示例#1
0
文件: demo.py 项目: linjucs/carla
def make_carla_settings():
    """Make a CarlaSettings object with the settings we need."""
    settings = CarlaSettings()
    settings.set(SynchronousMode=False,
                 SendNonPlayerAgentsInfo=True,
                 NumberOfVehicles=15,
                 NumberOfPedestrians=30,
                 WeatherId=random.choice([1, 3, 7, 8, 14]))
    settings.randomize_seeds()
    camera0 = sensor.Camera('CameraRGB')
    camera0.set_image_size(WINDOW_WIDTH, WINDOW_HEIGHT)
    camera0.set_position(200, 0, 140)
    camera0.set_rotation(0.0, 0.0, 0.0)
    settings.add_sensor(camera0)
    camera1 = sensor.Camera('CameraDepth', PostProcessing='Depth')
    camera1.set_image_size(MINI_WINDOW_WIDTH, MINI_WINDOW_HEIGHT)
    camera1.set_position(200, 0, 140)
    camera1.set_rotation(0.0, 0.0, 0.0)
    settings.add_sensor(camera1)
    camera2 = sensor.Camera('CameraSemSeg',
                            PostProcessing='SemanticSegmentation')
    camera2.set_image_size(MINI_WINDOW_WIDTH, MINI_WINDOW_HEIGHT)
    camera2.set_position(200, 0, 140)
    camera2.set_rotation(0.0, 0.0, 0.0)
    settings.add_sensor(camera2)
    return settings
示例#2
0
def run_driving_benchmark(agent,
                          experiment_suite,
                          city_name='Town01',
                          log_name='Test',
                          continue_experiment=False,
                          host='127.0.0.1',
                          port=2000):
    while True:
        try:

            with make_carla_client(host, port) as client:
                # Hack to fix for the issue 310, we force a reset, so it does not get
                #  the positions on first server reset.
                client.load_settings(CarlaSettings())
                client.start_episode(0)

                # We instantiate the driving benchmark, that is the engine used to
                # benchmark an agent. The instantiation starts the log process, sets

                benchmark = DrivingBenchmark(
                    city_name=city_name,
                    name_to_save=log_name + '_' +
                    type(experiment_suite).__name__ + '_' + city_name,
                    continue_experiment=continue_experiment)
                # This function performs the benchmark. It returns a dictionary summarizing
                # the entire execution.

                benchmark_summary = benchmark.benchmark_agent(
                    experiment_suite, agent, client)

                print("")
                print("")
                print(
                    "----- Printing results for training weathers (Seen in Training) -----"
                )
                print("")
                print("")
                av = results_printer.print_summary(
                    benchmark_summary, experiment_suite.train_weathers,
                    benchmark.get_path())
                open(
                    '/home/rsi/Desktop/CAL/PythonClient/_benchmarks_results/' +
                    log_name + '_av_succ_' + str(av) + '.txt', 'w')
                print("")
                print("")
                print(
                    "----- Printing results for test weathers (Unseen in Training) -----"
                )
                print("")
                print("")

                results_printer.print_summary(benchmark_summary,
                                              experiment_suite.test_weathers,
                                              benchmark.get_path())

                break

        except TCPConnectionError as error:
            logging.error(error)
            time.sleep(2)
示例#3
0
    def carla_settings(self):
        settings = CarlaSettings()
        settings.set(SynchronousMode=False,
                     SendNonPlayerAgentsInfo=False,
                     NumberOfVehicles=0,
                     NumberOfPedestrians=0,
                     WeatherId=0)
        settings.randomize_seeds()

        camera0 = sensor.Camera('CameraCenter')
        camera0.set_image_size(WINDOW_WIDTH, WINDOW_HEIGHT)
        camera0.set_position(200, 0, 140)
        camera0.set_rotation(0.0, 0.0, 0.0)
        settings.add_sensor(camera0)

        camera1 = sensor.Camera('CameraLeft')
        camera1.set_image_size(WINDOW_WIDTH, WINDOW_HEIGHT)
        camera1.set_position(200, 0, 140)
        camera1.set_rotation(0.0, 0.0, -30.0)
        settings.add_sensor(camera1)

        camera2 = sensor.Camera('CameraRight')
        camera2.set_image_size(WINDOW_WIDTH, WINDOW_HEIGHT)
        camera2.set_position(200, 0, 140)
        camera2.set_rotation(0.0, 0.0, 30.0)
        settings.add_sensor(camera2)

        if self.map_view is not None:
            camera3 = sensor.Camera('TPPCamera')
            camera3.set_image_size(self.map_view.shape[1], WINDOW_HEIGHT // 2)
            camera3.set_position(-450, 0, 400)
            camera3.set_rotation(-30.0, 0.0, 0.0)
            settings.add_sensor(camera3)

        self.settings = settings
示例#4
0
文件: _env.py 项目: zlw21gxy/carla
    def _reset(self):
        self.num_steps = 0
        self.total_reward = 0
        self.prev_measurement = None
        self.prev_image = None
        self.episode_id = datetime.today().strftime("%Y-%m-%d_%H-%M-%S_%f")
        self.measurements_file = None

