示例#1
0
文件: env.py 项目: jamescasbon/ray
    def _reset(self):
        self.num_steps = 0
        self.total_reward = 0
        self.prev_measurement = None
        self.prev_image = None
        self.episode_id = datetime.today().strftime("%Y-%m-%d_%H-%M-%S_%f")
        self.measurements_file = None

        # Create a CarlaSettings object. This object is a wrapper around
        # the CarlaSettings.ini file. Here we set the configuration we
        # want for the new episode.
        settings = CarlaSettings()
        self.scenario = random.choice(self.config["scenarios"])
        assert self.scenario["city"] == self.city, (self.scenario, self.city)
        self.weather = random.choice(self.scenario["weather_distribution"])
        settings.set(
            SynchronousMode=True,
            SendNonPlayerAgentsInfo=True,
            NumberOfVehicles=self.scenario["num_vehicles"],
            NumberOfPedestrians=self.scenario["num_pedestrians"],
            WeatherId=self.weather)
        settings.randomize_seeds()

        if self.config["use_depth_camera"]:
            camera1 = Camera("CameraDepth", PostProcessing="Depth")
            camera1.set_image_size(self.config["render_x_res"],
                                   self.config["render_y_res"])
            camera1.set_position(30, 0, 130)
            settings.add_sensor(camera1)

        camera2 = Camera("CameraRGB")
        camera2.set_image_size(self.config["render_x_res"],
                               self.config["render_y_res"])
        camera2.set_position(30, 0, 130)
        settings.add_sensor(camera2)

        # Setup start and end positions
        scene = self.client.load_settings(settings)
        positions = scene.player_start_spots
        self.start_pos = positions[self.scenario["start_pos_id"]]
        self.end_pos = positions[self.scenario["end_pos_id"]]
        self.start_coord = [
            self.start_pos.location.x // 100, self.start_pos.location.y // 100
        ]
        self.end_coord = [
            self.end_pos.location.x // 100, self.end_pos.location.y // 100
        ]
        print("Start pos {} ({}), end {} ({})".format(
            self.scenario["start_pos_id"], self.start_coord,
            self.scenario["end_pos_id"], self.end_coord))

        # Notify the server that we want to start the episode at the
        # player_start index. This function blocks until the server is ready
        # to start the episode.
        print("Starting new episode...")
        self.client.start_episode(self.scenario["start_pos_id"])

        image, py_measurements = self._read_observation()
        self.prev_measurement = py_measurements
        return self.encode_obs(self.preprocess_image(image), py_measurements)
示例#2
0
def run_carla_client(args):
    with make_connection(CarlaClient, args.host, args.port, timeout=15) as client:
        logging.info('CarlaClient connected')
        filename = '_images/episode_{:0>3d}/image_{:0>5d}.png'
        frames_per_episode = 300
        episode = 0
        while True:
            episode += 1
            settings = CarlaSettings()
            settings.set(SendNonPlayerAgentsInfo=True,SynchronousMode=args.synchronous)
            settings.randomize_seeds()
            camera = Camera('DefaultCamera')
            camera.set_image_size(300, 200) # Do not change this, hard-coded in test.
            settings.add_camera(camera)

            logging.debug('sending CarlaSettings:\n%s', settings)
            logging.info('new episode requested')

            scene = client.request_new_episode(settings)

            number_of_player_starts = len(scene.player_start_spots)
            player_start = random.randint(0, max(0, number_of_player_starts - 1))
            logging.info(
                'start episode at %d/%d player start (%d frames)',
                player_start,
                number_of_player_starts,
                frames_per_episode)

            client.start_episode(player_start)

            use_ai_control = (random.random() < 0.5)
            reverse = (random.random() < 0.2)

            for frame in range(0, frames_per_episode):
                logging.debug('reading measurements...')
                measurements, images = client.read_measurements()

                logging.debug('received data of %d agents', len(measurements.non_player_agents))
                assert len(images) == 1
                assert (images[0].width, images[0].height) == (camera.ImageSizeX, camera.ImageSizeY)

                if args.images_to_disk:
                    images[0].save_to_disk(filename.format(episode, frame))

                logging.debug('sending control...')
                control = measurements.player_measurements.ai_control
                if not use_ai_control:
                    control.steer = random.uniform(-1.0, 1.0)
                    control.throttle = 0.3
                    control.hand_brake = False
                    control.reverse = reverse
                client.send_control(
                    steer=control.steer,
                    throttle=control.throttle,
                    brake=control.brake,
                    hand_brake=control.hand_brake,
                    reverse=control.reverse)
示例#3
0
    def build_experiments(self):
        """
            Creates the whole set of experiment objects,
            The experiments created depends on the selected Town.

        """

        # We check the town, based on that we define the town related parameters
        # The size of the vector is related to the number of tasks, inside each
        # task there is also multiple poses ( start end, positions )
        if self._city_name == 'Town01':
            poses_tasks = [[[7, 3]], [[138, 17]], [[140, 134]], [[140, 134]]]
            vehicles_tasks = [0, 0, 0, 20]
            pedestrians_tasks = [0, 0, 0, 50]
        else:
            poses_tasks = [[[4, 2]], [[37, 76]], [[19, 66]], [[19, 66]]]
            vehicles_tasks = [0, 0, 0, 15]
            pedestrians_tasks = [0, 0, 0, 50]

        # We set the camera
        # This single RGB camera is used on every experiment

        camera = Camera('CameraRGB')
        camera.set(FOV=100)
        camera.set_image_size(800, 600)
        camera.set_position(2.0, 0.0, 1.4)
        camera.set_rotation(-15.0, 0, 0)

        # Based on the parameters, creates a vector with experiment objects.
        experiments_vector = []
        for weather in self.weathers:

            for iteration in range(len(poses_tasks)):
                poses = poses_tasks[iteration]
                vehicles = vehicles_tasks[iteration]
                pedestrians = pedestrians_tasks[iteration]

                conditions = CarlaSettings()
                conditions.set(
                    SendNonPlayerAgentsInfo=True,
                    NumberOfVehicles=vehicles,
                    NumberOfPedestrians=pedestrians,
                    WeatherId=weather

                )
                # Add all the cameras that were set for this experiments
                conditions.add_sensor(camera)
                experiment = Experiment()
                experiment.set(
                    Conditions=conditions,
                    Poses=poses,
                    Task=iteration,
                    Repetitions=1
                )
                experiments_vector.append(experiment)

        return experiments_vector
示例#4
0
文件: Basic.py 项目: gitmesen/carla
 def run(self):
     settings = CarlaSettings()
     settings.set(
         SynchronousMode=True,
         SendNonPlayerAgentsInfo=True,
         NumberOfVehicles=60,
         NumberOfPedestrians=90)
     settings.add_camera(Camera('DefaultCamera'))
     self.run_carla_client(settings, 3, 100)
示例#5
0
    def build_experiments(self):
        """
        Creates the whole set of experiment objects,
        The experiments created depend on the selected Town.


        """

        # We set the camera
        # This single RGB camera is used on every experiment

        camera = Camera('CameraRGB')
        camera.set(FOV=100)
        camera.set_image_size(800, 600)
        camera.set_position(2.0, 0.0, 1.4)
        camera.set_rotation(-15.0, 0, 0)

        if self._city_name == 'Town01':
            poses_tasks = self._poses_town01()
            vehicles_tasks = [0, 0, 0, 20]
            pedestrians_tasks = [0, 0, 0, 50]
        else:
            poses_tasks = self._poses_town02()
            vehicles_tasks = [0, 0, 0, 15]
            pedestrians_tasks = [0, 0, 0, 50]

        experiments_vector = []

        for weather in self.weathers:

            for iteration in range(len(poses_tasks)):
                poses = poses_tasks[iteration]
                vehicles = vehicles_tasks[iteration]
                pedestrians = pedestrians_tasks[iteration]

                conditions = CarlaSettings()
                conditions.set(
                    SendNonPlayerAgentsInfo=True,
                    NumberOfVehicles=vehicles,
                    NumberOfPedestrians=pedestrians,
                    WeatherId=weather
                )
                # Add all the cameras that were set for this experiments

                conditions.add_sensor(camera)

                experiment = Experiment()
                experiment.set(
                    Conditions=conditions,
                    Poses=poses,
                    Task=iteration,
                    Repetitions=1
                )
                experiments_vector.append(experiment)

        return experiments_vector
示例#6
0
def make_carla_settings(args):
    """Make a CarlaSettings object with the settings we need."""
    settings = CarlaSettings()
    settings.set(
        SynchronousMode=True,
        SendNonPlayerAgentsInfo=False,
        NumberOfVehicles=30,
        NumberOfPedestrians=0,
        WeatherId=1,
        QualityLevel='Epic')
    settings.randomize_seeds()
    camera0 = sensor.Camera('CameraRGB')
    camera0.set_image_size(CAM_WINDOW_WIDTH, CAM_WINDOW_HEIGHT)
    camera0.set_position(2.0, 0.0, 1.4)
    camera0.set_rotation(-15.0, 0.0, 0.0)
    settings.add_sensor(camera0)
    camera1 = sensor.Camera('CameraDepth', PostProcessing='Depth')
    camera1.set_image_size(MINI_WINDOW_WIDTH, MINI_WINDOW_HEIGHT)
    camera1.set_position(2.0, 0.0, 1.4)
    camera1.set_rotation(0.0, 0.0, 0.0)
    settings.add_sensor(camera1)
    camera2 = sensor.Camera('CameraSemSeg', PostProcessing='SemanticSegmentation')
    camera2.set_image_size(MINI_WINDOW_WIDTH, MINI_WINDOW_HEIGHT)
    camera2.set_position(2.0, 0.0, 1.4)
    camera2.set_rotation(0.0, 0.0, 0.0)
    settings.add_sensor(camera2)
    lidar = sensor.Lidar('Lidar32')
    lidar.set_position(0, 0, 2.5)
    lidar.set_rotation(0, 0, 0)
    lidar.set(
        Channels=0,
        Range=50,
        PointsPerSecond=100000,
        RotationFrequency=10,
        UpperFovLimit=0,
        LowerFovLimit=0)
    settings.add_sensor(lidar)
    return settings
示例#7
0
def run_carla_client(args):
    # Here we will run 3 episodes with 300 frames each.
    number_of_episodes = 15
    frames_per_episode = 10030
    #              [0  , 1  , 2  , 3  , 4  , 5  , 6 , 7, 8  , 9  , 10, 11, 12, 13, 14]
    # vehicles_num = [60, 60, 70, 50, 60, 60, 80, 60, 60, 60, 50, 70, 60, 50, 50]
    vehicles_num = [35, 35, 30, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35]
    # vehicles_num = [60, 60, 70, 50, 60, 60, 80, 60, 60, 60, 50, 70, 60, 50, 50]
    # We assume the CARLA server is already waiting for a client to connect at
    # host:port. To create a connection we can use the `make_carla_client`
    # context manager, it creates a CARLA client object and starts the
    # connection. It will throw an exception if something goes wrong. The
    # context manager makes sure the connection is always cleaned up on exit.
    with make_carla_client(args.host, args.port) as client:
        print('CarlaClient connected')
        # list_of_episodes = [11]
        list_of_episodes = [9, 11, 14]
        # list_of_episodes = [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 14]
        # list_of_episodes = [6, 7, 9, 11, 14]
        # list_of_episodes = [2, 3, 4, 5, 6, 7, 9, 11, 14]
        # list_of_episodes = [2, 7]
        # list_of_episodes = [5, 6, 7, 11, 14]
        # list_of_episodes = [6, 11]
        # list_of_episodes = [7]
        #list(range(0, number_of_episodes))
        #list_of_episodes.pop(13)
        #list_of_episodes.pop(12)
        #list_of_episodes.pop(10)
        #list_of_episodes.pop(8)

        for episode in list_of_episodes:
            # Start a new episode.

            if args.settings_filepath is None:

                # Create a CarlaSettings object. This object is a wrapper around
                # the CarlaSettings.ini file. Here we set the configuration we
                # want for the new episode.
                settings = CarlaSettings()
                settings.set(
                    SynchronousMode=True,
                    SendNonPlayerAgentsInfo=False,
                    NumberOfVehicles= vehicles_num[episode],#random.choice([0, 20, 15, 20, 25, 21, 24, 18, 40, 35, 25, 30]), #25,
                    NumberOfPedestrians=25,
                    DisableTwoWheeledVehicles=False,
                    WeatherId= episode, #1, #random.choice([1, 3, 7, 8, 14]),
                    QualityLevel=args.quality_level)
                settings.randomize_seeds()

