def attribute( self, inputs: TensorOrTupleOfTensorsGeneric, neuron_selector: Union[int, Tuple[Union[int, slice], ...], Callable], baselines: BaselineType = None, additional_forward_args: Any = None, attribute_to_neuron_input: bool = False, custom_attribution_func: Union[None, Callable[..., Tuple[Tensor, ...]]] = None, ) -> TensorOrTupleOfTensorsGeneric: r""" Args: inputs (tensor or tuple of tensors): Input for which layer attributions are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple of the input tensors should be provided. It is assumed that for all given input tensors, dimension 0 corresponds to the number of examples (aka batch size), and if multiple input tensors are provided, the examples must be aligned appropriately. neuron_selector (int, callable, or tuple of ints or slices): Selector for neuron in given layer for which attribution is desired. Neuron selector can be provided as: - a single integer, if the layer output is 2D. This integer selects the appropriate neuron column in the layer input or output - a tuple of integers or slice objects. Length of this tuple must be one less than the number of dimensions in the input / output of the given layer (since dimension 0 corresponds to number of examples). The elements of the tuple can be either integers or slice objects (slice object allows indexing a range of neurons rather individual ones). If any of the tuple elements is a slice object, the indexed output tensor is used for attribution. Note that specifying a slice of a tensor would amount to computing the attribution of the sum of the specified neurons, and not the individual neurons independantly. - a callable, which should take the target layer as input (single tensor or tuple if multiple tensors are in layer) and return a neuron or aggregate of the layer's neurons for attribution. For example, this function could return the sum of the neurons in the layer or sum of neurons with activations in a particular range. It is expected that this function returns either a tensor with one element or a 1D tensor with length equal to batch_size (one scalar per input example) baselines (scalar, tensor, tuple of scalars or tensors, optional): Baselines define reference samples that are compared with the inputs. In order to assign attribution scores DeepLift computes the differences between the inputs/outputs and corresponding references. Baselines can be provided as: - a single tensor, if inputs is a single tensor, with exactly the same dimensions as inputs or the first dimension is one and the remaining dimensions match with inputs. - a single scalar, if inputs is a single tensor, which will be broadcasted for each input value in input tensor. - a tuple of tensors or scalars, the baseline corresponding to each tensor in the inputs' tuple can be: - either a tensor with matching dimensions to corresponding tensor in the inputs' tuple or the first dimension is one and the remaining dimensions match with the corresponding input tensor. - or a scalar, corresponding to a tensor in the inputs' tuple. This scalar value is broadcasted for corresponding input tensor. In the cases when `baselines` is not provided, we internally use zero scalar corresponding to each input tensor. Default: None additional_forward_args (any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional argument of a Tensor or arbitrary (non-tuple) type or a tuple containing multiple additional arguments including tensors or any arbitrary python types. These arguments are provided to forward_func in order, following the arguments in inputs. Note that attributions are not computed with respect to these arguments. Default: None attribute_to_neuron_input (bool, optional): Indicates whether to compute the attributions with respect to the neuron input or output. If `attribute_to_neuron_input` is set to True then the attributions will be computed with respect to neuron's inputs, otherwise it will be computed with respect to neuron's outputs. Note that currently it is assumed that either the input or the output of internal neuron, depending on whether we attribute to the input or output, is a single tensor. Support for multiple tensors will be added later. Default: False custom_attribution_func (callable, optional): A custom function for computing final attribution scores. This function can take at least one and at most three arguments with the following signature: - custom_attribution_func(multipliers) - custom_attribution_func(multipliers, inputs) - custom_attribution_func(multipliers, inputs, baselines) In case this function is not provided, we use the default logic defined as: multipliers * (inputs - baselines) It is assumed that all input arguments, `multipliers`, `inputs` and `baselines` are provided in tuples of same length. `custom_attribution_func` returns a tuple of attribution tensors