示例#1
0
    def setUpClass(self):
        import nest

        nest.ResetKernel()
        super(TestEntities, self).setUpClass()
        config = JSONConfig(file=minimal_config_entities)
        self.scaffold = Scaffold(config)
        self.scaffold.compile_network()
        hdf_config = _from_hdf5("minimal_entities.hdf5")
        self.scaffold_fresh = Scaffold(hdf_config,
                                       from_file="minimal_entities.hdf5")
 def setUpClass(self):
     super(TestFiberIntersection, self).setUpClass()
     # Make sure the MR exists
     test_setup.prep_morphologies()
     # The scaffold has only the Granular layer (100x100x150) with 20 GrCs
     # and 1 GoC placed, as specified in the config file
     self.config = JSONConfig(file=fiber_transform_config)
     # Defining quivers field to include also voxels outside the scaffold
     # volume
     self.quivers_field = np.zeros(
         shape=(3, 80, 80, 80))  # Each voxel in the volume has vol_res=25um
     # Fake quiver, oriented as original fibers
     basic_quiver = np.array([0, 1.0, 0.0])
     self.quivers_field[0, :] = basic_quiver[0]
     self.quivers_field[1, :] = basic_quiver[1]
     self.quivers_field[2, :] = basic_quiver[2]
     self.config.connection_types[
         "parallel_fiber_to_golgi_bended"].transformation.quivers = self.quivers_field
     self.config.connection_types[
         "parallel_fiber_to_golgi_bended"].transformation.vol_start = [
             -500.0, -500.0, -500.0
         ]
     self.scaffold = Scaffold(self.config)
     self.scaffold.morphology_repository = MorphologyRepository(morpho_file)
     self.scaffold.compile_network()
示例#3
0
 def setUp(self):
     config = JSONConfig(file=single_neuron_config)
     self.scaffold = Scaffold(config)
     self.scaffold.compile_network()
     self.nest_adapter = self.scaffold.configuration.simulations[
         "test_single_neuron"]
     self.nest_adapter.reset()
示例#4
0
    def setUpClass(self):
        super(TestMultiInstance, self).setUpClass()
        import nest

        self.nest = nest
        config = JSONConfig(file=single_neuron_config)
        self.scaffold = Scaffold(config)
        self.scaffold.compile_network()
        self.hdf5 = self.scaffold.output_formatter.file
        self.nest_adapter_0 = self.scaffold.get_simulation(
            "test_single_neuron")
        # When another test errors, the lock might remain, and all locking tests fail
        self.nest_adapter_0.delete_lock()
        self.nest_adapter_1 = self.scaffold.create_adapter(
            "test_single_neuron")
        self.nest_adapter_2 = self.scaffold.create_adapter(
            "test_single_neuron")
        self.nest_adapter_multi_1 = self.scaffold.create_adapter(
            "test_single_neuron")
        self.nest_adapter_multi_1.enable_multi("first")
        self.nest_adapter_multi_1b = self.scaffold.create_adapter(
            "test_single_neuron")
        self.nest_adapter_multi_1b.enable_multi("first")
        self.nest_adapter_multi_2 = self.scaffold.create_adapter(
            "test_single_neuron")
        self.nest_adapter_multi_2.enable_multi("second")
示例#5
0
    def setUpClass(self):
        super().setUpClass()
        import nest

        self.nest = nest
        config = JSONConfig(file=recorder_config)
        self.scaffold = Scaffold(config)
示例#6
0
 def setUpClass(cls):
     super().setUpClass()
     config = JSONConfig(file=heterosyn_config)
     cls.scaffold = Scaffold(config)
     cls.scaffold.compile_network()
     cls.nest_adapter = cls.scaffold.run_simulation(
         "test_double_neuron_network_heterosyn")
示例#7
0
 def test_cortex_model_synapses(self):
     cfg = JSONConfig(config)
     _ = Scaffold(cfg)
     for name, model in cfg.simulations["poc"].cell_models.items():
         if model.relay:
             continue
         with self.subTest(model=name):
             self._test_model(model.model_class)
示例#8
0
 def setUpClass(cls):
     super().setUpClass()
     config = JSONConfig(file=double_nn_config)
     if not neuron_installed():
         del config.simulations["neuron"]
     cls.scaffold = Scaffold(config)
     cls.scaffold.compile_network()
     cls.nest_adapter = cls.scaffold.run_simulation(
         "test_double_neuron_network_static")
示例#9
0
    def test_teaching_connection_missing(self):
        from bsb.exceptions import ConfigurationError