        # Create a CarlaSettings object. This object is a wrapper around
        # the CarlaSettings.ini file. Here we set the configuration we
        # want for the new episode.
        settings = CarlaSettings()
        self.scenario = random.choice(self.config["scenarios"])
        assert self.scenario["city"] == self.city, (self.scenario, self.city)
        self.weather = random.choice(self.scenario["weather_distribution"])
        settings.set(SynchronousMode=True,
                     SendNonPlayerAgentsInfo=True,
                     NumberOfVehicles=self.scenario["num_vehicles"],
                     NumberOfPedestrians=self.scenario["num_pedestrians"],
                     WeatherId=self.weather)
        settings.randomize_seeds()

        if self.config["use_depth_camera"]:
            camera1 = Camera("CameraDepth", PostProcessing="Depth")
            camera1.set_image_size(self.config["render_x_res"],
                                   self.config["render_y_res"])
            camera1.set_position(0.1, 0, 1.7)
            settings.add_sensor(camera1)

        camera2 = Camera("CameraRGB")
        camera2.set_image_size(self.config["render_x_res"],
                               self.config["render_y_res"])
        camera2.set_position(0.1, 0, 1.7)
        settings.add_sensor(camera2)

        # Setup start and end positions
        scene = self.client.load_settings(settings)
        positions = scene.player_start_spots
        self.start_pos = positions[self.scenario["start_pos_id"]]
        self.end_pos = positions[self.scenario["end_pos_id"]]
        self.start_coord = [
            self.start_pos.location.x // 100, self.start_pos.location.y // 100
        ]
        self.end_coord = [
            self.end_pos.location.x // 100, self.end_pos.location.y // 100
        ]
        print("Start pos {} ({}), end {} ({})".format(
            self.scenario["start_pos_id"], self.start_coord,
            self.scenario["end_pos_id"], self.end_coord))

        # Notify the server that we want to start the episode at the
        # player_start index. This function blocks until the server is ready
        # to start the episode.
        print("Starting new episode...")
        self.client.start_episode(self.scenario["start_pos_id"])

        image, py_measurements = self._read_observation()
        self.prev_measurement = py_measurements
        return self.encode_obs(self.preprocess_image(image), py_measurements)
示例#5
0
def get_default_carla_settings(args):
    settings = CarlaSettings(SynchronousMode=args.synchronous,
                             SendNonPlayerAgentsInfo=False,
                             NumberOfVehicles=20,
                             NumberOfPedestrians=40,
                             WeatherId=1)
    settings.add_sensor(Camera('Camera1'))
    return str(settings)
 def run(self):
     settings = CarlaSettings()
     settings.set(SynchronousMode=True,
                  SendNonPlayerAgentsInfo=True,
                  NumberOfVehicles=60,
                  NumberOfPedestrians=90)
     settings.add_sensor(Camera('DefaultCamera'))
     self.run_carla_client(settings, 3, 100)
 def run(self):
     settings = CarlaSettings(QualityLevel='Low')
     settings.add_sensor(Lidar('DefaultLidar'))
     settings.add_sensor(Camera('DefaultCamera'))
     settings.add_sensor(Camera('DefaultDepth', PostProcessing='Depth'))
     settings.add_sensor(
         Camera('DefaultSemSeg', PostProcessing='SemanticSegmentation'))
     self.run_carla_client(settings, 3, 200)
示例#8
0
文件: Basic.py 项目: weifen/carla
 def run(self):
     settings = CarlaSettings()
     settings.add_sensor(Camera('DefaultCamera'))
     camera2 = Camera('Camera2')
     camera2.set(PostProcessing='Depth', CameraFOV=120)
     camera2.set_image_size(1924, 1028)
     settings.add_sensor(camera2)
     self.run_carla_client(settings, 3, 100)
示例#9
0
    def build_experiments(self):
        """
        Creates the whole set of experiment objects,
        The experiments created depend on the selected Town.


        """

        # We set the camera
        # This single RGB camera is used on every experiment

        camera = Camera('CameraRGB')
        camera.set(FOV=90)
        camera.set_image_size(800, 600)
        camera.set_position(1.44, 0.0, 1.2)
        camera.set_rotation(0, 0, 0)

        if self._city_name == 'Town01':
            poses_tasks = self._poses_town01()
            vehicles_tasks = [0, 20, 100]
            pedestrians_tasks = [0, 50, 250]
        else:
            poses_tasks = self._poses_town02()
            vehicles_tasks = [0, 15, 70]
            pedestrians_tasks = [0, 50, 150]

        experiments_vector = []

        for weather in self.weathers:

            for iteration in range(len(poses_tasks)):
                poses = poses_tasks[iteration]
                vehicles = vehicles_tasks[iteration]
                pedestrians = pedestrians_tasks[iteration]

                conditions = CarlaSettings()
                conditions.set(
                    SendNonPlayerAgentsInfo=True,
                    NumberOfVehicles=vehicles,
                    NumberOfPedestrians=pedestrians,
                    WeatherId=weather
                )

                conditions.set(DisableTwoWheeledVehicles=True)
                # Add all the cameras that were set for this experiments

                conditions.add_sensor(camera)

                experiment = Experiment()
                experiment.set(
                    Conditions=conditions,
                    Poses=poses,
                    Task=iteration,
                    Repetitions=1
                )
                experiments_vector.append(experiment)

        return experiments_vector
def view_start_positions(args):
    # We assume the CARLA server is already waiting for a client to connect at
    # host:port. The same way as in the client example.
    with make_carla_client(args.host, args.port) as client:
        print('CarlaClient connected')