                # Now we want to add a couple of cameras to the player vehicle.
                # We will collect the images produced by these cameras every
                # frame.
                #### Cameras aligned across the y-axis
                #### Horizontally shifted in the following Range
                # [-1.62, -1.08, -0.54, 0.0, 0.54, 1.08, 1.62]
                # LEFT RGB CAMERA
                # y_locs = [-1.62, -1.08, -0.54, 0.0, 0.54, 1.08, 1.62]
                # x_locs = [1.3, 1.84, 2.38, 2.92, 3.46, 4.0, 4.54]
                # y_locs_left = [-1.08, -0.54, 0.0, 0.54, 1.08]
                y_locs_left = -1.08
                x_locs_left = [1.84, 2.38, 2.92]
                LeftSideCameras = {}
                for i,x_position in enumerate(x_locs_left):
                    # COLOR
                    camera_rgb = Camera('LeftSideCameras{0}RGB'.format(i),
                                     PostProcessing='SceneFinal')
                    camera_rgb.set_image_size(800, 600)
                    camera_rgb.set_position(x_position, y_locs_left, 1.50)
                    camera_rgb.set_rotation(0, -90.0, 0)
                    LeftSideCameras['LeftSideCameras{0}RGB'.format(i)] = camera_rgb
                    settings.add_sensor(camera_rgb)
                    # DEPTH
                    camera_depth = Camera('LeftSideCameras{0}Depth'.format(i),
                                          PostProcessing='Depth')
                    camera_depth.set_image_size(800, 600)
                    camera_depth.set_position(x_position, y_locs_left, 1.50)
                    camera_depth.set_rotation(0, -90.0, 0)
                    LeftSideCameras['LeftSideCameras{0}Depth'.format(i)] = camera_depth
                    settings.add_sensor(camera_depth)
                    # SEGMENTATION
                    camera_seg = Camera('LeftSideCameras{0}Seg'.format(i),
                                       PostProcessing='SemanticSegmentation')
                    camera_seg.set_image_size(800, 600)
                    camera_seg.set_position(x_position, y_locs_left, 1.50)
                    camera_seg.set_rotation(0, -90.0, 0)
                    LeftSideCameras['LeftSideCameras{0}Seg'.format(i)] = camera_seg
                    settings.add_sensor(camera_seg)

                y_locs_right = 1.08
                x_locs_right = [1.84, 2.38, 2.92]
                RightSideCameras = {}
                for i,x_position in enumerate(x_locs_right):
                    # COLOR
                    camera_rgb = Camera('RightSideCameras{0}RGB'.format(i),
                                     PostProcessing='SceneFinal')
                    camera_rgb.set_image_size(800, 600)
                    camera_rgb.set_position(x_position, y_locs_right, 1.50)
                    camera_rgb.set_rotation(0, 90.0, 0)
                    RightSideCameras['RightSideCameras{0}RGB'.format(i)] = camera_rgb
                    settings.add_sensor(camera_rgb)
                    # DEPTH
                    camera_depth = Camera('RightSideCameras{0}Depth'.format(i),
                                          PostProcessing='Depth')
                    camera_depth.set_image_size(800, 600)
                    camera_depth.set_position(x_position, y_locs_right, 1.50)
                    camera_depth.set_rotation(0, 90.0, 0)
                    RightSideCameras['RightSideCameras{0}Depth'.format(i)] = camera_depth
                    settings.add_sensor(camera_depth)
                    # SEGMENTATION
                    camera_seg = Camera('RightSideCameras{0}Seg'.format(i),
                                       PostProcessing='SemanticSegmentation')
                    camera_seg.set_image_size(800, 600)
                    camera_seg.set_position(x_position, y_locs_right, 1.50)
                    camera_seg.set_rotation(0, 90.0, 0)
                    RightSideCameras['RightSideCameras{0}Seg'.format(i)] = camera_seg
                    settings.add_sensor(camera_seg)

            else:
                with open(args.settings_filepath, 'r') as fp:
                    settings = fp.read()
            scene = client.load_settings(settings)
            # Choose one player start at random.
            number_of_player_starts = len(scene.player_start_spots)
            player_start = random.randint(0, max(0, number_of_player_starts - 1))
            # Notify the server that we want to start the episode at the
            # player_start index. This function blocks until the server is ready
            # to start the episode.
            print('Starting new episode...')
            client.start_episode(player_start)
            LeftSideCameras_to_car = []
            for i in range(len(x_locs_right)):
                LeftSideCameras_to_car.append(LeftSideCameras['LeftSideCameras{0}RGB'.format(i)].get_transform())
            RightSideCameras_to_car = []
            for i in range(len(x_locs_right)):
                RightSideCameras_to_car.append(RightSideCameras['RightSideCameras{0}RGB'.format(i)].get_transform())
            # camera_90_p_l_to_car_transform = camera_90_p_l.get_transform()
            # camera_90_p_r_to_car_transform = camera_90_p_r.get_transform()
            # Create a folder for saving episode data
            if not os.path.isdir("/data/teddy/Datasets/carla_left_and_right/Town2/episode_{:0>5d}".format(episode)):
                os.makedirs("/data/teddy/Datasets/carla_left_and_right/Town2/episode_{:0>5d}".format(episode))

            # Iterate every frame in the episode.
            for frame in range(0, frames_per_episode):
                # Read the data produced by the server this frame.
                measurements, sensor_data = client.read_data()
                # player_measurements = measurements.player_measurements
                world_transform = Transform(measurements.player_measurements.transform)
                # Compute the final transformation matrix.
                LeftSideCameras_to_world = [world_transform*cam_to_car \
                                        for cam_to_car in LeftSideCameras_to_car]
                RightSideCameras_to_world = [world_transform*cam_to_car \
                                        for cam_to_car in RightSideCameras_to_car]

                # for i in range(len()):
                #     LeftSideCameras_to_world.append()
                #     RightSideCameras_to_world.append(world_transform * RightSideCameras_to_car[i])
                # Save the images to disk if requested.
                if frame >= 30 and (frame % 2 == 0):
                    if args.save_images_to_disk:
                        for name, measurement in sensor_data.items():
                            filename = args.out_filename_format.format(episode, name, (frame-30)/2)
                            measurement.save_to_disk(filename)
                        # Save Transform matrix of each camera to separated files
                        for cam_num in range(len(x_locs_left)):
                            line = ""
                            filename = "{}episode_{:0>5d}/LeftSideCameras{}".format(args.root_path, episode, cam_num) + ".txt"
                            with open(filename, 'a+') as myfile:
                                for x in np.asarray(LeftSideCameras_to_world[cam_num].matrix[:3, :]).reshape(-1):
                                    line += "{:.8e} ".format(x)
                                line = line[:-1]
                                line += "\n"
                                myfile.write(line)
                                line = ""
                        # Forward Cameras
                        # forward_cam_ids = list(range(len(x_locs_right)))
                        # forward_cam_ids.pop(mid_cam)
                        for i, cam_num in enumerate(x_locs_right):
                            line = ""
                            filename = "{}episode_{:0>5d}/RightSideCameras{}".format(args.root_path, episode, cam_num) + ".txt"
                            with open(filename, 'a+') as myfile:
                                for x in np.asarray(RightSideCameras_to_world[i].matrix[:3, :]).reshape(-1):
                                    line += "{:.8e} ".format(x)
                                line = line[:-1]
                                line += "\n"
                                myfile.write(line)
                                line = ""
                if not args.autopilot:
                    client.send_control(
                        steer=random.uniform(-1.0, 1.0),
                        throttle=0.5,
                        brake=0.0,
                        hand_brake=False,
                        reverse=False)
                else:
                    # Together with the measurements, the server has sent the
                    # control that the in-game autopilot would do this frame. We
                    # can enable autopilot by sending back this control to the
                    # server. We can modify it if wanted, here for instance we
                    # will add some noise to the steer.
                    control = measurements.player_measurements.autopilot_control
                    #control.steer += random.uniform(-0.1, 0.1)
                    client.send_control(control)
示例#8
0
class CarlaEnvironmentWrapper(EnvironmentWrapper):
	def __init__(self, num_speedup_steps = 30, require_explicit_reset=True, is_render_enabled=False, early_termination_enabled=False, run_offscreen=False, cameras=['SceneFinal'], save_screens=False):
		EnvironmentWrapper.__init__(self, is_render_enabled, save_screens)

		self.episode_max_time = 1000000
		self.allow_braking = True
		self.log_path = 'logs/CarlaLogs.txt'
		self.num_speedup_steps = num_speedup_steps
		self.is_game_ready_for_input = False
		self.run_offscreen = run_offscreen
		self.kill_when_connection_lost = True
		# server configuration

		self.port = get_open_port()
		self.host = 'localhost'
		self.level = 'town2' #Why town2: https://github.com/carla-simulator/carla/issues/10#issuecomment-342483829
		self.map = CarlaLevel().get(self.level)

		# client configuration
		self.verbose = True
		self.observation = None

		self.camera_settings = dict(
			ImageSizeX=carla_config.server_width,
			ImageSizeY=carla_config.server_height,
			FOV=110.0,
			PositionX=2.0, # 200 for Carla 0.7
			PositionY=0.0,
			PositionZ=1.40, # 140 for Carla 0.7
			RotationPitch = 0.0,
			RotationRoll = 0.0,
			RotationYaw = 0.0,
		)

		self.rgb_camera_name = 'CameraRGB'
		self.segment_camera_name = 'CameraSegment'
		self.depth_camera_name = 'CameraDepth'
		self.rgb_camera = 'SceneFinal' in cameras
		self.segment_camera = 'SemanticSegmentation' in cameras
		self.depth_camera = 'Depth' in cameras
		self.class_grouping = carla_config.class_grouping or [(i, ) for i in range(carla_config.no_of_classes)]
		self.autocolor_the_segments = False
		self.color_the_depth_map = False
		self.enable_coalesced_output = False

		self.max_depth_value = 1.0 #255.0 for CARLA 7.0
		self.min_depth_value = 0.0

		self.config = None #'Environment/CarlaSettings.ini'
		if self.config:
			# load settings from file
			with open(self.config, 'r') as fp:
				self.settings = CarlaSettings(fp.read())
		else:
			# hard coded settings
			#print("CarlaSettings.ini not found; using default settings")
			self.settings = CarlaSettings()
			self.settings.set(
				SynchronousMode=True,
				SendNonPlayerAgentsInfo=False,
				NumberOfVehicles=15,
				NumberOfPedestrians=30,
				WeatherId=1,
				SeedVehicles = 123456789,
				SeedPedestrians = 123456789)
			#self.settings.randomize_seeds()

		# add cameras
		if self.rgb_camera: self.settings.add_sensor(self.create_camera(self.rgb_camera_name, 'SceneFinal'))
		if self.segment_camera: self.settings.add_sensor(self.create_camera(self.segment_camera_name, 'SemanticSegmentation'))
		if self.depth_camera: self.settings.add_sensor(self.create_camera(self.depth_camera_name, 'Depth'))


		self.car_speed = 0
		self.is_game_setup = False # Will be true only when setup_client_and_server() is called, either explicitly, or by reset()

		# action space
		self.discrete_controls = True
		self.action_space_size = 2
		self.action_space_high = [1, 1]
		self.action_space_low = [-1, -1]
		self.action_space_abs_range = np.maximum(np.abs(self.action_space_low), np.abs(self.action_space_high))
		self.steering_strength = 0.35
		self.gas_strength = 1.0
		self.brake_strength = 0.6
		self.actions = {0: [0., 0.],
						1: [0., -self.steering_strength],
						2: [0., self.steering_strength],
						3: [self.gas_strength-0.15, 0.],
						4: [-self.brake_strength, 0],
						5: [self.gas_strength-0.3, -self.steering_strength],
						6: [self.gas_strength-0.3, self.steering_strength],
						7: [-self.brake_strength, -self.steering_strength],
						8: [-self.brake_strength, self.steering_strength]}
		self.actions_description = ['NO-OP', 'TURN_LEFT', 'TURN_RIGHT', 'GAS', 'BRAKE',
									'GAS_AND_TURN_LEFT', 'GAS_AND_TURN_RIGHT',
									'BRAKE_AND_TURN_LEFT', 'BRAKE_AND_TURN_RIGHT']
		for idx, action in enumerate(self.actions_description):
			for key in key_map.keys():
				if action == key:
					self.key_to_action[key_map[key]] = idx

		# measurements
		self.measurements_size = (1,)
		self.autopilot = None
		self.kill_if_unmoved_for_n_steps = 15
		self.unmoved_steps = 0.0

		self.early_termination_enabled = early_termination_enabled
		if self.early_termination_enabled:
			self.max_neg_steps = 70
			self.cur_neg_steps = 0
			self.early_termination_punishment = 20.0

		# env initialization
		if not require_explicit_reset: self.reset(True)

		# render
		if self.automatic_render:
			self.init_renderer()
		if self.save_screens:
			create_dir(self.images_path)
			self.rgb_img_path = self.images_path+"/rgb/"
			create_dir(self.rgb_img_path)
			self.segmented_img_path = self.images_path+"/segmented/"
			create_dir(self.segmented_img_path)
			self.depth_img_path = self.images_path+"/depth/"
			create_dir(self.depth_img_path)
			

	def create_camera(self, camera_name, PostProcessing):
		#camera = Camera('CameraRGB')
		#camera.set_image_size(carla_config.server_width, carla_config.server_height)
		#camera.set_position(200, 0, 140)
		#camera.set_rotation(0, 0, 0)
		#self.settings.add_sensor(camera)
		camera = Camera(camera_name, **dict(self.camera_settings, PostProcessing=PostProcessing))
		return camera
		

	def setup_client_and_server(self, reconnect_client_only = False):
		# open the server
		if not reconnect_client_only:
			self.server = self._open_server()
			self.server_pid = self.server.pid # To kill incase child process gets lost

		# open the client
		self.game = CarlaClient(self.host, self.port, timeout=99999999)
		self.game.connect(connection_attempts=100) #It's taking a very long time for the server process to spawn, so the client needs to wait or try sufficient no. of times lol
		scene = self.game.load_settings(self.settings)