        with open(heterosyn_config, "r") as f:
            stream = f.read()
        stream = stream.replace('"teaching": "teaching_cell_to_cell",', "")

        with self.assertRaises(ConfigurationError) as ce:
            config = JSONConfig(stream=stream)
            self.scaffold = Scaffold(config)
示例#10
0
    def setUpClass(self):
        import dbbs_models

        test_setup.prep_morphologies()
        test_setup.prep_rotations()

        super().setUpClass()
        config = JSONConfig(config_file)
        self.scaffold = Scaffold(config)
        self.scaffold.morphology_repository = MorphologyRepository(test_setup.mr_rot_path)
示例#11
0
 def test_spoofing(self):
     """
     Assert that fake detailed connections can be made
     """
     config = JSONConfig(file=_config)
     scaffold = Scaffold(config)
     scaffold.compile_network()
     original_connections = len(
         scaffold.cell_connections_by_tag["connection"])
     sd = SpoofDetails()
     sd.presynaptic = "from_cell"
     sd.postsynaptic = "to_cell"
     sd.scaffold = scaffold
     # Raise error because here's no morphologies registered for the cell types.
     with self.assertRaises(
             MorphologyDataError,
             msg="Missing morphologies during spoofing not caught."):
         sd.after_connectivity()
     # Add some morphologies
     setattr(
         config.cell_types["from_cell"].morphology,
         "detailed_morphologies",
         {"names": ["GranuleCell"]},
     )
     setattr(
         config.cell_types["to_cell"].morphology,
         "detailed_morphologies",
         {"names": ["GranuleCell"]},
     )
     # Run the spoofing again
     sd.after_connectivity()
     cs = scaffold.get_connectivity_set("connection")
     scaffold.compile_output()
     # Use the intersection property. It throws an error should the detailed
     # information be missing
     try:
         i = cs.intersections
         for inter in i:
             fl = inter.from_compartment.labels
             tl = inter.to_compartment.labels
             self.assertIn("axon", fl,
                           "From compartment type is not an axon")
             self.assertIn("dendrites", tl,
                           "From compartment type is not a dendrite")
         self.assertNotEqual(len(i), 0, "Empty intersection data")
         self.assertEqual(len(i), original_connections,
                          "Different amount of spoofed connections")
     except MissingMorphologyError:
         self.fail("Could not find the intersection data on spoofed set")
     # Set both types to relays and try spoofing again
     config.cell_types["from_cell"].relay = True
     config.cell_types["to_cell"].relay = True
     with self.assertRaises(MorphologyError,
                            msg="Did not catch double relay spoofing!"):
         sd.after_connectivity()
示例#12
0
    def test_aa_goc(self):
        # 5) GrC (aa) - GoC
        # To check it, 20syn on basal dendrites, not near the soma.
        # AMPA/NMDA syn with a burst of 5 spike at 100Hz. The response should be a burst
        # composed by 3 spikes
        config = JSONConfig(aa_goc_config)
        scaffold = Scaffold(config)
        scaffold.place_cell_types()
        scaffold.compile_output()
        grc_to_golgi = scaffold.configuration.connection_types[
            "granule_to_golgi"]
        grcs = scaffold.get_placement_set("granule_cell").identifiers
        golgis = scaffold.get_placement_set("golgi_cell").identifiers
        m_gol = scaffold.morphology_repository.get_morphology("GolgiCell")
        m_grc = scaffold.morphology_repository.get_morphology("GranuleCell")
        comps = m_gol.get_compartments(["basal_dendrites"])