        # We load the default settings to the client.
        scene = client.load_settings(CarlaSettings())
        print("Received the start positions")

        # We get the number of player starts, in order to detect the city.
        number_of_player_starts = len(scene.player_start_spots)
        if number_of_player_starts > 100:  # WARNING: unsafe way to check for city, see issue #313
            image = mpimg.imread("carla/planner/Town01.png")
            carla_map = CarlaMap('Town01', 0.1653, 50)

        else:

            image = mpimg.imread("carla/planner/Town02.png")
            carla_map = CarlaMap('Town02', 0.1653, 50)

        fig, ax = plt.subplots(1)

        ax.imshow(image)

        if args.positions == 'all':
            positions_to_plot = range(len(scene.player_start_spots))
        else:
            positions_to_plot = map(int, args.positions.split(','))

        for position in positions_to_plot:
            # Check if position is valid
            if position >= len(scene.player_start_spots):
                raise RuntimeError('Selected position is invalid')

            # Convert world to pixel coordinates
            pixel = carla_map.convert_to_pixel([
                scene.player_start_spots[position].location.x,
                scene.player_start_spots[position].location.y,
                scene.player_start_spots[position].location.z
            ])

            circle = Circle((pixel[0], pixel[1]),
                            12,
                            color='r',
                            label='A point')
            ax.add_patch(circle)

            if not args.no_labels:
                plt.text(pixel[0], pixel[1], str(position), size='x-small')

        plt.axis('off')
        plt.show()

        fig.savefig('town_positions.pdf',
                    orientation='landscape',
                    bbox_inches='tight')
def make_base_settings():
    return CarlaSettings(WeatherId=1,
                         SendNonPlayerAgentsInfo=False,
                         SynchronousMode=False,
                         NumberOfVehicles=20,
                         NumberOfPedestrians=30,
                         SeedVehicles=123456789,
                         SeedPedestrians=123456789,
                         QualityLevel='Epic')
    def build_experiments(self):
        """
            Creates the whole set of experiment objects,
            The experiments created depends on the selected Town.

        """

        # We check the town, based on that we define the town related parameters
        # The size of the vector is related to the number of tasks, inside each
        # task there is also multiple poses ( start end, positions )
        if self._city_name == 'Town01':
            poses_tasks = [[[7, 3]], [[138, 17]], [[140, 134]], [[140, 134]]]
            vehicles_tasks = [0, 0, 0, 20]
            pedestrians_tasks = [0, 0, 0, 50]
        else:
            poses_tasks = [[[4, 2]], [[37, 76]], [[19, 66]], [[19, 66]]]
            vehicles_tasks = [0, 0, 0, 15]
            pedestrians_tasks = [0, 0, 0, 50]

        # We set the camera
        # This single RGB camera is used on every experiment

        camera = Camera('CameraRGB')
        camera.set(FOV=100)
        camera.set_image_size(800, 600)
        camera.set_position(2.0, 0.0, 1.4)
        camera.set_rotation(-15.0, 0, 0)

        # Based on the parameters, creates a vector with experiment objects.
        experiments_vector = []
        for weather in self.weathers:

            for iteration in range(len(poses_tasks)):
                poses = poses_tasks[iteration]
                vehicles = vehicles_tasks[iteration]
                pedestrians = pedestrians_tasks[iteration]

                conditions = CarlaSettings()
                conditions.set(
                    SendNonPlayerAgentsInfo=True,
                    NumberOfVehicles=vehicles,
                    NumberOfPedestrians=pedestrians,
                    WeatherId=weather

                )
                # Add all the cameras that were set for this experiments
                conditions.add_sensor(camera)
                experiment = Experiment()
                experiment.set(
                    Conditions=conditions,
                    Poses=poses,
                    Task=iteration,
                    Repetitions=1
                )
                experiments_vector.append(experiment)

        return experiments_vector
示例#13
0
文件: corl_2017.py 项目: lmtoan/carla
    def _build_experiments(self):
        """
        Creates the whole set of experiment objects,
        The experiments created depend on the selected Town.
        """

        # We set the camera
        # This single RGB camera is used on every experiment

        camera = Camera('CameraRGB')
        camera.set(FOV=100)

        camera.set_image_size(800, 600)

        camera.set_position(200, 0, 140)
        camera.set_rotation(-15.0, 0, 0)

        weathers = [1, 3, 6, 8, 4, 14]
        if self._city_name == 'Town01':
            poses_tasks = self._poses_town01()
            vehicles_tasks = [0, 0, 0, 20]
            pedestrians_tasks = [0, 0, 0, 50]
        else:
            poses_tasks = self._poses_town02()
            vehicles_tasks = [0, 0, 0, 15]
            pedestrians_tasks = [0, 0, 0, 50]

        experiments_vector = []

        for weather in weathers:

            for iteration in range(len(poses_tasks)):
                poses = poses_tasks[iteration]
                vehicles = vehicles_tasks[iteration]
                pedestrians = pedestrians_tasks[iteration]

                conditions = CarlaSettings()
                conditions.set(SynchronousMode=True,
                               SendNonPlayerAgentsInfo=True,
                               NumberOfVehicles=vehicles,
                               NumberOfPedestrians=pedestrians,
                               WeatherId=weather,
                               SeedVehicles=123456789,
                               SeedPedestrians=123456789)
                # Add all the cameras that were set for this experiments

                conditions.add_sensor(camera)

                experiment = Experiment()
                experiment.set(Conditions=conditions,
                               Poses=poses,
                               Id=iteration,
                               Repetitions=1)
                experiments_vector.append(experiment)

        return experiments_vector
    def reset(self):
        """

        :return:
        """
        settings = CarlaSettings()
        settings.set(SynchronousMode=True,
                     SendNonPlayerAgentsInfo=True,
                     NumberOfVehicles=20,
                     NumberOfPedestrians=40,
                     WeatherId=random.choice([1, 3, 7, 8, 14]),
                     QualityLevel='Epic')

        # CAMERA
        camera0 = Camera('CameraRGB', PostProcessing='SceneFinal')
        # Set image resolution in pixels.
        camera0.set_image_size(800, 600)
        # Set its position relative to the car in meters.
        camera0.set_position(0.30, 0, 1.30)
        settings.add_sensor(camera0)

        # Let's add another camera producing ground-truth depth.
        # camera1 = Camera('CameraDepth', PostProcessing='Depth')
        # camera1.set_image_size(800, 600)
        # camera1.set_position(0.30, 0, 1.30)
        # settings.add_sensor(camera1)

        # LIDAR
        # lidar = Lidar('Lidar32')
        # lidar.set_position(0, 0, 2.50)
        # lidar.set_rotation(0, 0, 0)
        # lidar.set(
        #     Channels=32,
        #     Range=50,
        #     PointsPerSecond=100000,
        #     RotationFrequency=10,
        #     UpperFovLimit=10,
        #     LowerFovLimit=-30)
        # settings.add_sensor(lidar)

        scene = self.carla_client.load_settings(settings)
        self.pre_image = None
        self.cur_image = None
        self.pre_measurements = None
        self.cur_measurements = None

        # define a random starting point of the agent for the appropriate trainning
        number_of_player_starts = len(scene.player_start_spots)
        player_start = random.randint(0, max(0, number_of_player_starts - 1))
        # player_start = 140
        self.carla_client.start_episode(player_start)
        print('Starting new episode at %r, %d...' %
              (scene.map_name, player_start))

        # TODO: read and return status after reset
        return
def view_start_positions(args):
    # We assume the CARLA server is already waiting for a client to connect at
    # host:port. The same way as in the client example.
    with make_carla_client(args.host, args.port) as client:
        print('CarlaClient connected')

        # We load the default settings to the client.
        scene = client.load_settings(CarlaSettings())
        print("Received the start positions")

        try:
            print(scene.map_name)
            image = mpimg.imread('./environment/%s.png' % scene.map_name)

            carla_map = CarlaMap(scene.map_name, 0.1653, 50)
        except IOError as exception:
            logging.error(exception)
            logging.error('Cannot find map "%s"', scene.map_name)
            sys.exit(1)

        fig, ax = plt.subplots(1)

        ax.imshow(image)

        if args.positions == 'all':
            positions_to_plot = range(len(scene.player_start_spots))
        else:
            positions_to_plot = map(int, args.positions.split(','))

        for position in positions_to_plot:
            # Check if position is valid
            if position >= len(scene.player_start_spots):
                raise RuntimeError('Selected position is invalid')

            # Convert world to pixel coordinates
            pixel = carla_map.convert_to_pixel([
                scene.player_start_spots[position].location.x,
                scene.player_start_spots[position].location.y,
                scene.player_start_spots[position].location.z
            ])

            circle = Circle((pixel[0], pixel[1]),
                            12,
                            color='r',
                            label='A point')
            ax.add_patch(circle)

            if not args.no_labels:
                plt.text(pixel[0], pixel[1], str(position), size='x-small')

        plt.axis('off')
        plt.show()

        fig.savefig('town_positions.pdf',
                    orientation='landscape',
                    bbox_inches='tight')
示例#16
0
    def build_experiments(self):
        """
        Creates the whole set of experiment objects,
        The experiments created depend on the selected Town.
        """