that have the same length as the `inputs`. Default: None Returns: **attributions** or 2-element tuple of **attributions**, **delta**: - **attributions** (*tensor* or tuple of *tensors*): Computes attributions using Deeplift's rescale rule for particular neuron with respect to each input feature. Attributions will always be the same size as the provided inputs, with each value providing the attribution of the corresponding input index. If a single tensor is provided as inputs, a single tensor is returned. If a tuple is provided for inputs, a tuple of corresponding sized tensors is returned. Examples:: >>> # ImageClassifier takes a single input tensor of images Nx3x32x32, >>> # and returns an Nx10 tensor of class probabilities. >>> net = ImageClassifier() >>> # creates an instance of LayerDeepLift to interpret target >>> # class 1 with respect to conv4 layer. >>> dl = NeuronDeepLift(net, net.conv4) >>> input = torch.randn(1, 3, 32, 32, requires_grad=True) >>> # Computes deeplift attribution scores for conv4 layer and neuron >>> # index (4,1,2). >>> attribution = dl.attribute(input, (4,1,2)) """ dl = DeepLift(cast(Module, self.forward_func), self.multiplies_by_inputs) dl.gradient_func = construct_neuron_grad_fn( self.layer, neuron_selector, attribute_to_neuron_input=attribute_to_neuron_input, ) # NOTE: using __wrapped__ to not log return dl.attribute.__wrapped__( # type: ignore dl, # self inputs, baselines, additional_forward_args=additional_forward_args, custom_attribution_func=custom_attribution_func, )
def attribute( self, inputs: TensorOrTupleOfTensorsGeneric, neuron_selector: Union[int, Tuple[Union[int, slice], ...], Callable], additional_forward_args: Any = None, attribute_to_neuron_input: bool = False, ) -> TensorOrTupleOfTensorsGeneric: r""" Args: inputs (tensor or tuple of tensors): Input for which attributions are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple of the input tensors should be provided. It is assumed that for all given input tensors, dimension 0 corresponds to the number of examples (aka batch size), and if multiple input tensors are provided, the examples must be aligned appropriately. neuron_selector (int, callable, or tuple of ints or slices): Selector for neuron in given layer for which attribution is desired. Neuron selector can be provided as: - a single integer, if the layer output is 2D. This integer selects the appropriate neuron column in the layer input or output - a tuple of integers or slice objects. Length of this tuple must be one less than the number of dimensions in the input / output of the given layer (since dimension 0 corresponds to number of examples). The elements of the tuple can be either integers or slice objects (slice object allows indexing a range of neurons rather individual ones). If any of the tuple elements is a slice object, the indexed output tensor is used for attribution. Note that specifying a slice of a tensor would amount to computing the attribution of the sum of the specified neurons, and not the individual neurons independantly. - a callable, which should take the target layer as input (single tensor or tuple if multiple tensors are in layer) and return a neuron or aggregate of the layer's neurons for attribution. For example, this function could return the sum of the neurons in the layer or sum of neurons with activations in a particular range. It is expected that this function returns either a tensor with one element or a 1D tensor with length equal to batch_size (one scalar per input example) additional_forward_args (any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional argument of a Tensor or arbitrary (non-tuple) type or a tuple containing multiple additional arguments including tensors or any arbitrary python types. These arguments are provided to forward_func in order, following the arguments in inputs. Note that attributions are not computed with respect to these arguments. Default: None attribute_to_neuron_input (bool, optional): Indicates whether to compute the attributions with respect to the neuron input or output. If `attribute_to_neuron_input` is set to True then the attributions will be computed with respect to neuron's inputs, otherwise it will be computed with respect to neuron's outputs. Note that currently it is assumed that either the input or the output of internal neuron, depending on whether we attribute to the input or output, is a single tensor. Support for multiple tensors will be added later. Default: False Returns: *tensor* or tuple of *tensors* of **attributions**: - **attributions** (*tensor* or tuple of *tensors*): Deconvolution attribution of particular neuron with respect to each input feature. Attributions will always be the same size as the provided inputs, with each value providing the attribution of the corresponding input index. If a single tensor