        conns = np.array([[grcs[0], golgis[0]]] * 20)
        morpho_map = ["GranuleCell", "GolgiCell"]
        morphologies = np.array([[0, 1]] * 20)
        compartments = np.ones(
            (20, 2)) * m_grc.get_compartments(["ascending_axon"])[0].id
        compartments[:, 1] = np.random.choice([c.id for c in comps], size=20)
        scaffold.connect_cells(
            grc_to_golgi,
            conns,
            morphologies=morphologies,
            compartments=compartments,
            morpho_map=morpho_map,
        )

        scaffold.compile_output()
        scaffold = from_hdf5(scaffold.output_formatter.file)
        scaffold.run_simulation("test")

        from glob import glob
        from plotly import graph_objs as go

        results = glob("results_test_*")[-1]
        with h5py.File(results, "r") as f:
            go.Figure([
                go.Scatter(
                    x=f["recorders/soma_voltages/0"][:, 0],
                    y=f["recorders/soma_voltages/0"][:, 1],
                ),
                go.Scatter(
                    x=f["recorders/soma_voltages/1"][:, 0],
                    y=f["recorders/soma_voltages/1"][:, 1],
                ),
            ]).show()
示例#13
0
    def setUpClass(self):
        import dbbs_models

        test_setup.prep_morphologies()
        test_setup.prep_rotations()

        super().setUpClass()
        config = JSONConfig(config_file)
        self.scaffold = Scaffold(config)
        mr = MorphologyRepository(test_setup.mr_rot_path)
        self.scaffold.morphology_repository = mr
        self.morphology_cache = MorphologyCache(mr)
        self.morphologies_start = ["GranuleCell", "GolgiCell", "GolgiCell_A"]
        self.morphologies_rotated = mr.list_morphologies(include_rotations=True)
示例#14
0
    def test_grc_sc(self):
        # 9) GrC - SC
        # 3 random synapses on the dendrites. AMPA/NMDA, 10 spikes at 100Hz.
        # It should do a burst of 5 spikes.
        config = JSONConfig(grc_sc_config)
        scaffold = Scaffold(config)
        scaffold.place_cell_types()
        scaffold.compile_output()
        grc_to_golgi = scaffold.configuration.connection_types[
            "granule_to_stellate"]
        grcs = scaffold.get_placement_set("granule_cell").identifiers
        golgis = scaffold.get_placement_set("stellate_cell").identifiers
        m_grc = scaffold.morphology_repository.get_morphology("GranuleCell")
        m_gol = scaffold.morphology_repository.get_morphology("StellateCell")
        comps = m_gol.get_compartments(["dendrites"])

        conns = np.array([[grcs[0], golgis[0]]] * 3)
        morpho_map = ["GranuleCell", "StellateCell"]
        morphologies = np.array([[0, 1]] * 3)
        compartments = np.ones(
            (3, 2)) * m_grc.get_compartments(["ascending_axon"])[0].id
        compartments[:, 1] = np.random.choice([c.id for c in comps], size=3)
        scaffold.connect_cells(
            grc_to_golgi,
            conns,
            morphologies=morphologies,
            compartments=compartments,
            morpho_map=morpho_map,
        )

        scaffold.compile_output()
        scaffold = from_hdf5(scaffold.output_formatter.file)
        scaffold.run_simulation("test")

        from glob import glob
        from plotly import graph_objs as go

        results = glob("results_test_*")[-1]
        with h5py.File(results, "r") as f:
            go.Figure([
                go.Scatter(
                    x=f["recorders/soma_voltages/0"][:, 0],
                    y=f["recorders/soma_voltages/0"][:, 1],
                ),
                go.Scatter(
                    x=f["recorders/soma_voltages/1"][:, 0],
                    y=f["recorders/soma_voltages/1"][:, 1],
                ),
            ]).show()
示例#15
0
    def test_pf_pc(self):
        # 6) GrC (aa) - PC
        # 100 random syn, on the apical dendrites. AMPA only, 10 spikes
        # 500Hz. The response should be a burst composed by 3 spikes.
        config = JSONConfig(aa_pc_config)
        scaffold = Scaffold(config)
        scaffold.place_cell_types()
        scaffold.compile_output()
        grc_to_golgi = scaffold.configuration.connection_types[
            "granule_to_purkinje"]
        grcs = scaffold.get_placement_set("granule_cell").identifiers
        golgis = scaffold.get_placement_set("purkinje_cell").identifiers
        m_gol = scaffold.morphology_repository.get_morphology("PurkinjeCell")
        m_grc = scaffold.morphology_repository.get_morphology("GranuleCell")
        comps = [c.id for c in m_gol.compartments if c.type == 3]