        # We set the camera
        # This single RGB camera is used on every experiment

        camera = Camera('CameraRGB')
        camera.set(FOV=100)
        camera.set_image_size(800, 600)
        camera.set_position(2.0, 0.0, 1.4)
        camera.set_rotation(-15.0, 0, 0)

        if self._city_name == 'Town01':
            poses_tasks = self._poses_town01()
            vehicles_tasks = [25]
            pedestrians_tasks = [25]
        else:
            poses_tasks = self._poses_town02()
            vehicles_tasks = [0, 25]
            pedestrians_tasks = [0, 25]

        experiments_vector = []
        #weathers = [1,3,6,8]
        for weather in self.weathers:
            #prinst(weather , vehicles_tasks)
            for scenario in range(len(vehicles_tasks)):
                for iteration in range(len(poses_tasks)):
                    #print(f"interation : {iteration} , scenario:{scenario}")
                    poses = poses_tasks[iteration]
                    #print("poses re",poses)
                    vehicles = vehicles_tasks[scenario]
                    #print("Vehicles: ",vehicles)
                    pedestrians = pedestrians_tasks[scenario]
                    #print("pedestrians: ",pedestrians)

                    conditions = CarlaSettings()
                    conditions.set(SendNonPlayerAgentsInfo=True,
                                   NumberOfVehicles=vehicles,
                                   NumberOfPedestrians=pedestrians,
                                   WeatherId=weather)
                    # Add all the cameras that were set for this experiments

                    conditions.add_sensor(camera)

                    experiment = Experiment()
                    experiment.set(Conditions=conditions,
                                   Poses=poses,
                                   Task=iteration,
                                   Repetitions=1)
                    experiments_vector.append(experiment)

        return experiments_vector
示例#17
0
def generate_settings(args, sync_mode=True):
    settings = CarlaSettings()
    settings.set(SynchronousMode=sync_mode,
                 SendNonPlayerAgentsInfo=False,
                 NumberOfVehicles=0,
                 NumberOfPedestrians=0,
                 WeatherId=args.weather,
                 QualityLevel=args.quality_level)
    settings.randomize_seeds()

    return settings
示例#18
0
def make_carla_settings(args):
    """Make a CarlaSettings object with the settings we need."""
    settings = CarlaSettings()
    settings.set(SynchronousMode=False,
                 SendNonPlayerAgentsInfo=False,
                 NumberOfVehicles=0,
                 NumberOfPedestrians=0,
                 WeatherId=random.choice([1, 3, 7, 8, 14]),
                 QualityLevel=args.quality_level)
    settings.randomize_seeds()
    return settings
示例#19
0
    def build_experiments(self):
        """
        Creates the whole set of experiment objects,
        The experiments created depend on the selected Town.


        """

        # We set the camera
        # This single RGB camera is used on every experiment

        camera = Camera('rgb')
        camera.set(FOV=90)
        camera.set_image_size(300, 300)
        camera.set_position(0.2, 0.0, 0.85)
        camera.set_rotation(-3.0, 0, 0)

        poses_tasks = self._poses()
        vehicles_tasks = [0, 0, 0, 15]
        pedestrians_tasks = [0, 0, 0, 50]



        experiments_vector = []

        for weather in self.weathers:

            for iteration in range(len(poses_tasks)):
                poses = poses_tasks[iteration]
                vehicles = vehicles_tasks[iteration]
                pedestrians = pedestrians_tasks[iteration]

                conditions = CarlaSettings()
                conditions.set(
                    SendNonPlayerAgentsInfo=True,
                    NumberOfVehicles=vehicles,
                    NumberOfPedestrians=pedestrians,
                    WeatherId=weather,
                    QualityLevel='Epic'
                )
                # Add all the cameras that were set for this experiments

                conditions.add_sensor(camera)

                experiment = Experiment()
                experiment.set(
                    Conditions=conditions,
                    Poses=poses,
                    Task=iteration,
                    Repetitions=1
                )
                experiments_vector.append(experiment)

        return experiments_vector
示例#20
0
def make_carla_settings(args):
    """Make a CarlaSettings object with the settings we need."""
    settings = CarlaSettings()
    settings.set(SynchronousMode=True,
                 SendNonPlayerAgentsInfo=True,
                 NumberOfVehicles=0,
                 NumberOfPedestrians=0,
                 SeedVehicles='00000',
                 WeatherId=1,
                 QualityLevel=args.quality_level)
    settings.randomize_seeds()
    return settings
示例#21
0
    def __init__(self,
                 client,
                 frame_skip=1,
                 cam_width=800,
                 cam_height=600,
                 town_string='Town01'):
        super(StraightDriveEnv, self).__init__()
        self.frame_skip = frame_skip
        self.client = client
        self._planner = Planner(town_string)

        camera0 = Camera('CameraRGB')
        camera0.set(CameraFOV=100)
        camera0.set_image_size(cam_height, cam_width)
        camera0.set_position(200, 0, 140)
        camera0.set_rotation(-15.0, 0, 0)

        self.start_goal_pairs = [[36, 40], [39, 35], [110, 114], [7,
                                                                  3], [0, 4],
                                 [68, 50], [61, 59], [47, 64], [147, 90],
                                 [33, 87], [26, 19], [80, 76], [45, 49],
                                 [55, 44], [29, 107], [95, 104], [84, 34],
                                 [53, 67], [22, 17], [91, 148], [20, 107],
                                 [78, 70], [95, 102], [68, 44], [45, 69]]

        vehicles = 0
        pedestrians = 0
        weather = 1

        settings = CarlaSettings()
        settings.set(
            SynchronousMode=True,
            SendNonPlayerAgentsInfo=True,
            NumberOfVehicles=vehicles,
            NumberOfPedestrians=pedestrians,
            WeatherId=weather,
        )

        settings.randomize_seeds()
        settings.add_sensor(camera0)