is provided as inputs, a single tensor is returned. If a tuple is provided for inputs, a tuple of corresponding sized tensors is returned. Examples:: >>> # ImageClassifier takes a single input tensor of images Nx3x32x32, >>> # and returns an Nx10 tensor of class probabilities. >>> # It contains an attribute conv1, which is an instance of nn.conv2d, >>> # and the output of this layer has dimensions Nx12x32x32. >>> net = ImageClassifier() >>> neuron_deconv = NeuronDeconvolution(net, net.conv1) >>> input = torch.randn(2, 3, 32, 32, requires_grad=True) >>> # To compute neuron attribution, we need to provide the neuron >>> # index for which attribution is desired. Since the layer output >>> # is Nx12x32x32, we need a tuple in the form (0..11,0..31,0..31) >>> # which indexes a particular neuron in the layer output. >>> # For this example, we choose the index (4,1,2). >>> # Computes neuron deconvolution for neuron with >>> # index (4,1,2). >>> attribution = neuron_deconv.attribute(input, (4,1,2)) """ self.deconv.gradient_func = construct_neuron_grad_fn( self.layer, neuron_selector, self.device_ids, attribute_to_neuron_input) # NOTE: using __wrapped__ to not log return self.deconv.attribute.__wrapped__(self.deconv, inputs, None, additional_forward_args)
def attribute( self, inputs: TensorOrTupleOfTensorsGeneric, neuron_selector: Union[int, Tuple[Union[int, slice], ...], Callable], baselines: Union[TensorOrTupleOfTensorsGeneric, Callable[..., TensorOrTupleOfTensorsGeneric]], n_samples: int = 5, stdevs: float = 0.0, additional_forward_args: Any = None, attribute_to_neuron_input: bool = False, ) -> TensorOrTupleOfTensorsGeneric: r""" Args: inputs (tensor or tuple of tensors): Input for which SHAP attribution values are computed. If `forward_func` takes a single tensor as input, a single input tensor should be provided. If `forward_func` takes multiple tensors as input, a tuple of the input tensors should be provided. It is assumed that for all given input tensors, dimension 0 corresponds to the number of examples, and if multiple input tensors are provided, the examples must be aligned appropriately. neuron_selector (int, callable, or tuple of ints or slices): Selector for neuron in given layer for which attribution is desired. Neuron selector can be provided as: - a single integer, if the layer output is 2D. This integer selects the appropriate neuron column in the layer input or output - a tuple of integers or slice objects. Length of this tuple must be one less than the number of dimensions in the input / output of the given layer (since dimension 0 corresponds to number of examples). The elements of the tuple can be either integers or slice objects (slice object allows indexing a range of neurons rather individual ones). If any of the tuple elements is a slice object, the indexed output tensor is used for attribution. Note that specifying a slice of a tensor would amount to computing the attribution of the sum of the specified neurons, and not the individual neurons independantly. - a callable, which should take the target layer as input (single tensor or tuple if multiple tensors are in layer) and return a neuron or aggregate of the layer's neurons for attribution. For example, this function could return the sum of the neurons in the layer or sum of neurons with activations in a particular range. It is expected that this function returns either a tensor with one element or a 1D tensor with length equal to batch_size (one scalar per input example) baselines (tensor, tuple of tensors, callable): Baselines define the starting point from which expectation is computed and can be provided as: - a single tensor, if inputs is a single tensor, with the first dimension equal to the number of examples in the baselines' distribution. The remaining dimensions must match with input tensor's dimension starting from the second dimension. - a tuple of tensors, if inputs is a tuple of tensors, with the first dimension of any tensor inside the tuple equal to the number of examples in the baseline's distribution. The remaining dimensions must match the dimensions of the corresponding input tensor starting from the second dimension. - callable function, optionally takes `inputs` as an argument and either returns a single tensor or a tuple of those. It is recommended that the number of samples in the baselines' tensors is larger than one. n_samples (int, optional): The number of randomly generated examples per sample in the input batch. Random examples are generated by adding gaussian random noise to each sample. Default: `5` if `n_samples` is not provided. stdevs (float, or a tuple of floats optional): The standard deviation of gaussian noise with zero mean that is added to each input in the batch. If `stdevs` is a single float value then that same value is used for all inputs. If it is a