        conns = np.array([[grcs[0], golgis[0]]] * 80)
        morpho_map = ["GranuleCell", "PurkinjeCell"]
        morphologies = np.array([[0, 1]] * 80)
        compartments = np.ones(
            (80, 2)) * m_grc.get_compartments(["parallel_fiber"])[0].id
        compartments[:, 1] = np.random.choice(comps, size=80)
        scaffold.connect_cells(
            grc_to_golgi,
            conns,
            morphologies=morphologies,
            compartments=compartments,
            morpho_map=morpho_map,
        )

        scaffold.compile_output()
        scaffold = from_hdf5(scaffold.output_formatter.file)
        scaffold.run_simulation("test")

        from glob import glob
        from plotly import graph_objs as go

        results = glob("results_test_*")[-1]
        with h5py.File(results, "r") as f:
            go.Figure([
                go.Scatter(
                    x=f["recorders/soma_voltages/0"][:, 0],
                    y=f["recorders/soma_voltages/0"][:, 1],
                ),
                go.Scatter(
                    x=f["recorders/soma_voltages/1"][:, 0],
                    y=f["recorders/soma_voltages/1"][:, 1],
                ),
            ]).show()
示例#16
0
    def test_pf_goc(self):
        # 7) GrC (pf) - GoC
        # The same as 5) except on 80 apical dendrites.
        config = JSONConfig(aa_goc_config)
        scaffold = Scaffold(config)
        scaffold.place_cell_types()
        scaffold.compile_output()
        grc_to_golgi = scaffold.configuration.connection_types[
            "granule_to_golgi"]
        grcs = scaffold.get_placement_set("granule_cell").identifiers
        golgis = scaffold.get_placement_set("golgi_cell").identifiers
        m_gol = scaffold.morphology_repository.get_morphology("GolgiCell")
        m_grc = scaffold.morphology_repository.get_morphology("GranuleCell")
        comps = m_gol.get_compartments(["apical_dendrites"])

        conns = np.array([[grcs[0], golgis[0]]] * 80)
        morpho_map = ["GranuleCell", "GolgiCell"]
        morphologies = np.array([[0, 1]] * 80)
        compartments = np.ones(
            (80, 2)) * m_grc.get_compartments(["ascending_axon"])[0].id
        compartments[:, 1] = np.random.choice([c.id for c in comps], size=80)
        scaffold.connect_cells(
            grc_to_golgi,
            conns,
            morphologies=morphologies,
            compartments=compartments,
            morpho_map=morpho_map,
        )

        scaffold.compile_output()
        scaffold = from_hdf5(scaffold.output_formatter.file)
        scaffold.run_simulation("test")

        from glob import glob
        from plotly import graph_objs as go

        results = glob("results_test_*")[-1]
        with h5py.File(results, "r") as f:
            go.Figure([
                go.Scatter(
                    x=f["recorders/soma_voltages/0"][:, 0],
                    y=f["recorders/soma_voltages/0"][:, 1],
                ),
                go.Scatter(
                    x=f["recorders/soma_voltages/1"][:, 0],
                    y=f["recorders/soma_voltages/1"][:, 1],
                ),
            ]).show()
示例#17
0
    def test_fiber_connections(self):
        pre_type = "granule_cell"
        pre_neu = self.scaffold.get_placement_set(pre_type)
        conn_type = "parallel_fiber_to_golgi"
        cs = self.scaffold.get_connectivity_set(conn_type)
        num_conn = len(cs.connections)
        # Check that no more connections are formed than the number of
        # presynaptic neurons - how could happen otherwise?
        self.assertTrue(num_conn <= len(pre_neu.identifiers))

        # Check that increasing resolution in FiberIntersection does not change
        # connection number if there are no transformations (and thus the fibers
        # are parallel to main axes)
        conn_type_HR = "parallel_fiber_to_golgi_HR"
        cs_HR = self.scaffold.get_connectivity_set(conn_type_HR)
        self.assertEqual(num_conn, len(cs_HR.connections))