		# get available start positions
		positions = scene.player_start_spots
		self.num_pos = len(positions)
		self.iterator_start_positions = 0
		self.is_game_setup = self.server and self.game
		return

	def close_client_and_server(self):
		self._close_server()
		print("Disconnecting the client")
		self.game.disconnect()
		self.game = None
		self.server = None
		self.is_game_setup = False
		return

	def _open_server(self):
		# Note: There is no way to disable rendering in CARLA as of now
		# https://github.com/carla-simulator/carla/issues/286
		# decrease the window resolution if you want to see if performance increases
		# Command: $CARLA_ROOT/CarlaUE4.sh /Game/Maps/Town02 -benchmark -carla-server -fps=15 -world-port=9876 -windowed -ResX=480 -ResY=360 -carla-no-hud
		# To run off_screen: SDL_VIDEODRIVER=offscreen SDL_HINT_CUDA_DEVICE=0 <command> #https://github.com/carla-simulator/carla/issues/225
		my_env = None
		if self.run_offscreen:
			my_env = {**os.environ, 'SDL_VIDEODRIVER': 'offscreen', 'SDL_HINT_CUDA_DEVICE':'0'}
		with open(self.log_path, "wb") as out:
			cmd = [path.join(environ.get('CARLA_ROOT'), 'CarlaUE4.sh'), self.map,
								  "-benchmark", "-carla-server", "-fps=20", "-world-port={}".format(self.port),
								  "-windowed -ResX={} -ResY={}".format(carla_config.server_width, carla_config.server_height),
								  "-carla-no-hud", "-quality-level=Low"]
			if self.config:
				cmd.append("-carla-settings={}".format(self.config))
			p = subprocess.Popen(cmd, stdout=out, stderr=out, env=my_env)
		return p

	def _close_server(self):
		if self.kill_when_connection_lost:
			os.killpg(os.getpgid(self.server.pid), signal.SIGKILL)
			return
		no_of_attempts = 0
		while is_process_alive(self.server_pid):
			print("Trying to close Carla server with pid %d" % self.server_pid)
			if no_of_attempts<5:
				self.server.terminate()
			elif no_of_attempts<10:
				self.server.kill()
			elif no_of_attempts<15:
				os.kill(self.server_pid, signal.SIGTERM)
			else:
				os.kill(self.server_pid, signal.SIGKILL) 
			time.sleep(10)
			no_of_attempts += 1

	def check_early_stop(self, player_measurements, immediate_reward):
		
		if player_measurements.intersection_offroad>0.95 or immediate_reward < -1 or (self.control.throttle == 0.0 and player_measurements.forward_speed < 0.1 and self.control.brake != 0.0):
			self.cur_neg_steps += 1
			early_done = (self.cur_neg_steps > self.max_neg_steps)
			if early_done:
				print("Early kill the mad car")
				return early_done, self.early_termination_punishment
		else:
			self.cur_neg_steps /= 2 #Exponentially decay
		return False, 0.0
	
	def _update_state(self):
		# get measurements and observations
		measurements = []
		while type(measurements) == list:
			try:
				measurements, sensor_data = self.game.read_data()
			except:
				# Connection between cli and server lost; reconnect
				if self.kill_when_connection_lost: raise
				print("Connection to server lost while reading state. Reconnecting...........")
				self.close_client_and_server()
				self.setup_client_and_server(reconnect_client_only=False)
				self.done = True

		self.location = (measurements.player_measurements.transform.location.x,
						 measurements.player_measurements.transform.location.y,
						 measurements.player_measurements.transform.location.z)

		is_collision = measurements.player_measurements.collision_vehicles != 0 \
					   or measurements.player_measurements.collision_pedestrians != 0 \
					   or measurements.player_measurements.collision_other != 0

		# CARLA doesn't recognize if collision occured and colliding speed is less than 5 km/h (Around 0.7 m/s)
		# Ref: https://github.com/carla-simulator/carla/issues/13
		# Recognize that as a collision
		self.car_speed = measurements.player_measurements.forward_speed
		
		if self.control.throttle > 0 and self.car_speed < 0.75 and self.control.brake==0.0 and self.is_game_ready_for_input:
			self.unmoved_steps += 1.0
			if self.unmoved_steps > self.kill_if_unmoved_for_n_steps:
				is_collision = True
				print("Car stuck somewhere lol")
		elif self.unmoved_steps>0: self.unmoved_steps -= 0.50 #decay slowly, since it may be stuck and not accelerate few times
		
		if is_collision: print("Collision occured")
		
		speed_reward = self.car_speed - 1
		if speed_reward > 30.:
			speed_reward = 30.
		self.reward = speed_reward*1.2 \
					  - (measurements.player_measurements.intersection_otherlane * (self.car_speed+1.5)*1.2) \
					  - (measurements.player_measurements.intersection_offroad * (self.car_speed+2.5)*1.5) \
					  - is_collision * 250 \
					  - np.abs(self.control.steer) * 2
		# Scale down the reward by a factor
		self.reward /= 10
		
		if self.early_termination_enabled:
			early_done, punishment = self.check_early_stop(measurements.player_measurements, self.reward)
			if early_done:
				self.done = True
			self.reward -= punishment
		
		# update measurements
		self.observation = {
			#'observation': sensor_data['CameraRGB'].data,
			'acceleration': measurements.player_measurements.acceleration,
			'forward_speed': measurements.player_measurements.forward_speed,
			'intersection_otherlane': measurements.player_measurements.intersection_otherlane,
			'intersection_offroad': measurements.player_measurements.intersection_offroad
		}
		
		if self.rgb_camera:
			self.observation['rgb_image'] = sensor_data[self.rgb_camera_name].data
		if self.segment_camera:
			self.observation['segmented_image'] = sensor_data[self.segment_camera_name].data
		if self.depth_camera:
			self.observation['depth_map'] = sensor_data[self.depth_camera_name].data
		
		if self.segment_camera and self.depth_camera and self.enable_coalesced_output:
			self.observation['coalesced_data'] = coalesce_depth_and_segmentation(
						self.observation['segmented_image'], self.class_grouping, self.observation['depth_map'], self.max_depth_value)
		
		if self.segment_camera and (self.autocolor_the_segments or self.is_render_enabled):
			self.observation['colored_segmented_image'] = convert_segmented_to_rgb(carla_config.colors_segment, self.observation['segmented_image'])
		self.autopilot = measurements.player_measurements.autopilot_control

		# action_p = ['%.2f' % member for member in [self.control.throttle, self.control.steer]]
		# screen.success('REWARD: %.2f, ACTIONS: %s' % (self.reward, action_p))

		if (measurements.game_timestamp >= self.episode_max_time) or is_collision:
			# screen.success('EPISODE IS DONE. GameTime: {}, Collision: {}'.format(str(measurements.game_timestamp),
			#																	  str(is_collision)))
			self.done = True

	def _take_action(self, action_idx):
		if not self.is_game_setup:
			print("Reset the environment before calling step")
			sys.exit(1)
		if type(action_idx) == int:
			action = self.actions[action_idx]
		else:
			action = action_idx

		self.control = VehicleControl()
		
		if self.car_speed>35.0 and action[0]>0:
			action[0] -= 0.20*(self.car_speed/35.0)
		self.control.throttle = np.clip(action[0], 0, 1)
		self.control.steer = np.clip(action[1], -1, 1)
		self.control.brake = np.abs(np.clip(action[0], -1, 0))
		if not self.allow_braking:
			self.control.brake = 0
		self.control.hand_brake = False
		self.control.reverse = False
		controls_sent = False
		while not controls_sent:
			try:
				self.game.send_control(self.control)
				controls_sent = True
			except:
				if self.kill_when_connection_lost: raise
				print("Connection to server lost while sending controls. Reconnecting...........")
				self.close_client_and_server()
				self.setup_client_and_server(reconnect_client_only=False)
				self.done = True
		return

		
	def init_renderer(self):
		self.num_cameras = 0
		if self.rgb_camera: self.num_cameras += 1
		if self.segment_camera: self.num_cameras += 1
		if self.depth_camera: self.num_cameras += 1
		self.renderer.create_screen(carla_config.render_width, carla_config.render_height*self.num_cameras)
		
	def _restart_environment_episode(self, force_environment_reset=True):

		if not force_environment_reset and not self.done and self.is_game_setup:
			print("Can't reset dude, episode ain't over yet")
			return None #User should handle this
		self.is_game_ready_for_input = False
		if not self.is_game_setup:
			self.setup_client_and_server()
			if self.is_render_enabled:
				self.init_renderer()
		else:
			self.iterator_start_positions += 1
			if self.iterator_start_positions >= self.num_pos:
				self.iterator_start_positions = 0

		try:
			self.game.start_episode(self.iterator_start_positions)
		except:
			self.game.connect()
			self.game.start_episode(self.iterator_start_positions)

		self.unmoved_steps = 0.0
		
		if self.early_termination_enabled:
			self.cur_neg_steps = 0
		# start the game with some initial speed
		self.car_speed = 0
		observation = None
		for i in range(self.num_speedup_steps):
			observation, reward, done, _ = self.step([1.0, 0])
		self.observation = observation
		self.is_game_ready_for_input = True

		return observation		
	
	def get_rendered_image(self):
		
		temp = []
		if self.rgb_camera: temp.append(self.observation['rgb_image'])
		if self.segment_camera:
			temp.append(self.observation['colored_segmented_image'])
		if self.depth_camera:
			if self.color_the_depth_map: temp.append(depthmap_to_rgb(self.observation['depth_map']))
			else: temp.append(depthmap_to_grey(self.observation['depth_map']))
			return np.vstack((img for img in temp))
	
	def save_screenshots(self):
		if not self.save_screens:
			print("save_screens is set False")
			return
		filename = str(int(time.time()*100))
		if self.rgb_camera:
			save_image(self.rgb_img_path+filename+".png", self.observation['rgb_image'])
		if self.segment_camera:
			np.save(self.segmented_img_path+filename, self.observation['segmented_image'])
		if self.depth_camera:
			save_depthmap_as_16bit_png(self.depth_img_path+filename+".png",self.observation['depth_map'],self.max_depth_value,0.95) #Truncating sky as 0
示例#9
0
def run_carla_client(args):
    # Here we will run 3 episodes with 300 frames each.
    number_of_episodes = 3
    frames_per_episode = 300

    # We assume the CARLA server is already waiting for a client to connect at
    # host:port. To create a connection we can use the `make_carla_client`
    # context manager, it creates a CARLA client object and starts the
    # connection. It will throw an exception if something goes wrong. The
    # context manager makes sure the connection is always cleaned up on exit.
    with make_carla_client(args.host, args.port) as client:
        print('CarlaClient connected')

        for episode in range(0, number_of_episodes):
            # Start a new episode.

            if args.settings_filepath is None:

                # Create a CarlaSettings object. This object is a wrapper around
                # the CarlaSettings.ini file. Here we set the configuration we
                # want for the new episode.
                settings = CarlaSettings()
                settings.set(SynchronousMode=True,
                             SendNonPlayerAgentsInfo=True,
                             NumberOfVehicles=20,
                             NumberOfPedestrians=40,
                             WeatherId=random.choice([1, 3, 7, 8, 14]),
                             QualityLevel=args.quality_level)
                settings.randomize_seeds()

                # Now we want to add a couple of cameras to the player vehicle.
                # We will collect the images produced by these cameras every
                # frame.

                # The default camera captures RGB images of the scene.
                camera0 = Camera('CameraRGB')
                # Set image resolution in pixels.
                camera0.set_image_size(800, 600)
                # Set its position relative to the car in meters.
                camera0.set_position(0.30, 0, 1.30)
                settings.add_sensor(camera0)

                # Let's add another camera producing ground-truth depth.
                camera1 = Camera('CameraDepth', PostProcessing='Depth')
                camera1.set_image_size(800, 600)
                camera1.set_position(0.30, 0, 1.30)
                settings.add_sensor(camera1)

                if args.lidar:
                    lidar = Lidar('Lidar32')
                    lidar.set_position(0, 0, 2.50)
                    lidar.set_rotation(0, 0, 0)
                    lidar.set(Channels=32,
                              Range=50,
                              PointsPerSecond=100000,
                              RotationFrequency=10,
                              UpperFovLimit=10,
                              LowerFovLimit=-30)
                    settings.add_sensor(lidar)

            else:

                # Alternatively, we can load these settings from a file.
                with open(args.settings_filepath, 'r') as fp:
                    settings = fp.read()

            # Now we load these settings into the server. The server replies
            # with a scene description containing the available start spots for
            # the player. Here we can provide a CarlaSettings object or a
            # CarlaSettings.ini file as string.
            scene = client.load_settings(settings)

            # Choose one player start at random.
            number_of_player_starts = len(scene.player_start_spots)
            player_start = random.randint(0, max(0,
                                                 number_of_player_starts - 1))

            # Notify the server that we want to start the episode at the
            # player_start index. This function blocks until the server is ready
            # to start the episode.
            print('Starting new episode...')
            client.start_episode(player_start)

            # Iterate every frame in the episode.
            for frame in range(0, frames_per_episode):

                # Read the data produced by the server this frame.
                measurements, sensor_data = client.read_data()

                # Print some of the measurements.
                print_measurements(measurements)

                # Save the images to disk if requested.
                if args.save_images_to_disk:
                    for name, measurement in sensor_data.items():
                        filename = args.out_filename_format.format(
                            episode, name, frame)
                        measurement.save_to_disk(filename)