        self.scene = self.client.load_settings(settings)

        img_shape = (cam_width, cam_height, 3)
        self.observation_space = spaces.Tuple(
            (spaces.Box(-np.inf, np.inf, (3, )), spaces.Box(0, 255,
                                                            img_shape)))
        self.action_space = spaces.Box(-np.inf, np.inf, shape=(3, ))

        self.prev_state = np.array([0., 0., 0.])
        self.prev_collisions = np.array([0., 0., 0.])
        self.prev_intersections = np.array([0., 0.])
示例#22
0
 def setup_carla_client(self, client, params):
     self.client = client
     self.param_sensors = params.get('sensors', {})
     self.carla_settings = CarlaSettings()
     self.carla_settings.set(
         SendNonPlayerAgentsInfo=params.get('SendNonPlayerAgentsInfo',
                                            True),
         NumberOfVehicles=params.get('NumberOfVehicles', 20),
         NumberOfPedestrians=params.get('NumberOfPedestrians', 40),
         WeatherId=params.get('WeatherId', random.choice([1, 3, 7, 8, 14])),
         SynchronousMode=params.get('SynchronousMode', True),
         QualityLevel=params.get('QualityLevel', 'Low'))
     self.carla_settings.randomize_seeds()
示例#23
0
    def reset(self):

        # connect to server
        self._client = CarlaClient(self._host, self._port, self._timeout)
        self._client.connect()

        # settings
        index = random.randint(0, 4)  # Last one is for testing
        # print(index)
        # index = 0
        seed = npc_vehicle_seeds[index]
        start_list_index = start_list_indices[index]

        settings = CarlaSettings()
        settings.set(SynchronousMode=True,
                     SendNonPlayerAgentsInfo=True,
                     NumberOfVehicles=1,
                     NumberOfPedestrians=0,
                     SeedVehicles=seed,
                     SeedPedestrians=123456789,
                     WeatherId=weathers[index])

        self._client.load_settings(settings)
        self._client.start_episode(start_list_index)

        # simulator init stage
        for i in range(10):
            measurements, _ = self._client.read_data()
            self._client.send_control(steer=0,
                                      throttle=0,
                                      brake=0,
                                      hand_brake=False,
                                      reverse=False)

        self._client.send_control(steer=0,
                                  throttle=0,
                                  brake=0,
                                  hand_brake=False,
                                  reverse=False)

        # Reset Flags
        self._reset = True
        self._history_path = np.zeros([self._history_path_num, 4])
        self._cur_steer = 0
        self._his_steer = 0

        observation = self._observe()

        self._observation = observation

        return observation
示例#24
0
def make_carla_settings(args):
    """Make a CarlaSettings object with the settings we need."""
    settings = CarlaSettings()
    settings.set(
        SynchronousMode=False,
        SendNonPlayerAgentsInfo=True,
        NumberOfVehicles=NUM_VEHICLES,
        NumberOfPedestrians=NUM_PEDESTRIANS,
        DisableTwoWheeledVehicles=NO_BIKE,
        # WeatherId=random.choice([1, 3, 7, 8, 14]),
        WeatherId=1,
        QualityLevel=args.quality_level)
    settings.randomize_seeds()
    camera0 = sensor.Camera('CameraRGB')
    camera0.set_image_size(WINDOW_WIDTH, WINDOW_HEIGHT)
    camera0.set_position(0, 0.0, CAMERA_HEIGHT_POS)
    camera0.set_rotation(0.0, 0.0, 0.0)
    settings.add_sensor(camera0)

    lidar = sensor.Lidar('Lidar32')
    lidar.set_position(0, 0.0, LIDAR_HEIGHT_POS)
    lidar.set_rotation(0, 0, 0)
    lidar.set(Channels=40,
              Range=MAX_RENDER_DEPTH_IN_METERS,
              PointsPerSecond=720000,
              RotationFrequency=10,
              UpperFovLimit=7,
              LowerFovLimit=-16)
    settings.add_sensor(lidar)
    """ Depth camera for filtering out occluded vehicles """
    depth_camera = sensor.Camera('DepthCamera', PostProcessing='Depth')
    depth_camera.set(FOV=90.0)
    depth_camera.set_image_size(WINDOW_WIDTH, WINDOW_HEIGHT)
    depth_camera.set_position(0, 0, CAMERA_HEIGHT_POS)
    depth_camera.set_rotation(0, 0, 0)
    settings.add_sensor(depth_camera)
    # (Intrinsic) K Matrix
    # | f 0 Cu
    # | 0 f Cv
    # | 0 0 1
    # (Cu, Cv) is center of image
    k = np.identity(3)
    k[0, 2] = WINDOW_WIDTH_HALF
    k[1, 2] = WINDOW_HEIGHT_HALF
    f = WINDOW_WIDTH / \
        (2.0 * math.tan(90.0 * math.pi / 360.0))
    k[0, 0] = k[1, 1] = f
    camera_to_car_transform = camera0.get_unreal_transform()
    lidar_to_car_transform = lidar.get_transform() * Transform(
        Rotation(yaw=90), Scale(z=-1))
    return settings, k, camera_to_car_transform, lidar_to_car_transform
示例#25
0
def make_carla_settings():
  """
  Make a CarlaSettings object with the settings we need.
  Sets exactly three vehicles and pedestrians, with random weather conditions.
  """
  settings = CarlaSettings()
  settings.set(
      SynchronousMode=False,
      SendNonPlayerAgentsInfo=True,
      NumberOfVehicles=3,
      NumberOfPedestrians=3,
      WeatherId=random.choice([1, 3, 7, 8, 14]),
      QualityLevel=QUALITY_LEVEL)
  return settings
def make_carla_settings():
    """Make a CarlaSettings object with the settings we need."""