        # Check that half (+- 5) connections are obtained with half the affinity
        conn_type_affinity = "parallel_fiber_to_golgi_affinity"
        cs_affinity = self.scaffold.get_connectivity_set(conn_type_affinity)
        self.assertAlmostEqual(num_conn / 2,
                               len(cs_affinity.connections),
                               delta=5)

        # Check that same number of connections are obtained when a fake quiver
        # transformation is applied
        conn_type_transform = "parallel_fiber_to_golgi_bended"
        cs_fake_transform = self.scaffold.get_connectivity_set(
            conn_type_transform)
        self.assertEqual(len(cs_fake_transform.connections), num_conn)

        # Check that less connections are obtained when the PC surface is
        # oriented according to orientation vector of 45° rotation in yz plane,
        # for how the Golgi cell is placed and the parallel fibers are rotated
        basic_quiver = np.array([0, 0.7, 0.7])
        self.quivers_field[0, :] = basic_quiver[0]
        self.quivers_field[1, :] = basic_quiver[1]
        self.quivers_field[2, :] = basic_quiver[2]
        self.config.connection_types[
            "parallel_fiber_to_golgi_bended"].transformation.quivers = self.quivers_field
        self.scaffold = Scaffold(self.config)
        self.scaffold.compile_network()
        cs_transform = self.scaffold.get_connectivity_set(conn_type_transform)
        self.assertTrue(len(cs_transform.connections) <= num_conn)
示例#18
0
    def test_representatives(self):
        """
        Test that 1 cell per non-relay cell model is chosen.
        """
        from patch import p

        config = JSONConfig(double_nn_config)
        scaffold = Scaffold(config)
        scaffold.compile_network()
        adapter = scaffold.create_adapter("neuron")
        adapter.h = p
        adapter.load_balance()
        device = adapter.devices["test_representatives"]
        device.initialise_targets()
        targets = adapter.devices["test_representatives"].get_targets()
        self.assertEqual(
            1,
            len(targets),
            "Targetting type `representatives` did not return the correct amount of representatives.",
        )
示例#19
0
    def test_mf_granule(self):
        config = JSONConfig(mf_grc_config)
        scaffold = Scaffold(config)
        scaffold.place_cell_types()
        scaffold.compile_output()
        mf_to_glom = scaffold.configuration.connection_types[
            "mossy_to_glomerulus"]
        glom_to_grc = scaffold.configuration.connection_types[
            "glomerulus_to_granule"]
        mfs = scaffold.get_placement_set("mossy_fibers").identifiers
        gloms = scaffold.get_placement_set("glomerulus").identifiers
        grcs = scaffold.get_placement_set("granule_cell").identifiers
        scaffold.connect_cells(
            mf_to_glom, np.array([[mfs[0], gloms[0]], [mfs[1], gloms[1]]]))
        scaffold.connect_cells(
            mf_to_glom, np.array([[mfs[0], gloms[0]], [mfs[1], gloms[1]]]))
        conns = np.array([[gloms[0], grcs[0]], [gloms[1], grcs[0]]])
        morpho_map = ["GranuleCell"]
        morphologies = np.array([[0, 0], [0, 0]])
        compartments = np.array([[0, 9], [0, 18]])
        scaffold.connect_cells(
            glom_to_grc,
            conns,
            morphologies=morphologies,
            compartments=compartments,
            morpho_map=morpho_map,
        )
        scaffold.compile_output()
        scaffold = from_hdf5(scaffold.output_formatter.file)
        scaffold.run_simulation("test")

        from glob import glob
        from plotly import graph_objs as go

        results = glob("results_test_*")[-1]
        with h5py.File(results, "r") as f:
            go.Figure(
                go.Scatter(
                    x=f["recorders/soma_voltages/0"][:, 0],
                    y=f["recorders/soma_voltages/0"][:, 1],
                )).show()
示例#20
0
    def test_sc_pc(self):
        # 9) GrC - SC
        # 3 random synapses on the dendrites. AMPA/NMDA, 10 spikes at 100Hz.
        # It should do a burst of 5 spikes.
        config = JSONConfig(sc_pc_config)
        scaffold = Scaffold(config)
        scaffold.place_cell_types()
        scaffold.compile_output()
        scaffold = from_hdf5(scaffold.output_formatter.file)
        scaffold.run_simulation("test")