                # We can access the encoded data of a given image as numpy
                # array using its "data" property. For instance, to get the
                # depth value (normalized) at pixel X, Y
                #
                #     depth_array = sensor_data['CameraDepth'].data
                #     value_at_pixel = depth_array[Y, X]
                #

                # Now we have to send the instructions to control the vehicle.
                # If we are in synchronous mode the server will pause the
                # simulation until we send this control.

                if not args.autopilot:

                    client.send_control(steer=random.uniform(-1.0, 1.0),
                                        throttle=0.5,
                                        brake=0.0,
                                        hand_brake=False,
                                        reverse=False)

                else:

                    # Together with the measurements, the server has sent the
                    # control that the in-game autopilot would do this frame. We
                    # can enable autopilot by sending back this control to the
                    # server. We can modify it if wanted, here for instance we
                    # will add some noise to the steer.

                    control = measurements.player_measurements.autopilot_control
                    control.steer += random.uniform(-0.1, 0.1)
                    client.send_control(control)
示例#10
0
def run_carla_clients(args):
    filename = '_images_repeatability/server{:d}/{:0>6d}.png'
    with make_carla_client(args.host1, args.port1) as client1:
        logging.info('1st client connected')
        with make_carla_client(args.host2, args.port2) as client2:
            logging.info('2nd client connected')

            settings = CarlaSettings()
            settings.set(
                SynchronousMode=True,
                SendNonPlayerAgentsInfo=True,
                NumberOfVehicles=50,
                NumberOfPedestrians=50,
                WeatherId=random.choice([1, 3, 7, 8, 14]))
            settings.randomize_seeds()

            if args.images_to_disk:
                camera = Camera('DefaultCamera')
                camera.set_image_size(800, 600)
                settings.add_sensor(camera)

            scene1 = client1.load_settings(settings)
            scene2 = client2.load_settings(settings)

            number_of_player_starts = len(scene1.player_start_spots)
            assert number_of_player_starts == len(scene2.player_start_spots)
            player_start = random.randint(0, max(0, number_of_player_starts - 1))
            logging.info(
                'start episode at %d/%d player start (run forever, press ctrl+c to cancel)',
                player_start,
                number_of_player_starts)

            client1.start_episode(player_start)
            client2.start_episode(player_start)

            frame = 0
            while True:
                frame += 1

                meas1, sensor_data1 = client1.read_data()
                meas2, sensor_data2 = client2.read_data()

                player1 = meas1.player_measurements
                player2 = meas2.player_measurements

                images1 = [x for x in sensor_data1.values() if isinstance(x, Image)]
                images2 = [x for x in sensor_data2.values() if isinstance(x, Image)]

                control1 = player1.autopilot_control
                control2 = player2.autopilot_control

                try:
                    assert len(images1) == len(images2)
                    assert len(meas1.non_player_agents) == len(meas2.non_player_agents)
                    assert player1.transform.location.x == player2.transform.location.x
                    assert player1.transform.location.y == player2.transform.location.y
                    assert player1.transform.location.z == player2.transform.location.z
                    assert control1.steer == control2.steer
                    assert control1.throttle == control2.throttle
                    assert control1.brake == control2.brake
                    assert control1.hand_brake == control2.hand_brake
                    assert control1.reverse == control2.reverse
                except AssertionError:
                    logging.exception('assertion failed')

                if args.images_to_disk:
                    assert len(images1) == 1
                    images1[0].save_to_disk(filename.format(1, frame))
                    images2[0].save_to_disk(filename.format(2, frame))

                client1.send_control(control1)
                client2.send_control(control2)
示例#11
0
def run_carla_client(args):
    with make_connection(CarlaClient, args.host, args.port,
                         timeout=15) as client:
        logging.info('CarlaClient connected')
        filename = '_images/episode_{:0>3d}/image_{:0>5d}.png'
        frames_per_episode = 300
        episode = 0
        while True:
            episode += 1
            settings = CarlaSettings()
            settings.set(SendNonPlayerAgentsInfo=True,
                         SynchronousMode=args.synchronous)
            settings.randomize_seeds()
            camera = Camera('DefaultCamera')
            camera.set_image_size(
                300, 200)  # Do not change this, hard-coded in test.
            settings.add_sensor(camera)

            logging.debug('sending CarlaSettings:\n%s', settings)
            logging.info('new episode requested')

            scene = client.load_settings(settings)

            number_of_player_starts = len(scene.player_start_spots)
            player_start = random.randint(0, max(0,
                                                 number_of_player_starts - 1))
            logging.info('start episode at %d/%d player start (%d frames)',
                         player_start, number_of_player_starts,
                         frames_per_episode)

            client.start_episode(player_start)

            use_autopilot_control = (random.random() < 0.5)
            reverse = (random.random() < 0.2)

            for frame in range(0, frames_per_episode):
                logging.debug('reading measurements...')
                measurements, sensor_data = client.read_data()
                images = [
                    x for x in sensor_data.values() if isinstance(x, Image)
                ]

                logging.debug('received data of %d agents',
                              len(measurements.non_player_agents))
                assert len(images) == 1
                assert (images[0].width,
                        images[0].height) == (camera.ImageSizeX,
                                              camera.ImageSizeY)

                if args.images_to_disk:
                    images[0].save_to_disk(filename.format(episode, frame))

                logging.debug('sending control...')
                control = measurements.player_measurements.autopilot_control
                if not use_autopilot_control:
                    control.steer = random.uniform(-1.0, 1.0)
                    control.throttle = 0.3
                    control.hand_brake = False
                    control.reverse = reverse
                client.send_control(steer=control.steer,
                                    throttle=control.throttle,
                                    brake=control.brake,
                                    hand_brake=control.hand_brake,
                                    reverse=control.reverse)
示例#12
0
def run_carla_client(args):
    frames_per_episode = 27500  #2700
    spline_points = 1724

    report = {
        'num_episodes':
        args.num_episodes,  #num of episodes for done on this run
        'controller_name':
        args.controller_name,  # name of controller used in this run
        'distances':
        [],  # distanc traveld by car in this controller successfully
        'target_speed':
        args.target_speed,  # the taarget speed set to this controller
    }

    track_DF = pd.read_csv('racetrack{}.txt'.format(args.racetrack),
                           header=None)

    #print(track_DF.head)
    # The track waypoint data (trajectory to follow) are rescaled by 100x with relation to Carla measurements
    track_DF = track_DF / 100.0

    pts_2D = track_DF.loc[:, [0, 1]].values
    tck, u = splprep(pts_2D.T, u=None, s=2.0, per=1, k=3)
    u_new = np.linspace(u.min(), u.max(), spline_points)
    x_new, y_new = splev(u_new, tck, der=0)
    pts_2D = np.c_[x_new, y_new]

    steer = 0.0
    throttle = 0.5

    depth_array = None

    if args.controller_name == 'mpc':
        weather_id = 2
        controller = MPCController(args.target_speed)
    elif args.controller_name == 'pd':
        weather_id = 1
        controller = PDController(args.target_speed)
    elif args.controller_name == 'pad':
        weather_id = 5
        controller = PadController()
    elif args.controller_name == 'auto':
        weather_id = 5
        controller = PsudoAutoController(args.target_speed)
    elif args.controller_name == 'nn':
        from neural_network_controller import NNController
        weather_id = 1
        controller = NNController(
            args.target_speed,
            args.model_dir_name,
            args.which_model,
            args.throttle_coeff_A,
            args.throttle_coeff_B,
            args.ensemble_prediction,
        )
        report['model_dir_name'] = args.model_dir_name
        report['which_model'] = args.which_model
        report['throttle_coeff_A'] = args.throttle_coeff_A
        report['throttle_coeff_B'] = args.throttle_coeff_B
        report['ensemble_prediction'] = args.ensemble_prediction

    with make_carla_client(args.host, args.port) as client:
        print('CarlaClient connected')
        episode = 0
        num_fails = 0

        while episode < args.num_episodes:
            # Start a new episode

            if args.store_data:
                depth_storage = np.zeros(
                    ((IMAGE_CLIP_LOWER - IMAGE_CLIP_UPPER) // IMAGE_DECIMATION,
                     IMAGE_SIZE[1] // IMAGE_DECIMATION,
                     frames_per_episode)).astype(DTYPE)
                log_dicts = frames_per_episode * [None]
            else:
                depth_storage = None
                log_dicts = None

#if I'm not passing config file
            if args.settings_filepath is None:
                settings = CarlaSettings()

                settings.set(SynchronousMode=True,
                             SendNonPlayerAgentsInfo=False,
                             NumberOfVehicles=1,
                             NumberOfPedestrians=0,
                             WeatherId=weather_id,
                             QualityLevel=args.quality_level)
                # Now we will add a depth camera to the vehicle.
                camera = Camera('CameraDepth',
                                PostProcessing='Depth',
                                FOV=69.4)
                camera.set_image_size(IMAGE_SIZE[1], IMAGE_SIZE[0])
                camera.set_position(2.30, 0, 1.30)
                settings.add_sensor(camera)

            else:
                # Alternatively, we can load these settings from a file.
                with open(args.settings_filepath, 'r') as fp:
                    settings = fp.read()

            # Now we load these settings into the server.
            scene = client.load_settings(settings)

            # Choose one player start at random (we only have one player-car-).
            num_of_player_starts = len(scene.player_start_spots)
            player_start = random.randint(0, max(0, num_of_player_starts - 1))

            # Notify the server that we want to start the episode at the player_start index.
            # This function blocks until the server is ready to start the episode.

            print('Starting new episode...', )
            client.start_episode(player_start)

            status, depth_storage, one_log_dict, log_dicts, distance_travelled = run_episode(
                client, controller, pts_2D, depth_storage, log_dicts,
                frames_per_episode, args.controller_name, args.store_data)
            # In case of collision or stop episod fails and we don't sore data and restart it.
            if 'FAIL' in status:
                num_fails += 1
                print(status)
                continue
            else:
                print('SUCCESS: ' + str(episode))
                report['distances'].append(distance_travelled)
                if args.store_data:
                    np.save(
                        'depth_data/{}_racetrack{}_depth_data{}.npy'.format(
                            args.controller_name, args.racetrack, episode),
                        depth_storage)
                    pd.DataFrame(log_dicts).to_csv(
                        'logs/{}_racetrack{}_log{}.csv'.format(
                            args.controller_name, args.racetrack, episode),
                        index=False)
                episode += 1

    report['num_fails'] = num_fails

    report_output = os.path.join('reports', args.report_filename)
    pd.to_pickle(report, report_output)
def run_carla_clients(args):
    filename = '_images_repeatability/server{:d}/{:0>6d}.png'
    with make_carla_client(args.host1, args.port1) as client1:
        logging.info('1st client connected')
        with make_carla_client(args.host2, args.port2) as client2:
            logging.info('2nd client connected')

            settings = CarlaSettings()
            settings.set(SynchronousMode=True,
                         SendNonPlayerAgentsInfo=True,
                         NumberOfVehicles=50,
                         NumberOfPedestrians=50,
                         WeatherId=random.choice([1, 3, 7, 8, 14]))
            settings.randomize_seeds()

            if args.images_to_disk:
                camera = Camera('DefaultCamera')
                camera.set_image_size(800, 600)
                settings.add_sensor(camera)

            scene1 = client1.load_settings(settings)
            scene2 = client2.load_settings(settings)

            number_of_player_starts = len(scene1.player_start_spots)
            assert number_of_player_starts == len(scene2.player_start_spots)
            player_start = random.randint(0, max(0,
                                                 number_of_player_starts - 1))
            logging.info(
                'start episode at %d/%d player start (run forever, press ctrl+c to cancel)',
                player_start, number_of_player_starts)

            client1.start_episode(player_start)
            client2.start_episode(player_start)

            frame = 0
            while True:
                frame += 1

                meas1, sensor_data1 = client1.read_data()
                meas2, sensor_data2 = client2.read_data()

                player1 = meas1.player_measurements
                player2 = meas2.player_measurements

                images1 = [
                    x for x in sensor_data1.values() if isinstance(x, Image)
                ]
                images2 = [
                    x for x in sensor_data2.values() if isinstance(x, Image)
                ]

                control1 = player1.autopilot_control
                control2 = player2.autopilot_control

                try:
                    assert len(images1) == len(images2)
                    assert len(meas1.non_player_agents) == len(
                        meas2.non_player_agents)
                    assert player1.transform.location.x == player2.transform.location.x
                    assert player1.transform.location.y == player2.transform.location.y
                    assert player1.transform.location.z == player2.transform.location.z
                    assert control1.steer == control2.steer
                    assert control1.throttle == control2.throttle
                    assert control1.brake == control2.brake
                    assert control1.hand_brake == control2.hand_brake
                    assert control1.reverse == control2.reverse
                except AssertionError:
                    logging.exception('assertion failed')

                if args.images_to_disk:
                    assert len(images1) == 1
                    images1[0].save_to_disk(filename.format(1, frame))
                    images2[0].save_to_disk(filename.format(2, frame))

                client1.send_control(control1)
                client2.send_control(control2)
示例#14
0
class CarlaEnvironment(Environment):
    def __init__(self, level: LevelSelection,
                 seed: int, frame_skip: int, human_control: bool, custom_reward_threshold: Union[int, float],
                 visualization_parameters: VisualizationParameters,
                 server_height: int, server_width: int, camera_height: int, camera_width: int,
                 verbose: bool, experiment_suite: ExperimentSuite, config: str, episode_max_time: int,
                 allow_braking: bool, quality: CarlaEnvironmentParameters.Quality,
                 cameras: List[CameraTypes], weather_id: List[int], experiment_path: str,
                 separate_actions_for_throttle_and_brake: bool,
                 num_speedup_steps: int, max_speed: float, **kwargs):
        super().__init__(level, seed, frame_skip, human_control, custom_reward_threshold, visualization_parameters)

