class TestMorhologySetsRotations(unittest.TestCase): """ Test scaffold with cells associated to a certain rotated morphology """ @classmethod def setUpClass(self): import dbbs_models test_setup.prep_morphologies() test_setup.prep_rotations() super().setUpClass() config = JSONConfig(config_file) self.scaffold = Scaffold(config) self.scaffold.morphology_repository = MorphologyRepository(test_setup.mr_rot_path) def test_morphology_map(self): # Create and place a set of 10 Golgi cells and assign them to a morphology based on their rotation cell_type = self.scaffold.get_cell_type("golgi_cell") positions = np.random.rand(9, 3) # Construct rotation matrix for cell_type phi_values = np.linspace(0.0, 360.0, num=3) theta_values = np.linspace(0.0, 360.0, num=3) phi_values = np.repeat( phi_values, 3 ) # np.random.choice(len(phi_values), len(positions)) theta_values = np.repeat( theta_values, 3 ) # np.random.choice(len(theta_values), len(positions)) rotations = np.vstack((phi_values, theta_values)).T # Place cells and generate hdf5 output self.scaffold.place_cells( cell_type, cell_type.placement.layer_instance, positions, rotations ) self.scaffold.compile_output() ps = PlacementSet(self.scaffold.output_formatter, cell_type) ms = MorphologySet(self.scaffold, cell_type, ps) self.assertEqual( len(rotations), len(ms._morphology_index), "Not all cells assigned to a morphology!", ) random_sel = np.random.choice(len(ms._morphology_index)) morpho_sel = ms._morphology_map[ms._morphology_index[random_sel]] self.assertTrue( morpho_sel.find( "__" + str(int(rotations[random_sel, 0])) + "_" + str(int(rotations[random_sel, 1])) ) != -1, "Wrong morphology map!", )
def test_spoofing(self): """ Assert that fake detailed connections can be made """ config = JSONConfig(file=_config) scaffold = Scaffold(config) scaffold.compile_network() original_connections = len( scaffold.cell_connections_by_tag["connection"]) sd = SpoofDetails() sd.presynaptic = "from_cell" sd.postsynaptic = "to_cell" sd.scaffold = scaffold # Raise error because here's no morphologies registered for the cell types. with self.assertRaises( MorphologyDataError, msg="Missing morphologies during spoofing not caught."): sd.after_connectivity() # Add some morphologies setattr( config.cell_types["from_cell"].morphology, "detailed_morphologies", {"names": ["GranuleCell"]}, ) setattr( config.cell_types["to_cell"].morphology, "detailed_morphologies", {"names": ["GranuleCell"]}, ) # Run the spoofing again sd.after_connectivity() cs = scaffold.get_connectivity_set("connection") scaffold.compile_output() # Use the intersection property. It throws an error should the detailed # information be missing try: i = cs.intersections for inter in i: fl = inter.from_compartment.labels tl = inter.to_compartment.labels self.assertIn("axon", fl, "From compartment type is not an axon") self.assertIn("dendrites", tl, "From compartment type is not a dendrite") self.assertNotEqual(len(i), 0, "Empty intersection data") self.assertEqual(len(i), original_connections, "Different amount of spoofed connections") except MissingMorphologyError: self.fail("Could not find the intersection data on spoofed set") # Set both types to relays and try spoofing again config.cell_types["from_cell"].relay = True config.cell_types["to_cell"].relay = True with self.assertRaises(MorphologyError, msg="Did not catch double relay spoofing!"): sd.after_connectivity()
