n_iter=10, features=srm_k)
    print('Training Model')
    srm.fit(run1)
    print('Testing Model')
    shared_data = srm.transform(run2)
    shared_data = stats.zscore(np.dstack(shared_data), axis=1, ddof=1)
    others = np.mean(shared_data[:, :,
                                 np.arange(shared_data.shape[-1]) != loo_idx],
                     axis=2)
    loo = shared_data[:, song_bounds[song_idx]:song_bounds[song_idx + 1],
                      loo_idx]
    nTR = loo.shape[1]

    # Fit to all but one subject
    ev = brainiak.eventseg.event.EventSegment(K)
    ev.fit(others[:, song_bounds[song_idx]:song_bounds[song_idx + 1]].T)
    events = np.argmax(ev.segments_[0], axis=1)

    ####
    # plot searchlights
    import matplotlib.pyplot as plt
    import matplotlib.patches as patches
    shared_data = srm.transform(run2)
    avg_response = sum(shared_data) / len(shared_data)
    plt.figure(figsize=(10, 10))
    plt.imshow(np.corrcoef(avg_response[:, 0:89].T))
    bounds = np.where(np.diff(np.argmax(ev.segments_[0], axis=1)))[0]
    ax = plt.gca()
    bounds_aug = np.concatenate(([0], bounds, [nTR]))
    for i in range(len(bounds_aug) - 1):
        rect1 = patches.Rectangle((bounds_aug[i], bounds_aug[i]),
                                  bounds_aug[i + 1] - bounds_aug[i],
                                  bounds_aug[i + 1] - bounds_aug[i],
                                  linewidth=3,
                                  edgecolor='w',
                                  facecolor='none',
                                  label='Model Fit')
        ax.add_patch(rect1)
    plt.title('HMM Fit to A1 SRM K = ' + str(srm_k),
              fontsize=18,
              fontweight='bold')
    plt.savefig('plots/St_Pauls SRM K = ' + str(srm_k))
    ####

    # Compute correlations separated by w in time
    corrs = np.zeros(nTR - w)
    for t in range(nTR - w):
        corrs[t] = pearsonr(loo[:, t], loo[:, t + w])[0]

    # Compute within vs across boundary correlations, for real and permuted bounds
    for p in range(nPerm + 1):
        within = corrs[events[:-w] == events[w:]].mean()
        across = corrs[events[:-w] != events[w:]].mean()
        within_across[p] = within - across

        np.random.seed(p)
        events = np.zeros(nTR, dtype=np.int)
        events[np.random.choice(nTR, K - 1, replace=False)] = 1
        events = np.cumsum(events)

    return within_across