        # server configuration
        self.server_height = server_height
        self.server_width = server_width
        self.port = get_open_port()
        self.host = 'localhost'
        self.map_name = CarlaLevel[level.upper()].value['map_name']
        self.map_path = CarlaLevel[level.upper()].value['map_path']
        self.experiment_path = experiment_path

        # client configuration
        self.verbose = verbose
        self.quality = quality
        self.cameras = cameras
        self.weather_id = weather_id
        self.episode_max_time = episode_max_time
        self.allow_braking = allow_braking
        self.separate_actions_for_throttle_and_brake = separate_actions_for_throttle_and_brake
        self.camera_width = camera_width
        self.camera_height = camera_height

        # setup server settings
        self.experiment_suite = experiment_suite
        self.config = config
        if self.config:
            # load settings from file
            with open(self.config, 'r') as fp:
                self.settings = fp.read()
        else:
            # hard coded settings
            self.settings = CarlaSettings()
            self.settings.set(
                SynchronousMode=True,
                SendNonPlayerAgentsInfo=False,
                NumberOfVehicles=15,
                NumberOfPedestrians=30,
                WeatherId=random.choice(force_list(self.weather_id)),
                QualityLevel=self.quality.value,
                SeedVehicles=seed,
                SeedPedestrians=seed)
            if seed is None:
                self.settings.randomize_seeds()

            self.settings = self._add_cameras(self.settings, self.cameras, self.camera_width, self.camera_height)

        # open the server
        self.server = self._open_server()

        logging.disable(40)

        # open the client
        self.game = CarlaClient(self.host, self.port, timeout=99999999)
        self.game.connect()
        if self.experiment_suite:
            self.current_experiment_idx = 0
            self.current_experiment = self.experiment_suite.get_experiments()[self.current_experiment_idx]
            self.scene = self.game.load_settings(self.current_experiment.conditions)
        else:
            self.scene = self.game.load_settings(self.settings)

        # get available start positions
        self.positions = self.scene.player_start_spots
        self.num_positions = len(self.positions)
        self.current_start_position_idx = 0
        self.current_pose = 0

        # state space
        self.state_space = StateSpace({
            "measurements": VectorObservationSpace(4, measurements_names=["forward_speed", "x", "y", "z"])
        })
        for camera in self.scene.sensors:
            self.state_space[camera.name] = ImageObservationSpace(
                shape=np.array([self.camera_height, self.camera_width, 3]),
                high=255)

        # action space
        if self.separate_actions_for_throttle_and_brake:
            self.action_space = BoxActionSpace(shape=3, low=np.array([-1, 0, 0]), high=np.array([1, 1, 1]),
                                               descriptions=["steer", "gas", "brake"])
        else:
            self.action_space = BoxActionSpace(shape=2, low=np.array([-1, -1]), high=np.array([1, 1]),
                                               descriptions=["steer", "gas_and_brake"])

        # human control
        if self.human_control:
            # convert continuous action space to discrete
            self.steering_strength = 0.5
            self.gas_strength = 1.0
            self.brake_strength = 0.5
            # TODO: reverse order of actions
            self.action_space = PartialDiscreteActionSpaceMap(
                target_actions=[[0., 0.],
                                [0., -self.steering_strength],
                                [0., self.steering_strength],
                                [self.gas_strength, 0.],
                                [-self.brake_strength, 0],
                                [self.gas_strength, -self.steering_strength],
                                [self.gas_strength, self.steering_strength],
                                [self.brake_strength, -self.steering_strength],
                                [self.brake_strength, self.steering_strength]],
                descriptions=['NO-OP', 'TURN_LEFT', 'TURN_RIGHT', 'GAS', 'BRAKE',
                              'GAS_AND_TURN_LEFT', 'GAS_AND_TURN_RIGHT',
                              'BRAKE_AND_TURN_LEFT', 'BRAKE_AND_TURN_RIGHT']
            )

            # map keyboard keys to actions
            for idx, action in enumerate(self.action_space.descriptions):
                for key in key_map.keys():
                    if action == key:
                        self.key_to_action[key_map[key]] = idx

        self.num_speedup_steps = num_speedup_steps
        self.max_speed = max_speed

        # measurements
        self.autopilot = None
        self.planner = Planner(self.map_name)

        # env initialization
        self.reset_internal_state(True)

        # render
        if self.is_rendered:
            image = self.get_rendered_image()
            self.renderer.create_screen(image.shape[1], image.shape[0])

    def _add_cameras(self, settings, cameras, camera_width, camera_height):
        # add a front facing camera
        if CameraTypes.FRONT in cameras:
            camera = Camera(CameraTypes.FRONT.value)
            camera.set(FOV=100)
            camera.set_image_size(camera_width, camera_height)
            camera.set_position(2.0, 0, 1.4)
            camera.set_rotation(-15.0, 0, 0)
            settings.add_sensor(camera)

        # add a left facing camera
        if CameraTypes.LEFT in cameras:
            camera = Camera(CameraTypes.LEFT.value)
            camera.set(FOV=100)
            camera.set_image_size(camera_width, camera_height)
            camera.set_position(2.0, 0, 1.4)
            camera.set_rotation(-15.0, -30, 0)
            settings.add_sensor(camera)

        # add a right facing camera
        if CameraTypes.RIGHT in cameras:
            camera = Camera(CameraTypes.RIGHT.value)
            camera.set(FOV=100)
            camera.set_image_size(camera_width, camera_height)
            camera.set_position(2.0, 0, 1.4)
            camera.set_rotation(-15.0, 30, 0)
            settings.add_sensor(camera)

        # add a front facing depth camera
        if CameraTypes.DEPTH in cameras:
            camera = Camera(CameraTypes.DEPTH.value)
            camera.set_image_size(camera_width, camera_height)
            camera.set_position(0.2, 0, 1.3)
            camera.set_rotation(8, 30, 0)
            camera.PostProcessing = 'Depth'
            settings.add_sensor(camera)

        # add a front facing semantic segmentation camera
        if CameraTypes.SEGMENTATION in cameras:
            camera = Camera(CameraTypes.SEGMENTATION.value)
            camera.set_image_size(camera_width, camera_height)
            camera.set_position(0.2, 0, 1.3)
            camera.set_rotation(8, 30, 0)
            camera.PostProcessing = 'SemanticSegmentation'
            settings.add_sensor(camera)

        return settings

    def _get_directions(self, current_point, end_point):
        """
        Class that should return the directions to reach a certain goal
        """

        directions = self.planner.get_next_command(
            (current_point.location.x,
             current_point.location.y, 0.22),
            (current_point.orientation.x,
             current_point.orientation.y,
             current_point.orientation.z),
            (end_point.location.x, end_point.location.y, 0.22),
            (end_point.orientation.x, end_point.orientation.y, end_point.orientation.z))
        return directions

    def _open_server(self):
        log_path = path.join(self.experiment_path if self.experiment_path is not None else '.', 'logs',
                             "CARLA_LOG_{}.txt".format(self.port))
        if not os.path.exists(os.path.dirname(log_path)):
            os.makedirs(os.path.dirname(log_path))
        with open(log_path, "wb") as out:
            cmd = [path.join(environ.get('CARLA_ROOT'), 'CarlaUE4.sh'), self.map_path,
                   "-benchmark", "-carla-server", "-fps={}".format(30 / self.frame_skip),
                   "-world-port={}".format(self.port),
                   "-windowed -ResX={} -ResY={}".format(self.server_width, self.server_height),
                   "-carla-no-hud"]

            if self.config:
                cmd.append("-carla-settings={}".format(self.config))
            p = subprocess.Popen(cmd, stdout=out, stderr=out)

        return p

    def _close_server(self):
        os.killpg(os.getpgid(self.server.pid), signal.SIGKILL)

    def _update_state(self):
        # get measurements and observations
        measurements = []
        while type(measurements) == list:
            measurements, sensor_data = self.game.read_data()
        self.state = {}

        for camera in self.scene.sensors:
            self.state[camera.name] = sensor_data[camera.name].data

        self.location = [measurements.player_measurements.transform.location.x,
                         measurements.player_measurements.transform.location.y,
                         measurements.player_measurements.transform.location.z]

        self.distance_from_goal = np.linalg.norm(np.array(self.location[:2]) -
                                                 [self.current_goal.location.x, self.current_goal.location.y])

        is_collision = measurements.player_measurements.collision_vehicles != 0 \
                       or measurements.player_measurements.collision_pedestrians != 0 \
                       or measurements.player_measurements.collision_other != 0

        speed_reward = measurements.player_measurements.forward_speed - 1
        if speed_reward > 30.:
            speed_reward = 30.
        self.reward = speed_reward \
                      - (measurements.player_measurements.intersection_otherlane * 5) \
                      - (measurements.player_measurements.intersection_offroad * 5) \
                      - is_collision * 100 \
                      - np.abs(self.control.steer) * 10

        # update measurements
        self.measurements = [measurements.player_measurements.forward_speed] + self.location
        self.autopilot = measurements.player_measurements.autopilot_control

        # The directions to reach the goal (0 Follow lane, 1 Left, 2 Right, 3 Straight)
        directions = int(self._get_directions(measurements.player_measurements.transform, self.current_goal) - 2)
        self.state['high_level_command'] = directions

        if (measurements.game_timestamp >= self.episode_max_time) or is_collision:
            self.done = True

        self.state['measurements'] = np.array(self.measurements)

    def _take_action(self, action):
        self.control = VehicleControl()

        if self.separate_actions_for_throttle_and_brake:
            self.control.steer = np.clip(action[0], -1, 1)
            self.control.throttle = np.clip(action[1], 0, 1)
            self.control.brake = np.clip(action[2], 0, 1)
        else:
            # transform the 2 value action (steer, throttle - brake) into a 3 value action (steer, throttle, brake)
            self.control.steer = np.clip(action[0], -1, 1)
            self.control.throttle = np.clip(action[1], 0, 1)
            self.control.brake = np.abs(np.clip(action[1], -1, 0))

        # prevent braking
        if not self.allow_braking or self.control.brake < 0.1 or self.control.throttle > self.control.brake:
            self.control.brake = 0

        # prevent over speeding
        if hasattr(self, 'measurements') and self.measurements[0] * 3.6 > self.max_speed and self.control.brake == 0:
            self.control.throttle = 0.0

        self.control.hand_brake = False
        self.control.reverse = False

        self.game.send_control(self.control)

    def _load_experiment(self, experiment_idx):
        self.current_experiment = self.experiment_suite.get_experiments()[experiment_idx]
        self.scene = self.game.load_settings(self.current_experiment.conditions)
        self.positions = self.scene.player_start_spots
        self.num_positions = len(self.positions)
        self.current_start_position_idx = 0
        self.current_pose = 0

    def _restart_environment_episode(self, force_environment_reset=False):
        # select start and end positions
        if self.experiment_suite:
            # if an expeirent suite is available, follow its given poses
            if self.current_pose >= len(self.current_experiment.poses):
                # load a new experiment
                self.current_experiment_idx = (self.current_experiment_idx + 1) % len(self.experiment_suite.get_experiments())
                self._load_experiment(self.current_experiment_idx)

            self.current_start_position_idx = self.current_experiment.poses[self.current_pose][0]
            self.current_goal = self.positions[self.current_experiment.poses[self.current_pose][1]]
            self.current_pose += 1
        else:
            # go over all the possible positions in a cyclic manner
            self.current_start_position_idx = (self.current_start_position_idx + 1) % self.num_positions

            # choose a random goal destination
            self.current_goal = random.choice(self.positions)

        try:
            self.game.start_episode(self.current_start_position_idx)
        except:
            self.game.connect()
            self.game.start_episode(self.current_start_position_idx)

        # start the game with some initial speed
        for i in range(self.num_speedup_steps):
            self.control = VehicleControl(throttle=1.0, brake=0, steer=0, hand_brake=False, reverse=False)
            self.game.send_control(VehicleControl())

    def get_rendered_image(self) -> np.ndarray:
        """
        Return a numpy array containing the image that will be rendered to the screen.
        This can be different from the observation. For example, mujoco's observation is a measurements vector.
        :return: numpy array containing the image that will be rendered to the screen
        """
        image = [self.state[camera.name] for camera in self.scene.sensors]
        image = np.vstack(image)
        return image
示例#15
0
def run_carla_client(args):
    # Here we will run 3 episodes with 300 frames each.
    numcams = 5
    framestart = 20  # To compensate for the lag while starting an episode
    total_frames = args.total_frames
    datasize = total_frames / numcams

    # turn points in Town01
    chosen = [94, 97, 99, 102, 42, 70, 85, 44, 46, 67, 69]
    # # turn points in Town01 for reversed
    # reverse = [95, 98, 100, 101, 103, 39, 49, 71, 84, 45, 47, 66, 68, 78]
    # chosen = chosen + reverse
    record_weathers = [5]

    number_of_episodes = len(chosen)
    frames_per_episode = datasize / number_of_episodes + framestart