def test_aa_goc(self): # 5) GrC (aa) - GoC # To check it, 20syn on basal dendrites, not near the soma. # AMPA/NMDA syn with a burst of 5 spike at 100Hz. The response should be a burst # composed by 3 spikes config = JSONConfig(aa_goc_config) scaffold = Scaffold(config) scaffold.place_cell_types() scaffold.compile_output() grc_to_golgi = scaffold.configuration.connection_types[ "granule_to_golgi"] grcs = scaffold.get_placement_set("granule_cell").identifiers golgis = scaffold.get_placement_set("golgi_cell").identifiers m_gol = scaffold.morphology_repository.get_morphology("GolgiCell") m_grc = scaffold.morphology_repository.get_morphology("GranuleCell") comps = m_gol.get_compartments(["basal_dendrites"]) conns = np.array([[grcs[0], golgis[0]]] * 20) morpho_map = ["GranuleCell", "GolgiCell"] morphologies = np.array([[0, 1]] * 20) compartments = np.ones( (20, 2)) * m_grc.get_compartments(["ascending_axon"])[0].id compartments[:, 1] = np.random.choice([c.id for c in comps], size=20) scaffold.connect_cells( grc_to_golgi, conns, morphologies=morphologies, compartments=compartments, morpho_map=morpho_map, ) scaffold.compile_output() scaffold = from_hdf5(scaffold.output_formatter.file) scaffold.run_simulation("test") from glob import glob from plotly import graph_objs as go results = glob("results_test_*")[-1] with h5py.File(results, "r") as f: go.Figure([ go.Scatter( x=f["recorders/soma_voltages/0"][:, 0], y=f["recorders/soma_voltages/0"][:, 1], ), go.Scatter( x=f["recorders/soma_voltages/1"][:, 0], y=f["recorders/soma_voltages/1"][:, 1], ), ]).show()
def test_grc_sc(self): # 9) GrC - SC # 3 random synapses on the dendrites. AMPA/NMDA, 10 spikes at 100Hz. # It should do a burst of 5 spikes. config = JSONConfig(grc_sc_config) scaffold = Scaffold(config) scaffold.place_cell_types() scaffold.compile_output() grc_to_golgi = scaffold.configuration.connection_types[ "granule_to_stellate"] grcs = scaffold.get_placement_set("granule_cell").identifiers golgis = scaffold.get_placement_set("stellate_cell").identifiers m_grc = scaffold.morphology_repository.get_morphology("GranuleCell") m_gol = scaffold.morphology_repository.get_morphology("StellateCell") comps = m_gol.get_compartments(["dendrites"]) conns = np.array([[grcs[0], golgis[0]]] * 3) morpho_map = ["GranuleCell", "StellateCell"] morphologies = np.array([[0, 1]] * 3) compartments = np.ones( (3, 2)) * m_grc.get_compartments(["ascending_axon"])[0].id compartments[:, 1] = np.random.choice([c.id for c in comps], size=3) scaffold.connect_cells( grc_to_golgi, conns, morphologies=morphologies, compartments=compartments, morpho_map=morpho_map, ) scaffold.compile_output() scaffold = from_hdf5(scaffold.output_formatter.file) scaffold.run_simulation("test") from glob import glob from plotly import graph_objs as go results = glob("results_test_*")[-1] with h5py.File(results, "r") as f: go.Figure([ go.Scatter( x=f["recorders/soma_voltages/0"][:, 0], y=f["recorders/soma_voltages/0"][:, 1], ), go.Scatter( x=f["recorders/soma_voltages/1"][:, 0], y=f["recorders/soma_voltages/1"][:, 1], ), ]).show()