        from glob import glob
        from plotly import graph_objs as go

        results = glob("results_test_*")[-1]
        with h5py.File(results, "r") as f:
            go.Figure([
                go.Scatter(
                    x=f["recorders/soma_voltages/0"][:, 0],
                    y=f["recorders/soma_voltages/0"][:, 1],
                ),
            ]).show()
示例#21
0
 def setUpClass(self):
     super(TestPlacementSets, self).setUpClass()
     test_setup.prep_morphologies()
     config = JSONConfig(file=double_neuron_config)
     self.scaffold = Scaffold(config)
     self.scaffold.compile_network()
示例#22
0
 def setUpClass(self):
     super(TestSingleTypeCompilation, self).setUpClass()
     config = JSONConfig(file=single_neuron_config)
     self.scaffold = Scaffold(config)
     self.scaffold.compile_network()
示例#23
0
    def test_glom_golgi_granule(self):
        config = JSONConfig(mf_gol_config)
        scaffold = Scaffold(config)
        scaffold.place_cell_types()
        scaffold.compile_output()
        mf_to_glom = scaffold.configuration.connection_types[
            "mossy_to_glomerulus"]
        glom_to_gc = scaffold.configuration.connection_types[
            "glomerulus_to_golgi"]
        gc_to_grc = scaffold.configuration.connection_types["golgi_to_granule"]
        mfs = scaffold.get_placement_set("mossy_fibers").identifiers
        gloms = scaffold.get_placement_set("glomerulus").identifiers
        golgis = scaffold.get_placement_set("golgi_cell").identifiers
        granules = scaffold.get_placement_set("granule_cell").identifiers
        scaffold.connect_cells(mf_to_glom, np.array([[mfs[0], gloms[0]]]))
        conns = np.array([[gloms[0], golgis[0]]] * 20)
        m = scaffold.morphology_repository.get_morphology("GolgiCell")
        morpho_map = ["GolgiCell"]
        morphologies = np.zeros((20, 2))
        compartments = np.zeros((20, 2))
        compartments[:, 1] = np.random.choice(
            [c.id for c in m.compartments if c.type == 302], size=20)
        scaffold.connect_cells(
            glom_to_gc,
            conns,
            morphologies=morphologies,
            compartments=compartments,
            morpho_map=morpho_map,
        )

        conns_grc = np.array([[golgis[0], granules[0]]] * 4)
        morpho_map_grc = ["GranuleCell", "GolgiCell"]
        morphologies_grc = np.zeros((4, 2))
        morphologies_grc[:, 0] = [1] * 4
        compartments_grc = np.zeros((4, 2))
        compartments_grc[:, 0] = [c.id for c in m.compartments
                                  if c.type == 2][0:4]
        compartments_grc[:, 1] = [9 * (i + 1) for i in range(4)]
        scaffold.connect_cells(
            gc_to_grc,
            conns_grc,
            morphologies=morphologies_grc,
            compartments=compartments_grc,
            morpho_map=morpho_map_grc,
        )
        scaffold.compile_output()
        scaffold = from_hdf5(scaffold.output_formatter.file)
        scaffold.run_simulation("test")

        from glob import glob
        from plotly import graph_objs as go

        results = glob("results_test_*")[-1]
        with h5py.File(results, "r") as f:
            g = f["recorders/soma_voltages"]
            a = f["recorders/axons"]

            def L(g, s):
                h = g[s]
                return {"x": h[:, 0], "y": h[:, 1], "name": h.attrs["label"]}

            go.Figure([
                *(go.Scatter(**L(g, i)) for i in g),
                *(go.Scatter(**L(a, i)) for i in a),
            ]).show()
示例#24
0
 def test_minimal(self):
     config = JSONConfig(file=minimal_config)
     self.scaffold = Scaffold(config)