    # chosen = [10]
    # number_of_episodes = 1
    # frames_per_episode = 3000

    # We assume the CARLA server is already waiting for a client to connect at
    # host:port. To create a connection we can use the `make_carla_client`
    # context manager, it creates a CARLA client object and starts the
    # connection. It will throw an exception if something goes wrong. The
    # context manager makes sure the connection is always cleaned up on exit.
    if args.humandriver:
        driver = HumanDriver()

    with make_carla_client(args.host, args.port) as client:
        print('CarlaClient connected')

        for weather in record_weathers:
            if args.record:
                folder_name = str(datetime.datetime.today().day) + '_' + 'Carla_' + '_' + args.experiment_name \
                + 'Weather_' + str(weather)
                camera_dict, angles = get_camera_dict(args.settings_filepath,
                                                      args.cameras)
                res = [int(i) for i in args.resolution.split(',')]
                image_cut = [int(i) for i in args.image_cut.split(',')]
                print(res, image_cut)
                recorder = Recorder(args.path_to_save + folder_name + '/', res,\
                image_cut=image_cut,camera_dict=camera_dict, angles=angles)

            start = 0
            for episode in range(0, number_of_episodes):
                # Start a new episode.
                if args.settings_filepath is None:
                    # Create a CarlaSettings object. This object is a wrapper around
                    # the CarlaSettings.ini file. Here we set the configuration we
                    # want for the new episode.
                    settings = CarlaSettings()
                    settings.set(SynchronousMode=True,
                                 SendNonPlayerAgentsInfo=True,
                                 NumberOfVehicles=0,
                                 NumberOfPedestrians=4,
                                 WeatherId=random.choice([1, 3, 7, 8, 14]),
                                 QualityLevel=args.quality_level)
                    settings.randomize_seeds()

                else:
                    # Alternatively, we can load these settings from a file.
                    with open(args.settings_filepath, 'r') as fp:
                        settings = fp.read()
                        print(settings)
                    settings = settings[:-2] + "\nWeatherId=" + str(weather)
                    settings = settings + '\n\n[CARLA/QualitySettings]\nQualityLevel=' + args.quality_level
                # Now we load these settings into the server. The server replies
                # with a scene description containing the available start spots for
                # the player. Here we can provide a CarlaSettings object or a
                # CarlaSettings.ini file as string.
                scene = client.load_settings(settings)

                # Choose one player start at random.
                number_of_player_starts = len(scene.player_start_spots)
                player_start = chosen[
                    start]  #random.randint(0, max(0, number_of_player_starts - 1))
                print("Iter is ", start, "Start used is ", player_start)
                start += 1
                start = start % len(chosen)

                # Notify the server that we want to start the episode at the
                # player_start index. This function blocks until the server is ready
                # to start the episode.
                print('Starting new episode...')
                client.start_episode(player_start)

                # Iterate every frame in the episode.
                ct = 0
                recordFrame = 0
                # for frame in range(0, frames_per_episode):
                while recordFrame < frames_per_episode:
                    # Read the data produced by the server this frame.
                    measurements, sensor_data = client.read_data()

                    # for agent in measurements.non_player_agents:
                    # 	if agent.HasField('traffic_light'):
                    # 		agent.traffic_light.state = 0
                    # im = Image.frombytes(mode='RGBA', size=(200, 88), data=sensor_data['Camera0'].raw_data, decoder_name="raw")
                    # im.save('test/test.png')

                    # Save the images to disk if requested.
                    if args.save_images_to_disk:
                        for name, measurement in sensor_data.items():
                            filename = args.out_filename_format.format(
                                episode, name, recordFrame)
                            measurement.save_to_disk(filename)

                    # We can access the encodnearested data of a given image as numpy
                    # array using its "data" property. For instance, to get the
                    # depth value (normalized) at pixel X, Y
                    #
                    #     depth_array = sensor_data['CameraDepth'].data
                    #     value_at_pixel = depth_array[Y, X]
                    #
                    # Now we have to send the instructions to control the vehicle.
                    # If we are in synchronous mode the server will pause the
                    # simulation until we send this control.
                    control = Control()
                    if args.humandriver:
                        control = driver.computeControl()
                        client.send_control(control)

                    elif args.autopilot:
                        # Together with the measurements, the server has sent the
                        # control that the in-game autopilot would do this frame. We
                        # can enable autopilot by sending back this control to the
                        # server. We can modify it if wanted, here for instance we
                        # will add some noise to the steer.
                        control = measurements.player_measurements.autopilot_control
                        # control.steer += random.uniform(-0.1, 0.1)
                        client.send_control(control)

                    else:
                        control.steer = random.uniform(-1.0, 1.0)
                        control.throttle = 0.5
                        control.brake = 0.0
                        control.hand_brake = False
                        control.reverse = False
                        client.send_control(control)

                    if args.record:
                        if recordFrame > framestart:
                            direction = 2
                            actions = control

                            action_noisy, drifting_time, will_drift = recorder._noiser.compute_noise(
                                actions,
                                measurements.player_measurements.forward_speed)

                            print("Noise diff",
                                  actions.steer - action_noisy.steer,
                                  actions.throttle - action_noisy.throttle,
                                  actions.brake - action_noisy.brake)
                            if measurements.player_measurements.forward_speed <= 0.1:
                                print("No move Frame no: ", recordFrame)
                            else:
                                print("Yes!! move Frame no: ", recordFrame)
                                recorder.record(measurements, sensor_data,
                                                actions, action_noisy,
                                                direction)
                                recordFrame += 1
                        else:
                            recordFrame += 1
示例#16
0
def run_carla_client(args):
    # Here we will run 3 episodes with 300 frames each.
    number_of_episodes = 5
    cut_per_episode = 40
    frames_per_cut = 200


    # We assume the CARLA server is already waiting for a client to connect at
    # host:port. To create a connection we can use the `make_carla_client`
    # context manager, it creates a CARLA client object and starts the
    # connection. It will throw an exception if something goes wrong. The
    # context manager makes sure the connection is always cleaned up on exit.
    with make_carla_client(args.host, args.port) as client:
        print('CarlaClient connected')
        for episode in range(0, number_of_episodes):
            print("input any key to continue...")
            start = input()
            # each episode dir store a set of traindata.  if dir not existed, then make it
            pathdir = '/home/kadn/dataTrain/episode_{:0>3}'.format(episode)
            mkdir(pathdir)

            # Create a CarlaSettings object. This object is a wrapper around
            # the CarlaSettings.ini file. Here we set the configuration we
            # want for the new episode.
            settings = CarlaSettings()
            settings.set(
                SynchronousMode=True,
                SendNonPlayerAgentsInfo=True,
                NumberOfVehicles=20,
                NumberOfPedestrians=40,
                # WeatherId=random.choice([1, 3, 7, 8, 14]),
                WeatherId = 1,
                QualityLevel=args.quality_level)
            settings.randomize_seeds()
            # Now we want to add a couple of cameras to the player vehicle.
            # We will collect the images produced by these cameras every
            # frame.

            # The default camera captures RGB images of the scene.
            camera0 = Camera('CameraRGB')
            # Set image resolution in pixels.
            camera0.set_image_size(88, 200)
            # Set its position relative to the car in meters.
            camera0.set_position(0.30, 0, 1.30)
            settings.add_sensor(camera0)

            # Let's add another camera producing ground-truth depth.
            camera1 = Camera('CameraDepth', PostProcessing='Depth')
            camera1.set_image_size(200, 88)
            camera1.set_position(0.30, 0, 1.30)
            settings.add_sensor(camera1)

            camera2 = Camera('CameraSemSeg', PostProcessing='SemanticSegmentation')
            camera2.set_image_size(88, 200)
            camera2.set_position(2.0, 0.0, 1.4)
            camera2.set_rotation(0.0, 0.0, 0.0)
            settings.add_sensor(camera2)
            # if args.lidar:
            lidar = Lidar('Lidar32')
            lidar.set_position(0, 0, 2.50)
            lidar.set_rotation(0, 0, 0)
            lidar.set(
                Channels=0,
                Range=30,
                PointsPerSecond=200000,
                RotationFrequency=10,
                UpperFovLimit=0,
                LowerFovLimit=0)
            settings.add_sensor(lidar)

            # else:
            #
            #     # Alternatively, we can load these settings from a file.
            #     with open(args.settings_filepath, 'r') as fp:
            #         settings = fp.read()

            # Now we load these settings into the server. The server replies
            # with a scene description containing the available start spots for
            # the player. Here we can provide a CarlaSettings object or a
            # CarlaSettings.ini file as string.
            scene = client.load_settings(settings)

            # Choose one player start at random.
            # number_of_player_starts = len(scene.player_start_spots)
            # player_start = random.randint(0, max(0, number_of_player_starts - 1))
            player_start = 1

            # Notify the server that we want to start the episode at the
            # player_start index. This function blocks until the server is ready
            # to start the episode.
            print('Starting new episode at %r...' % scene.map_name)
            # Start a new episode.
            client.start_episode(player_start)

            for cut_per_episode in range(0,cut_per_episode):
                num = fileCounter(pathdir)
                filename = "data_{:0>6}.h5".format(num)
                filepath = pathdir + '/' + filename
                f = h5py.File(filepath, "w")
                rgb_file = f.create_dataset("rgb", (200, 88, 200), np.uint8)
                seg_file = f.create_dataset("seg", (200, 88, 200), np.uint8)
                lidar_file = f.create_dataset('lidar',(200,200,200),np.uint8)
                startendpoint = f.create_dataset('startend',(1,2),np.float32)
                targets_file = f.create_dataset("targets", (200, 28), np.float32)
                index_file = 0

                # Iterate every frame in the episode.
                for frame in range(0, frames_per_cut):
                    # Read the data produced by the server this frame.
                    measurements, sensor_data = client.read_data()

                    # get data and store
                    sensors, targets_data = record_train_data(measurements,sensor_data)
                    rgb_file[:,:,index_file] = sensors['rgb']
                    seg_file[:,:,index_file] = sensors['seg']
                    lidar_file[:,:,index_file] = sensors['lidar']
                    targets_file[index_file,:] = targets_data
                    index_file += 1

                    # We can access the encoded data of a given image as numpy
                    # array using its "data" property. For instance, to get the
                    # depth value (normalized) at pixel X, Y
                    #
                    #     depth_array = sensor_data['CameraDepth'].data
                    #     value_at_pixel = depth_array[Y, X]
                    #

                    # Now we have to send the instructions to control the vehicle.
                    # If we are in synchronous mode the server will pause the
                    # simulation until we send this control.

                    if  args.autopilot:

                        client.send_control(
                            steer=0,
                            throttle=0.8,
                            brake=0.0,
                            hand_brake=False,
                            reverse=False)

                    else:

                        # Together with the measurements, the server has sent the
                        # control that the in-game autopilot would do this frame. We
                        # can enable autopilot by sending back this control to the
                        # server. We can modify it if wanted, here for instance we
                        # will add some noise to the steer.

                        control = measurements.player_measurements.autopilot_control
                        control.steer += random.uniform(-0.05, 0.05)
                        client.send_control(control)
示例#17
0
    def build_experiments(self):
        """
        Creates the whole set of experiment objects,
        The experiments created depend on the selected Town.


        """

        # We set the camera
        # This single RGB camera is used on every experiment

        camera = Camera('CameraMiddle')
        camera.set(FOV=100)
        camera.set_image_size(800, 600)
        camera.set_position(2.5, 0.0, 1.0)
        camera.set_rotation(0, 0, 0)

        if self._city_name == 'Town01':
            poses_tasks = self._poses_town01()
            vehicles_tasks = [0, 0, 0, 100]
            pedestrians_tasks = [0, 0, 0, 300]
            n_samples = [2, 2, 2, 0]
            #n_samples = [3, 6, 6, 9]
        else:
            poses_tasks = self._poses_town02()
            vehicles_tasks = [0, 0, 0, 50]
            pedestrians_tasks = [0, 0, 0, 150]
            n_samples = [2, 2, 2, 0]
            #n_samples = [3, 6, 6, 9]

        experiments_vector = []

        random.seed(1)

        for weather in self.weathers:

            for iteration in range(len(poses_tasks)):
                poses = poses_tasks[iteration]
                vehicles = vehicles_tasks[iteration]
                pedestrians = pedestrians_tasks[iteration]

                nsample = n_samples[iteration]
                if nsample == 0:
                    continue
                poses = random.sample(poses, nsample)

                conditions = CarlaSettings()
                conditions.set(SendNonPlayerAgentsInfo=True,
                               NumberOfVehicles=vehicles,
                               NumberOfPedestrians=pedestrians,
                               WeatherId=weather)
                # Add all the cameras that were set for this experiments

                conditions.add_sensor(camera)

                experiment = Experiment()
                experiment.set(Conditions=conditions,
                               Poses=poses,
                               Task=iteration,
                               Repetitions=1)
                experiments_vector.append(experiment)

        return experiments_vector
def run_carla_client(args):
    frames_per_episode = 10000
    spline_points = 10000


    track_DF = pd.read_csv('racetrack{}.txt'.format(args.racetrack), header=None)
    # The track data are rescaled by 100x with relation to Carla measurements
    track_DF = track_DF / 100

    pts_2D = track_DF.loc[:, [0, 1]].values  # Speed & Steer values
    #splprep(array , u=these values are calculated automatically as M = len(x[0]), s=A smoothing condition per =1 : data points are considered periodic)
    #tck :tuple () u:array(values of parameters)
    tck, u = splprep(pts_2D.T, u=None, s=2.0, per=1)
    u_new = np.linspace(u.min(), u.max(), spline_points)
    x_new, y_new = splev(u_new, tck, der=0)
    pts_2D = np.c_[x_new, y_new]


    steer = 0.0
    throttle = 0.5

    depth_array = None

    # 'Pad' collect data mode 
    if args.controller_name == 'pad':
        weather_id = 4
        controller = PadController(args.target_speed)
    # 'nn' training mode    
    elif args.controller_name == 'nn':
        # Import it here because importing TensorFlow is time consuming
        from neural_network_controller import NNController  
        weather_id = 4
        controller = NNController(
            args.target_speed,
            args.model_dir_name,
            args.which_model,
            args.ensemble_prediction,
        )
        # connect to server
    with make_carla_client(args.host, args.port) as client:
        print('CarlaClient connected')
        episode = 0
        num_fails = 0

        while episode < args.num_episodes:
            # Start a new episode
            depth_storage = None
            log_dicts = None
			
            if args.settings_filepath is None:

                # Here we set the configuration we want for the new episode.
                settings = CarlaSettings()

                settings.set(
                    SynchronousMode=True,
                    SendNonPlayerAgentsInfo=True,
                    NumberOfVehicles=40,
                    NumberOfPedestrians=150,
                    WeatherId=weather_id,
                    QualityLevel= 'Epic' # lower quality
                )

                settings.randomize_seeds()

                # Now we want to add a couple of cameras to the player vehicle.
                # FOV : is the extent of the observable world that is seen at any given moment
                # 69.4 defualt in intel data sheet 
                camera = Camera('CameraDepth', PostProcessing='Depth', FOV=69.4)
                camera.set_image_size(IMAGE_SIZE[1], IMAGE_SIZE[0])
                camera.set_position(2.30, 0, 1.30)
                settings.add_sensor(camera)

            else:
                # Alternatively, we can load these settings from a file.
                with open(args.settings_filepath, 'r') as fp:
                    settings = fp.read()

            # Now we load these settings into the server. 
            scene = client.load_settings(settings)

            # Choose one player start at random.
            num_of_player_starts = len(scene.player_start_spots)
            player_start = random.randint(0, max(0, num_of_player_starts - 1))

            
            print('Starting new episode...', )
            client.start_episode(player_start)

            status, depth_storage, one_log_dict, distance_travelled = run_episode(
                client,
                controller,
                pts_2D,
                depth_storage,
                log_dicts,
                frames_per_episode,
                args.controller_name
            )

            if 'FAIL' in status:
                num_fails += 1
                print(status)
                continue
            else:
                print('SUCCESS: ' + str(episode))
                episode += 1
示例#19
0
def run_carla_client(args):
    # Here we will run 3 episodes with 300 frames each.
    number_of_episodes = 500000
    frames_per_episode = 300000000000000
    global k




    # We assume the CARLA server is already waiting for a client to connect at
    # host:port. To create a connection we can use the `make_carla_client`
    # context manager, it creates a CARLA client object and starts the
    # connection. It will throw an exception if something goes wrong. The
    # context manager makes sure the connection is always cleaned up on exit.
    with make_carla_client(args.host, args.port) as client:
        print('CarlaClient connected')


        #########################
        for episode in range(350, number_of_episodes):
            # Start a new episode.
            print(episode)
            if args.settings_filepath is None:

                # Create a CarlaSettings object. This object is a wrapper around
                # the CarlaSettings.ini file. Here we set the configuration we
                # want for the new episode.
                settings = CarlaSettings()
                settings.set(
                    SynchronousMode=True,
                    SendNonPlayerAgentsInfo=True,
                    NumberOfVehicles=0,
                    NumberOfPedestrians=0,
                    # WeatherId=random.choice([1, 3, 7, 8, 14]),
                    WeatherId=1,
                    QualityLevel=args.quality_level)
                settings.randomize_seeds()

                # Now we want to add a couple of cameras to the player vehicle.
                # We will collect the images produced by these cameras every
                # frame.

                # The default camera captures RGB images of the scene.
                camera0 = Camera('CameraRGB')
                # Set image resolution in pixels.
                camera0.set_image_size(210, 160)
                # Set its position relative to the car in meters.
                camera0.set_position(0.30, 0, 1.30)
                settings.add_sensor(camera0)

                # Let's add another camera producing ground-truth depth.
            #     camera1 = Camera('CameraDepth', PostProcessing='Depth')
            #     camera1.set_image_size(210, 160)
            #     camera1.set_position(0.30, 0, 1.30)
            #     settings.add_sensor(camera1)
            #
            #     if args.lidar:
            #         lidar = Lidar('Lidar32')
            #         lidar.set_position(0, 0, 2.50)
            #         lidar.set_rotation(0, 0, 0)
            #         lidar.set(
            #             Channels=32,
            #             Range=50,
            #             PointsPerSecond=100000,
            #             RotationFrequency=10,
            #             UpperFovLimit=10,
            #             LowerFovLimit=-30)
            #         settings.add_sensor(lidar)
            #
            # else:
            #
            #     # Alternatively, we can load these settings from a file.
            #     with open(args.settings_filepath, 'r') as fp:
            #         settings = fp.read()

            # Now we load these settings into the server. The server replies
            # with a scene description containing the available start spots for
            # the player. Here we can provide a CarlaSettings object or a
            # CarlaSettings.ini file as string.
            scene = client.load_settings(settings)

            # Choose one player start at random.
            #从哪里开始
           # number_of_player_starts = len(scene.player_start_spots)
        # player_start = random.randint(0, max(0, number_of_player_starts - 1))

            # Notify the server that we want to start the episode at the
            # player_start index. This function blocks until the server is ready
            # to start the episode.
            print('Starting new episode at %r...' % scene.map_name)
            #client.start_episode(player_start)
            client.start_episode(0)
            #--------------------------------------------------------------------

            # Iterate every frame in the episode.
            # Read the data produced by the server this frame.
            # 这个应该是获取到的数据
            measurements, sensor_data = client.read_data()

            # Print some of the measurements.
            image_RGB = to_rgb_array(sensor_data['CameraRGB'])
            image_RGB_real=image_RGB.flatten()

            print(image_RGB_real)
            print(image_RGB_real.shape[0])
            ###############################################################################################
            if k==1:
                # player_measurements = measurements.player_measurements
                # loc = np.array([player_measurements.transform.location.x, player_measurements.transform.location.y])
                RL = DeepQNetwork(n_actions=7,
                                  n_features=image_RGB_real.shape[0],
                                  learning_rate=0.0001, e_greedy=0.9,
                                  replace_target_iter=1000, memory_size=2000,
                                  e_greedy_increment=0.000001, )

                total_steps = 0

            else:

                print("rl运行完毕")
            k=2
            while True:

                measurements, sensor_data = client.read_data()
                player_measurements = measurements.player_measurements
                other_lane = 100 * player_measurements.intersection_otherlane
                offroad = 100 * player_measurements.intersection_offroad
                # loc1=np.array([player_measurements.transform.location.x, player_measurements.transform.location.y])
                # print(offroad)
                # print(other_lane)
                # print(loc1)
                image_RGB = to_rgb_array(sensor_data['CameraRGB'])
                image_RGB_real = image_RGB.flatten()
                print_measurements(measurements)
                observation = image_RGB_real
                ep_r = 0
                done = False
                # while True:
                #     # env.render()

                action = RL.choose_action(observation)

                if not args.autopilot:
                    brake1=0.0
                    steer1=0.0
                    if (action > 4):
                        brake1 = actions[action]
                    else:
                        steer1 = actions[action]

                    client.send_control(
                        # steer=random.uniform(-1.0, 1.0),

                        steer=steer1,
                        throttle=0.6,
                        brake=brake1,
                        hand_brake=False,
                        reverse=False)


                else:

                    # Together with the measurements, the server has sent the
                    # control that the in-game autopilot would do this frame. We
                    # can enable autopilot by sending back this control to the
                    # server. We can modify it if wanted, here for instance we
                    # will add some noise to the steer.

                    control = measurements.player_measurements.autopilot_control
                    # control.steer += random.uniform(-0.1, 0.1)
                    client.send_control(control)

                # loc2=np.array([player_measurements.transform.location.x, player_measurements.transform.location.y])
                image_RGB = to_rgb_array(sensor_data['CameraRGB'])
                image_RGB_rea2 = image_RGB.flatten()
                observation_ = image_RGB_rea2
                reward = -other_lane - offroad+np.sqrt(np.square(player_measurements.transform.location.x-271.0)+np.square(player_measurements.transform.location.y-129.5))
                print(offroad)
                col=player_measurements.collision_other
                speed=player_measurements.forward_speed * 3.6
                print(col)
                if offroad > 10 or other_lane>10 or col > 0 :
                    print(111111111111111111111)
                    done = True



                RL.store_transition(observation, action, reward, observation_)

                ep_r += reward
                if total_steps > 100:
                    RL.learn(do_train=1)

                if done:
                    print('episode: ',
                              'ep_r: ', round(ep_r, 2),
                              ' epsilon: ', round(RL.epsilon, 2))

                    # client.start_episode(0)
                    break

                observation = observation_
                total_steps += 1

              #  RL.plot_cost()



                # Save the images to disk if requested.
                if args.save_images_to_disk:
                    for name, measurement in sensor_data.items():
                        filename = args.out_filename_format.format(episode, name, frame)
                        measurement.save_to_disk(filename)
            continue
示例#20
0
class CarlaEnvironment(Environment):
    def __init__(self, level: LevelSelection, seed: int, frame_skip: int,
                 human_control: bool, custom_reward_threshold: Union[int,
                                                                     float],
                 visualization_parameters: VisualizationParameters,
                 server_height: int, server_width: int, camera_height: int,
                 camera_width: int, verbose: bool, config: str,
                 episode_max_time: int, allow_braking: bool,
                 quality: CarlaEnvironmentParameters.Quality,
                 cameras: List[CameraTypes], weather_id: List[int],
                 experiment_path: str, **kwargs):
        super().__init__(level, seed, frame_skip, human_control,
                         custom_reward_threshold, visualization_parameters)

        # server configuration
        self.server_height = server_height
        self.server_width = server_width
        self.port = get_open_port()
        self.host = 'localhost'
        self.map = self.env_id
        self.experiment_path = experiment_path

        # client configuration
        self.verbose = verbose
        self.quality = quality
        self.cameras = cameras
        self.weather_id = weather_id
        self.episode_max_time = episode_max_time
        self.allow_braking = allow_braking
        self.camera_width = camera_width
        self.camera_height = camera_height

        # state space
        self.state_space = StateSpace({
            "measurements":
            VectorObservationSpace(
                4, measurements_names=["forward_speed", "x", "y", "z"])
        })
        for camera in self.cameras:
            self.state_space[camera.value] = ImageObservationSpace(
                shape=np.array([self.camera_height, self.camera_width, 3]),
                high=255)

        # setup server settings
        self.config = config
        if self.config:
            # load settings from file
            with open(self.config, 'r') as fp:
                self.settings = fp.read()
        else:
            # hard coded settings
            self.settings = CarlaSettings()
            self.settings.set(SynchronousMode=True,
                              SendNonPlayerAgentsInfo=False,
                              NumberOfVehicles=15,
                              NumberOfPedestrians=30,
                              WeatherId=random.choice(
                                  force_list(self.weather_id)),
                              QualityLevel=self.quality.value,
                              SeedVehicles=seed,
                              SeedPedestrians=seed)
            if seed is None:
                self.settings.randomize_seeds()

            self.settings = self._add_cameras(self.settings, self.cameras,
                                              self.camera_width,
                                              self.camera_height)

        # open the server
        self.server = self._open_server()

        logging.disable(40)

        # open the client
        self.game = CarlaClient(self.host, self.port, timeout=99999999)
        self.game.connect()
        scene = self.game.load_settings(self.settings)

        # get available start positions
        positions = scene.player_start_spots
        self.num_pos = len(positions)
        self.iterator_start_positions = 0

        # action space
        self.action_space = BoxActionSpace(shape=2,
                                           low=np.array([-1, -1]),
                                           high=np.array([1, 1]))

        # human control
        if self.human_control:
            # convert continuous action space to discrete
            self.steering_strength = 0.5
            self.gas_strength = 1.0
            self.brake_strength = 0.5
            self.action_space = PartialDiscreteActionSpaceMap(
                target_actions=[[0., 0.], [0., -self.steering_strength],
                                [0., self.steering_strength],
                                [self.gas_strength, 0.],
                                [-self.brake_strength, 0],
                                [self.gas_strength, -self.steering_strength],
                                [self.gas_strength, self.steering_strength],
                                [self.brake_strength, -self.steering_strength],
                                [self.brake_strength, self.steering_strength]],
                descriptions=[
                    'NO-OP', 'TURN_LEFT', 'TURN_RIGHT', 'GAS', 'BRAKE',
                    'GAS_AND_TURN_LEFT', 'GAS_AND_TURN_RIGHT',
                    'BRAKE_AND_TURN_LEFT', 'BRAKE_AND_TURN_RIGHT'
                ])