tuple, then it must have the same length as the inputs tuple. In this case, each stdev value in the stdevs tuple corresponds to the input with the same index in the inputs tuple. Default: 0.0 additional_forward_args (any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It can contain a tuple of ND tensors or any arbitrary python type of any shape. In case of the ND tensor the first dimension of the tensor must correspond to the batch size. It will be repeated for each `n_steps` for each randomly generated input sample. Note that the gradients are not computed with respect to these arguments. Default: None attribute_to_neuron_input (bool, optional): Indicates whether to compute the attributions with respect to the neuron input or output. If `attribute_to_neuron_input` is set to True then the attributions will be computed with respect to neuron's inputs, otherwise it will be computed with respect to neuron's outputs. Note that currently it is assumed that either the input or the output of internal neuron, depending on whether we attribute to the input or output, is a single tensor. Support for multiple tensors will be added later. Default: False Returns: **attributions** or 2-element tuple of **attributions**, **delta**: - **attributions** (*tensor* or tuple of *tensors*): Attribution score computed based on GradientSHAP with respect to each input feature. Attributions will always be the same size as the provided inputs, with each value providing the attribution of the corresponding input index. If a single tensor is provided as inputs, a single tensor is returned. If a tuple is provided for inputs, a tuple of corresponding sized tensors is returned. Examples:: >>> # ImageClassifier takes a single input tensor of images Nx3x32x32, >>> # and returns an Nx10 tensor of class probabilities. >>> net = ImageClassifier() >>> neuron_grad_shap = NeuronGradientShap(net, net.linear2) >>> input = torch.randn(3, 3, 32, 32, requires_grad=True) >>> # choosing baselines randomly >>> baselines = torch.randn(20, 3, 32, 32) >>> # Computes gradient SHAP of first neuron in linear2 layer >>> # with respect to the input's of the network. >>> # Attribution size matches input size: 3x3x32x32 >>> attribution = neuron_grad_shap.attribute(input, neuron_ind=0 baselines) """ gs = GradientShap(self.forward_func, self.multiplies_by_inputs) gs.gradient_func = construct_neuron_grad_fn( self.layer, neuron_selector, self.device_ids, attribute_to_neuron_input=attribute_to_neuron_input, ) # NOTE: using __wrapped__ to not log return gs.attribute.__wrapped__( # type: ignore gs, # self inputs, baselines, n_samples=n_samples, stdevs=stdevs, additional_forward_args=additional_forward_args, )
def attribute( self, inputs: TensorOrTupleOfTensorsGeneric, neuron_selector: Union[int, Tuple[Union[int, slice], ...], Callable], baselines: Union[None, Tensor, Tuple[Tensor, ...]] = None, additional_forward_args: Any = None, n_steps: int = 50, method: str = "gausslegendre", internal_batch_size: Union[None, int] = None, attribute_to_neuron_input: bool = False, ) -> TensorOrTupleOfTensorsGeneric: r""" Args: inputs (tensor or tuple of tensors): Input for which neuron integrated gradients are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple of the input tensors should be provided. It is assumed that for all given input tensors, dimension 0 corresponds to the number of examples, and if multiple input tensors are provided, the examples must be aligned appropriately. neuron_selector (int, callable, or tuple of ints or slices): Selector for neuron in given layer for which attribution is desired. Neuron selector can be provided as: - a single integer, if the layer output is 2D. This integer selects the appropriate neuron column in the layer input or output - a tuple of integers or slice objects. Length of this tuple must be one less than the number of dimensions in the input / output of the given layer (since dimension 0 corresponds to number of examples). The elements of the tuple can be either integers or slice objects (slice object allows indexing a range of neurons rather individual ones). If any of the tuple elements is a slice object, the indexed output tensor is used for attribution. Note that specifying a slice of a tensor would amount to computing the attribution of the sum of the specified neurons, and not the individual neurons independantly. - a callable, which should take the target layer as input (single tensor or tuple if multiple tensors are in layer) and return a neuron or aggregate of the layer's neurons for attribution. For example, this function could return the sum of the neurons in the layer or sum of neurons with activations in a particular range. It is expected that this function returns either a tensor with one element or a 1D tensor with length equal to batch_size (one scalar per input