def test_pf_pc(self): # 6) GrC (aa) - PC # 100 random syn, on the apical dendrites. AMPA only, 10 spikes # 500Hz. The response should be a burst composed by 3 spikes. config = JSONConfig(aa_pc_config) scaffold = Scaffold(config) scaffold.place_cell_types() scaffold.compile_output() grc_to_golgi = scaffold.configuration.connection_types[ "granule_to_purkinje"] grcs = scaffold.get_placement_set("granule_cell").identifiers golgis = scaffold.get_placement_set("purkinje_cell").identifiers m_gol = scaffold.morphology_repository.get_morphology("PurkinjeCell") m_grc = scaffold.morphology_repository.get_morphology("GranuleCell") comps = [c.id for c in m_gol.compartments if c.type == 3] conns = np.array([[grcs[0], golgis[0]]] * 80) morpho_map = ["GranuleCell", "PurkinjeCell"] morphologies = np.array([[0, 1]] * 80) compartments = np.ones( (80, 2)) * m_grc.get_compartments(["parallel_fiber"])[0].id compartments[:, 1] = np.random.choice(comps, size=80) scaffold.connect_cells( grc_to_golgi, conns, morphologies=morphologies, compartments=compartments, morpho_map=morpho_map, ) scaffold.compile_output() scaffold = from_hdf5(scaffold.output_formatter.file) scaffold.run_simulation("test") from glob import glob from plotly import graph_objs as go results = glob("results_test_*")[-1] with h5py.File(results, "r") as f: go.Figure([ go.Scatter( x=f["recorders/soma_voltages/0"][:, 0], y=f["recorders/soma_voltages/0"][:, 1], ), go.Scatter( x=f["recorders/soma_voltages/1"][:, 0], y=f["recorders/soma_voltages/1"][:, 1], ), ]).show()
def test_pf_goc(self): # 7) GrC (pf) - GoC # The same as 5) except on 80 apical dendrites. config = JSONConfig(aa_goc_config) scaffold = Scaffold(config) scaffold.place_cell_types() scaffold.compile_output() grc_to_golgi = scaffold.configuration.connection_types[ "granule_to_golgi"] grcs = scaffold.get_placement_set("granule_cell").identifiers golgis = scaffold.get_placement_set("golgi_cell").identifiers m_gol = scaffold.morphology_repository.get_morphology("GolgiCell") m_grc = scaffold.morphology_repository.get_morphology("GranuleCell") comps = m_gol.get_compartments(["apical_dendrites"]) conns = np.array([[grcs[0], golgis[0]]] * 80) morpho_map = ["GranuleCell", "GolgiCell"] morphologies = np.array([[0, 1]] * 80) compartments = np.ones( (80, 2)) * m_grc.get_compartments(["ascending_axon"])[0].id compartments[:, 1] = np.random.choice([c.id for c in comps], size=80) scaffold.connect_cells( grc_to_golgi, conns, morphologies=morphologies, compartments=compartments, morpho_map=morpho_map, ) scaffold.compile_output() scaffold = from_hdf5(scaffold.output_formatter.file) scaffold.run_simulation("test") from glob import glob from plotly import graph_objs as go results = glob("results_test_*")[-1] with h5py.File(results, "r") as f: go.Figure([ go.Scatter( x=f["recorders/soma_voltages/0"][:, 0], y=f["recorders/soma_voltages/0"][:, 1], ), go.Scatter( x=f["recorders/soma_voltages/1"][:, 0], y=f["recorders/soma_voltages/1"][:, 1], ), ]).show()
def test_mf_granule(self): config = JSONConfig(mf_grc_config) scaffold = Scaffold(config) scaffold.place_cell_types() scaffold.compile_output() mf_to_glom = scaffold.configuration.connection_types[ "mossy_to_glomerulus"] glom_to_grc = scaffold.configuration.connection_types[ "glomerulus_to_granule"] mfs = scaffold.get_placement_set("mossy_fibers").identifiers gloms = scaffold.get_placement_set("glomerulus").identifiers grcs = scaffold.get_placement_set("granule_cell").identifiers scaffold.connect_cells( mf_to_glom, np.array([[mfs[0], gloms[0]], [mfs[1], gloms[1]]])) scaffold.connect_cells( mf_to_glom, np.array([[mfs[0], gloms[0]], [mfs[1], gloms[1]]])) conns = np.array([[gloms[0], grcs[0]], [gloms[1], grcs[0]]]) morpho_map = ["GranuleCell"] morphologies = np.array([[0, 0], [0, 0]]) compartments = np.array([[0, 9], [0, 18]]) scaffold.connect_cells( glom_to_grc, conns, morphologies=morphologies, compartments=compartments, morpho_map=morpho_map, ) scaffold.compile_output() scaffold = from_hdf5(scaffold.output_formatter.file) scaffold.run_simulation("test") from glob import glob from plotly import graph_objs as go results = glob("results_test_*")[-1] with h5py.File(results, "r") as f: go.Figure( go.Scatter( x=f["recorders/soma_voltages/0"][:, 0], y=f["recorders/soma_voltages/0"][:, 1], )).show()
def test_sc_pc(self): # 9) GrC - SC # 3 random synapses on the dendrites. AMPA/NMDA, 10 spikes at 100Hz. # It should do a burst of 5 spikes. config = JSONConfig(sc_pc_config) scaffold = Scaffold(config) scaffold.place_cell_types() scaffold.compile_output() scaffold = from_hdf5(scaffold.output_formatter.file) scaffold.run_simulation("test") from glob import glob from plotly import graph_objs as go results = glob("results_test_*")[-1] with h5py.File(results, "r") as f: go.Figure([ go.Scatter( x=f["recorders/soma_voltages/0"][:, 0], y=f["recorders/soma_voltages/0"][:, 1], ), ]).show()
def test_glom_golgi_granule(self): config = JSONConfig(mf_gol_config) scaffold = Scaffold(config) scaffold.place_cell_types() scaffold.compile_output() mf_to_glom = scaffold.configuration.connection_types[ "mossy_to_glomerulus"] glom_to_gc = scaffold.configuration.connection_types[ "glomerulus_to_golgi"] gc_to_grc = scaffold.configuration.connection_types["golgi_to_granule"] mfs = scaffold.get_placement_set("mossy_fibers").identifiers gloms = scaffold.get_placement_set("glomerulus").identifiers golgis = scaffold.get_placement_set("golgi_cell").identifiers granules = scaffold.get_placement_set("granule_cell").identifiers scaffold.connect_cells(mf_to_glom, np.array([[mfs[0], gloms[0]]])) conns = np.array([[gloms[0], golgis[0]]] * 20) m = scaffold.morphology_repository.get_morphology("GolgiCell") morpho_map = ["GolgiCell"] morphologies = np.zeros((20, 2)) compartments = np.zeros((20, 2)) compartments[:, 1] = np.random.choice( [c.id for c in m.compartments if c.type == 302], size=20) scaffold.connect_cells( glom_to_gc, conns, morphologies=morphologies, compartments=compartments, morpho_map=morpho_map, ) conns_grc = np.array([[golgis[0], granules[0]]] * 4) morpho_map_grc = ["GranuleCell", "GolgiCell"] morphologies_grc = np.zeros((4, 2)) morphologies_grc[:, 0] = [1] * 4 compartments_grc = np.zeros((4, 2)) compartments_grc[:, 0] = [c.id for c in m.compartments if c.type == 2][0:4] compartments_grc[:, 1] = [9 * (i + 1) for i in range(4)] scaffold.connect_cells( gc_to_grc, conns_grc, morphologies=morphologies_grc, compartments=compartments_grc, morpho_map=morpho_map_grc, ) scaffold.compile_output() scaffold = from_hdf5(scaffold.output_formatter.file) scaffold.run_simulation("test") from glob import glob from plotly import graph_objs as go results = glob("results_test_*")[-1] with h5py.File(results, "r") as f: g = f["recorders/soma_voltages"] a = f["recorders/axons"] def L(g, s): h = g[s] return {"x": h[:, 0], "y": h[:, 1], "name": h.attrs["label"]} go.Figure([ *(go.Scatter(**L(g, i)) for i in g), *(go.Scatter(**L(a, i)) for i in a), ]).show()