    settings = CarlaSettings()
    settings.set(
        SendNonPlayerAgentsInfo=True,
        SynchronousMode=True,
        NumberOfVehicles=30,
        NumberOfPedestrians=50,
        WeatherId=1)

    settings.set(DisableTwoWheeledVehicles=True)
    
    # --------------------------- CENTRAL CAMERA ---------------------------

    settings.randomize_seeds() # IMPORTANT TO RANDOMIZE THE SEEDS EVERY TIME
    camera0 = sensor.Camera('CentralSemanticSeg', PostProcessing='SemanticSegmentation')
    camera0.set_image_size(WINDOW_WIDTH, WINDOW_HEIGHT)
    camera0.set(FOV=FOV)
    camera0.set_position(2.0, 0.0, 1.4)
    camera0.set_rotation(-15.0, 0, 0)

    settings.add_sensor(camera0)
    camera0 = sensor.Camera('CentralRGB')
    camera0.set_image_size(WINDOW_WIDTH, WINDOW_HEIGHT)
    camera0.set(FOV=FOV)
    camera0.set_position(2.0, 0.0, 1.4)
    camera0.set_rotation(-15.0, 0, 0)

    settings.add_sensor(camera0)

    # --------------------------- TOP CAMERA ---------------------------

    camera0 = sensor.Camera('TopSemanticSeg', PostProcessing='SemanticSegmentation')
    camera0.set_image_size(WINDOW_WIDTH, WINDOW_HEIGHT)
    camera0.set(FOV=FOV)
    camera0.set_position(12.0, 0.0, 15.0)
    camera0.set_rotation(-90.0, 90.0, -90.0)

    settings.add_sensor(camera0)
    camera0 = sensor.Camera('TopRGB')
    camera0.set_image_size(WINDOW_WIDTH, WINDOW_HEIGHT)
    camera0.set(FOV=FOV)
    camera0.set_position(12.0, 0.0, 15.0)
    camera0.set_rotation(-90.0, 90.0, -90.0)

    settings.add_sensor(camera0)


    return settings
示例#27
0
    def _reset(self):
        self.num_steps = 0
        self.prev_measurement = None
        self.episode_id = datetime.today().strftime("%Y-%m-%d_%H-%M-%S_%f")
        self.measurements_file = None

        # Create a CarlaSettings object. This object is a wrapper around
        # the CarlaSettings.ini file. Here we set the configuration we
        # want for the new episode.
        settings = CarlaSettings()
        self.weather = random.choice(self.config["weather"])
        settings.set(SynchronousMode=True,
                     SendNonPlayerAgentsInfo=True,
                     NumberOfVehicles=self.config["num_vehicles"],
                     NumberOfPedestrians=self.config["num_pedestrians"],
                     WeatherId=self.weather)
        settings.randomize_seeds()

        camera1 = Camera("CameraDepth", PostProcessing="Depth")
        camera1.set_image_size(self.config["render_x_res"],
                               self.config["render_y_res"])
        camera1.set_position(30, 0, 130)
        settings.add_sensor(camera1)

        camera2 = Camera("CameraRGB")
        camera2.set_image_size(self.config["render_x_res"],
                               self.config["render_y_res"])
        camera2.set_position(30, 0, 130)
        settings.add_sensor(camera2)

        scene = self.client.load_settings(settings)

        # Choose one player start at random.
        number_of_player_starts = len(scene.player_start_spots)
        if self.config["random_starting_location"]:
            self.player_start = random.randint(
                0, max(0, number_of_player_starts - 1))
        else:
            self.player_start = 0

        # Notify the server that we want to start the episode at the
        # player_start index. This function blocks until the server is ready
        # to start the episode.
        print("Starting new episode...")
        self.client.start_episode(self.player_start)

        image, py_measurements = self._read_observation()
        self.prev_measurement = py_measurements
        return self.preprocess_image(image)
    def build_experiments(self):
        """
        Creates the whole set of experiment objects,
        The experiments created depend on the selected Town.
        """