example) baselines (scalar, tensor, tuple of scalars or tensors, optional): Baselines define the starting point from which integral is computed. Baselines can be provided as: - a single tensor, if inputs is a single tensor, with exactly the same dimensions as inputs or the first dimension is one and the remaining dimensions match with inputs. - a single scalar, if inputs is a single tensor, which will be broadcasted for each input value in input tensor. - a tuple of tensors or scalars, the baseline corresponding to each tensor in the inputs' tuple can be: - either a tensor with matching dimensions to corresponding tensor in the inputs' tuple or the first dimension is one and the remaining dimensions match with the corresponding input tensor. - or a scalar, corresponding to a tensor in the inputs' tuple. This scalar value is broadcasted for corresponding input tensor. In the cases when `baselines` is not provided, we internally use zero scalar corresponding to each input tensor. Default: None additional_forward_args (any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional argument of a Tensor or arbitrary (non-tuple) type or a tuple containing multiple additional arguments including tensors or any arbitrary python types. These arguments are provided to forward_func in order following the arguments in inputs. For a tensor, the first dimension of the tensor must correspond to the number of examples. It will be repeated for each of `n_steps` along the integrated path. For all other types, the given argument is used for all forward evaluations. Note that attributions are not computed with respect to these arguments. Default: None n_steps (int, optional): The number of steps used by the approximation method. Default: 50. method (string, optional): Method for approximating the integral, one of `riemann_right`, `riemann_left`, `riemann_middle`, `riemann_trapezoid` or `gausslegendre`. Default: `gausslegendre` if no method is provided. internal_batch_size (int, optional): Divides total #steps * #examples data points into chunks of size at most internal_batch_size, which are computed (forward / backward passes) sequentially. internal_batch_size must be at least equal to #examples. For DataParallel models, each batch is split among the available devices, so evaluations on each available device contain internal_batch_size / num_devices examples. If internal_batch_size is None, then all evaluations are processed in one batch. Default: None attribute_to_neuron_input (bool, optional): Indicates whether to compute the attributions with respect to the neuron input or output. If `attribute_to_neuron_input` is set to True then the attributions will be computed with respect to neuron's inputs, otherwise it will be computed with respect to neuron's outputs. Note that currently it is assumed that either the input or the output of internal neuron, depending on whether we attribute to the input or output, is a single tensor. Support for multiple tensors will be added later. Default: False Returns: *tensor* or tuple of *tensors* of **attributions**: - **attributions** (*tensor* or tuple of *tensors*): Integrated gradients for particular neuron with respect to each input feature. Attributions will always be the same size as the provided inputs, with each value providing the attribution of the corresponding input index. If a single tensor is provided as inputs, a single tensor is returned. If a tuple is provided for inputs, a tuple of corresponding sized tensors is returned. Examples:: >>> # ImageClassifier takes a single input tensor of images Nx3x32x32, >>> # and returns an Nx10 tensor of class probabilities. >>> # It contains an attribute conv1, which is an instance of nn.conv2d, >>> # and the output of this layer has dimensions Nx12x32x32. >>> net = ImageClassifier() >>> neuron_ig = NeuronIntegratedGradients(net, net.conv1) >>> input = torch.randn(2, 3, 32, 32, requires_grad=True) >>> # To compute neuron attribution, we need to provide the neuron >>> # index for which attribution is desired. Since the layer output >>> # is Nx12x32x32, we need a tuple in the form (0..11,0..31,0..31) >>> # which indexes a particular neuron in the layer output. >>> # For this example, we choose the index (4,1,2). >>> # Computes neuron integrated gradients for neuron with >>> # index (4,1,2). >>> attribution = neuron_ig.attribute(input, (4,1,2)) """ ig = IntegratedGradients(self.forward_func, self.multiplies_by_inputs) ig.gradient_func = construct_neuron_grad_fn(self.layer, neuron_selector, self.device_ids, attribute_to_neuron_input) # NOTE: using __wrapped__ to not log # Return only attributions and not delta return ig.attribute.__wrapped__( # type: ignore ig, # self inputs, baselines, additional_forward_args=additional_forward_args, n_steps=n_steps, method=method, internal_batch_size=internal_batch_size, )