        # We set the camera
        # This single RGB camera is used on every experiment

        camera = Camera('rgb')
        camera.set(FOV=100)
        camera.set_image_size(800, 600)
        camera.set_position(2.0, 0.0, 1.4)
        camera.set_rotation(-15.0, 0, 0)

        poses_tasks = self._poses()
        vehicles_tasks = [0, 0, 0, 20]
        pedestrians_tasks = [0, 0, 0, 50]

        task_names = ['straight', 'one_curve', 'navigation', 'navigation_dyn']

        experiments_vector = []

        for weather in self.weathers:

            for iteration in range(len(poses_tasks)):
                poses = poses_tasks[iteration]
                vehicles = vehicles_tasks[iteration]
                pedestrians = pedestrians_tasks[iteration]

                conditions = CarlaSettings()
                conditions.set(SendNonPlayerAgentsInfo=True,
                               NumberOfVehicles=vehicles,
                               NumberOfPedestrians=pedestrians,
                               WeatherId=weather)
                conditions.set(DisableTwoWheeledVehicles=True)
                # Add all the cameras that were set for this experiments

                conditions.add_sensor(camera)

                experiment = Experiment()
                experiment.set(Conditions=conditions,
                               Poses=poses,
                               Task=iteration,
                               TaskName=task_names[iteration],
                               Repetitions=1)
                experiments_vector.append(experiment)

        return experiments_vector
def make_carla_settings(args):
    """Make a CarlaSettings object with the settings we need."""
    settings = CarlaSettings()
    settings.set(
        SynchronousMode=True,
        SendNonPlayerAgentsInfo=True,
        NumberOfVehicles=10,
        NumberOfPedestrians=100,
        WeatherId=random.choice([1, 3, 7, 8, 14]),
        QualityLevel=args.quality_level)
    settings.randomize_seeds()
    # camera0 = sensor.Camera('CameraRGB_main')
    # camera0.set_image_size(WINDOW_WIDTH, WINDOW_HEIGHT)
    # camera0.set_position(2.0, 0.0, 1.4)
    # camera0.set_rotation(0.0, 0.0, 0.0)
    # settings.add_sensor(camera0)
    # camera1 = sensor.Camera('CameraDepth', PostProcessing='Depth')
    # camera1.set_image_size(MINI_WINDOW_WIDTH, MINI_WINDOW_HEIGHT)
    # camera1.set_position(2.0, 0.0, 1.4)
    # camera1.set_rotation(0.0, 0.0, 0.0)
    # settings.add_sensor(camera1)
    # camera2 = sensor.Camera('CameraSemSeg', PostProcessing='SemanticSegmentation')
    # camera2.set_image_size(MINI_WINDOW_WIDTH, MINI_WINDOW_HEIGHT)
    # camera2.set_position(2.0, 0.0, 1.4)
    # camera2.set_rotation(0.0, 0.0, 0.0)
    # settings.add_sensor(camera2)
    cameraNN = sensor.Camera('CameraRGB')
    cameraNN.set_image_size(H5_WINDOW_WIDTH, H5_WINDOW_HEIGHT)
    cameraNN.set_position(2.0, 0.0, 1.4)
    cameraNN.set_rotation(0.0, 0.0, 0.0)
    settings.add_sensor(cameraNN)
    camera3 = sensor.Camera('CameraRGB_h5')
    camera3.set_image_size(H5_WINDOW_WIDTH, H5_WINDOW_HEIGHT)
    camera3.set_position(2.0, 0.0, 1.4)
    camera3.set_rotation(0.0, 0.0, 0.0)
    settings.add_sensor(camera3)
    if args.lidar:
        lidar = sensor.Lidar('Lidar32')
        lidar.set_position(0, 0, 2.5)
        lidar.set_rotation(0, 0, 0)
        lidar.set(
            Channels=32,
            Range=50,
            PointsPerSecond=100000,
            RotationFrequency=10,
            UpperFovLimit=10,
            LowerFovLimit=-30)
        settings.add_sensor(lidar)
    return settings
示例#30
0
    def __init__(self,
                 name,
                 flags,
                 auto_pilot,
                 camera_setups=[],
                 lidar_setups=[],
                 log_file_name=None,
                 csv_file_name=None):
        super(CarlaLegacyOperator, self).__init__(name)
        self._flags = flags
        self._logger = setup_logging(self.name, log_file_name)
        self._csv_logger = setup_csv_logging(self.name + '-csv', csv_file_name)
        self._auto_pilot = auto_pilot
        if self._flags.carla_high_quality:
            quality = 'Epic'
        else:
            quality = 'Low'
        self._settings = CarlaSettings()
        self._settings.set(
            SynchronousMode=self._flags.carla_synchronous_mode,
            SendNonPlayerAgentsInfo=True,
            NumberOfVehicles=self._flags.carla_num_vehicles,
            NumberOfPedestrians=self._flags.carla_num_pedestrians,
            WeatherId=self._flags.carla_weather,
            QualityLevel=quality)
        self._settings.randomize_seeds()
        self._transforms = {}
        # Add cameras to the simulation.
        for cs in camera_setups:
            self.__add_camera(cs)
            self._transforms[cs.name] = cs.get_transform()
        # Add lidars to the simulation.
        for ls in lidar_setups:
            self.__add_lidar(ls)
            self._transforms[ls.name] = ls.get_transform()
        self.agent_id_map = {}
        self.pedestrian_count = 0

        # Initialize the control state.
        self.control = {
            'steer': 0.0,
            'throttle': 0.0,
            'brake': 0.0,
            'hand_brake': False,
            'reverse': False
        }
        # Register custom serializers for Messages and WatermarkMessages
        ray.register_custom_serializer(Message, use_pickle=True)
        ray.register_custom_serializer(WatermarkMessage, use_pickle=True)