            # map keyboard keys to actions
            for idx, action in enumerate(self.action_space.descriptions):
                for key in key_map.keys():
                    if action == key:
                        self.key_to_action[key_map[key]] = idx

        self.num_speedup_steps = 30

        # measurements
        self.autopilot = None

        # env initialization
        self.reset_internal_state(True)

        # render
        if self.is_rendered:
            image = self.get_rendered_image()
            self.renderer.create_screen(image.shape[1], image.shape[0])

    def _add_cameras(self, settings, cameras, camera_width, camera_height):
        # add a front facing camera
        if CameraTypes.FRONT in cameras:
            camera = Camera(CameraTypes.FRONT.value)
            camera.set_image_size(camera_width, camera_height)
            camera.set_position(0.2, 0, 1.3)
            camera.set_rotation(8, 0, 0)
            settings.add_sensor(camera)

        # add a left facing camera
        if CameraTypes.LEFT in cameras:
            camera = Camera(CameraTypes.LEFT.value)
            camera.set_image_size(camera_width, camera_height)
            camera.set_position(0.2, 0, 1.3)
            camera.set_rotation(8, -30, 0)
            settings.add_sensor(camera)

        # add a right facing camera
        if CameraTypes.RIGHT in cameras:
            camera = Camera(CameraTypes.RIGHT.value)
            camera.set_image_size(camera_width, camera_height)
            camera.set_position(0.2, 0, 1.3)
            camera.set_rotation(8, 30, 0)
            settings.add_sensor(camera)

        # add a front facing depth camera
        if CameraTypes.DEPTH in cameras:
            camera = Camera(CameraTypes.DEPTH.value)
            camera.set_image_size(camera_width, camera_height)
            camera.set_position(0.2, 0, 1.3)
            camera.set_rotation(8, 30, 0)
            camera.PostProcessing = 'Depth'
            settings.add_sensor(camera)

        # add a front facing semantic segmentation camera
        if CameraTypes.SEGMENTATION in cameras:
            camera = Camera(CameraTypes.SEGMENTATION.value)
            camera.set_image_size(camera_width, camera_height)
            camera.set_position(0.2, 0, 1.3)
            camera.set_rotation(8, 30, 0)
            camera.PostProcessing = 'SemanticSegmentation'
            settings.add_sensor(camera)

        return settings

    def _open_server(self):
        log_path = path.join(
            self.experiment_path if self.experiment_path is not None else '.',
            'logs', "CARLA_LOG_{}.txt".format(self.port))
        if not os.path.exists(os.path.dirname(log_path)):
            os.makedirs(os.path.dirname(log_path))
        with open(log_path, "wb") as out:
            cmd = [
                path.join(environ.get('CARLA_ROOT'),
                          'CarlaUE4.sh'), self.map, "-benchmark",
                "-carla-server", "-fps={}".format(30 / self.frame_skip),
                "-world-port={}".format(self.port),
                "-windowed -ResX={} -ResY={}".format(self.server_width,
                                                     self.server_height),
                "-carla-no-hud"
            ]

            if self.config:
                cmd.append("-carla-settings={}".format(self.config))
            p = subprocess.Popen(cmd, stdout=out, stderr=out)

        return p

    def _close_server(self):
        os.killpg(os.getpgid(self.server.pid), signal.SIGKILL)

    def _update_state(self):
        # get measurements and observations
        measurements = []
        while type(measurements) == list:
            measurements, sensor_data = self.game.read_data()
        self.state = {}

        for camera in self.cameras:
            self.state[camera.value] = sensor_data[camera.value].data

        self.location = [
            measurements.player_measurements.transform.location.x,
            measurements.player_measurements.transform.location.y,
            measurements.player_measurements.transform.location.z
        ]

        is_collision = measurements.player_measurements.collision_vehicles != 0 \
                       or measurements.player_measurements.collision_pedestrians != 0 \
                       or measurements.player_measurements.collision_other != 0

        speed_reward = measurements.player_measurements.forward_speed - 1
        if speed_reward > 30.:
            speed_reward = 30.
        self.reward = speed_reward \
                      - (measurements.player_measurements.intersection_otherlane * 5) \
                      - (measurements.player_measurements.intersection_offroad * 5) \
                      - is_collision * 100 \
                      - np.abs(self.control.steer) * 10

        # update measurements
        self.measurements = [measurements.player_measurements.forward_speed
                             ] + self.location
        self.autopilot = measurements.player_measurements.autopilot_control

        # action_p = ['%.2f' % member for member in [self.control.throttle, self.control.steer]]
        # screen.success('REWARD: %.2f, ACTIONS: %s' % (self.reward, action_p))

        if (measurements.game_timestamp >=
                self.episode_max_time) or is_collision:
            # screen.success('EPISODE IS DONE. GameTime: {}, Collision: {}'.format(str(measurements.game_timestamp),
            #                                                                      str(is_collision)))
            self.done = True

        self.state['measurements'] = self.measurements

    def _take_action(self, action):
        self.control = VehicleControl()
        self.control.throttle = np.clip(action[0], 0, 1)
        self.control.steer = np.clip(action[1], -1, 1)
        self.control.brake = np.abs(np.clip(action[0], -1, 0))
        if not self.allow_braking:
            self.control.brake = 0
        self.control.hand_brake = False
        self.control.reverse = False

        self.game.send_control(self.control)

    def _restart_environment_episode(self, force_environment_reset=False):
        self.iterator_start_positions += 1
        if self.iterator_start_positions >= self.num_pos:
            self.iterator_start_positions = 0

        try:
            self.game.start_episode(self.iterator_start_positions)
        except:
            self.game.connect()
            self.game.start_episode(self.iterator_start_positions)

        # start the game with some initial speed
        for i in range(self.num_speedup_steps):
            self._take_action([1.0, 0])

    def get_rendered_image(self) -> np.ndarray:
        """
        Return a numpy array containing the image that will be rendered to the screen.
        This can be different from the observation. For example, mujoco's observation is a measurements vector.
        :return: numpy array containing the image that will be rendered to the screen
        """
        image = [self.state[camera.value] for camera in self.cameras]
        image = np.vstack(image)
        return image
示例#21
0
def run_carla_client(host, port, far):
    # Here we will run a single episode with 300 frames.
    number_of_frames = 3000
    frame_step = 100  # Save one image every 100 frames
    output_folder = '_out'
    image_size = [800, 600]
    camera_local_pos = [0.3, 0.0, 1.3] # [X, Y, Z]
    camera_local_rotation = [0, 0, 0]  # [pitch(Y), yaw(Z), roll(X)]
    fov = 70

    # Connect with the server
    with make_carla_client(host, port) as client:
        print('CarlaClient connected')

        # Here we load the settings.
        settings = CarlaSettings()
        settings.set(
            SynchronousMode=True,
            SendNonPlayerAgentsInfo=False,
            NumberOfVehicles=20,
            NumberOfPedestrians=40,
            WeatherId=random.choice([1, 3, 7, 8, 14]))
        settings.randomize_seeds()

        camera1 = Camera('CameraDepth', PostProcessing='Depth', FOV=fov)
        camera1.set_image_size(*image_size)
        camera1.set_position(*camera_local_pos)
        camera1.set_rotation(*camera_local_rotation)
        settings.add_sensor(camera1)

        camera2 = Camera('CameraRGB', PostProcessing='SceneFinal', FOV=fov)
        camera2.set_image_size(*image_size)
        camera2.set_position(*camera_local_pos)
        camera2.set_rotation(*camera_local_rotation)
        settings.add_sensor(camera2)

        client.load_settings(settings)

        # Start at location index id '0'
        client.start_episode(0)

        # Compute the camera transform matrix
        camera_to_car_transform = camera2.get_unreal_transform()

        # Iterate every frame in the episode except for the first one.
        for frame in range(1, number_of_frames):
            # Read the data produced by the server this frame.
            measurements, sensor_data = client.read_data()

            # Save one image every 'frame_step' frames
            if not frame % frame_step:
                # Start transformations time mesure.
                timer = StopWatch()

                # RGB image [[[r,g,b],..[r,g,b]],..[[r,g,b],..[r,g,b]]]
                image_RGB = to_rgb_array(sensor_data['CameraRGB'])

                # 2d to (camera) local 3d
                # We use the image_RGB to colorize each 3D point, this is optional.
                # "max_depth" is used to keep only the points that are near to the
                # camera, meaning 1.0 the farest points (sky)
                point_cloud = depth_to_local_point_cloud(
                    sensor_data['CameraDepth'],
                    image_RGB,
                    max_depth=far
                )

                # (Camera) local 3d to world 3d.
                # Get the transform from the player protobuf transformation.
                world_transform = Transform(
                    measurements.player_measurements.transform
                )

                # Compute the final transformation matrix.
                car_to_world_transform = world_transform * camera_to_car_transform

                # Car to World transformation given the 3D points and the
                # transformation matrix.
                point_cloud.apply_transform(car_to_world_transform)

                # End transformations time mesure.
                timer.stop()

                # Save PLY to disk
                # This generates the PLY string with the 3D points and the RGB colors
                # for each row of the file.
                point_cloud.save_to_disk(os.path.join(
                    output_folder, '{:0>5}.ply'.format(frame))
                )

                print_message(timer.milliseconds(), len(point_cloud), frame)

            client.send_control(
                measurements.player_measurements.autopilot_control
            )
示例#22
0
    def build_experiments(self):
        """
            Creates the whole set of experiment objects,
            The experiments created depends on the selected Town.

        """

        # We check the town, based on that we define the town related parameters
        # The size of the vector is related to the number of tasks, inside each
        # task there is also multiple poses ( start end, positions )
        if self._city_name == 'Town01':
            #poses_tasks = [[[7, 3]], [[138, 17]], [[140, 134]], [[140, 134]]]
            poses_tasks = [[[138, 134]]]
            vehicles_tasks = [20]
            pedestrians_tasks = [10]
        else:
            right_curves = [[[1, 56], [65, 69], [78, 51], [44, 61], [40, 17],
                             [71, 16], [74, 38], [46, 12], [19, 18], [26, 74],
                             [37, 76], [11, 44], [20, 6], [10, 22], [28, 2],
                             [5, 15], [14, 33], [34, 8]]]
            left_curves = [[[57, 82], [72, 43], [52, 79], [70, 66], [43, 14],
                            [11, 47], [79, 32], [37, 75], [75, 16], [26, 73],
                            [39, 5], [2, 37], [34, 13], [6, 35], [10, 19],
                            [23, 6], [5, 30], [16, 2]]]
            special_test = [[[19, 66], [79, 14], [42, 13], [31, 71], [54, 30],
                             [10, 61], [66, 3], [27, 12], [2, 29], [16, 14],
                             [70, 73], [46, 67], [51, 81], [56, 65], [43, 54]]]
            corl_task2 = [[[19, 66], [79, 14], [19, 57], [23, 1], [53, 76],
                           [42, 13], [31, 71], [33, 5], [54, 30], [10, 61],
                           [66, 3], [27, 12], [79, 19], [2, 29], [16, 14],
                           [5, 57], [70, 73], [46, 67], [57, 50], [61, 49],
                           [21, 12], [51, 81], [77, 68], [56, 65], [43, 54]]]

            #poses_tasks = corl_task2
            poses_tasks = [[[10, 19]]]
            vehicles_tasks = [0]  #*len(poses_tasks[0])
            pedestrians_tasks = [0]  #*len(poses_tasks[0])

        # We set the camera
        # This single RGB camera is used on every experiment
        '''camera = Camera('CameraRGB')
        camera.set(FOV=90)
        camera.set_image_size(800, 600)
        camera.set_position(1.44, 0.0, 1.2)
        camera.set_rotation(0, 0, 0)'''

        camera0 = Camera('CameraRGB0')
        camera0.set(FOV=90)
        camera0.set_image_size(400, 300)
        camera0.set_position(1.7, 0.0, 1.3)
        camera0.set_rotation(0, 0, 0)

        camera1 = Camera('CameraRGB1')
        camera1.set(FOV=90)
        camera1.set_image_size(400, 300)
        camera1.set_position(1.7, 0.0, 1.3)
        camera1.set_rotation(0, -45, 0)

        camera2 = Camera('CameraRGB2')
        camera2.set(FOV=90)
        camera2.set_image_size(400, 300)
        camera2.set_position(1.7, 0.0, 1.3)
        camera2.set_rotation(0, +45, 0)

        # Based on the parameters, creates a vector with experiment objects.
        experiments_vector = []
        for weather in self.weathers:

            for iteration in range(len(poses_tasks)):
                poses = poses_tasks[iteration]
                vehicles = vehicles_tasks[iteration]
                pedestrians = pedestrians_tasks[iteration]

                conditions = CarlaSettings()
                conditions.set(SendNonPlayerAgentsInfo=True,
                               NumberOfVehicles=vehicles,
                               NumberOfPedestrians=pedestrians,
                               WeatherId=weather)
                # Add all the cameras that were set for this experiments
                conditions.add_sensor(camera0)
                conditions.add_sensor(camera1)
                conditions.add_sensor(camera2)
                experiment = Experiment()
                experiment.set(Conditions=conditions,
                               Poses=poses,
                               Task=iteration,
                               Repetitions=1)
                experiments_vector.append(experiment)
            '''path0=os.listdir('CameraRGB0')
            path1=os.listdir('CameraRGB1')
            path2=os.listdir('CameraRGB2')
            os.mkdir('CameraRGB')

            width=400
            height=300

            total_width = width*3
            max_height = height

            i = 0
            images=[]
            images.append(Image.open('CameraRGB1/'+path1[i]))
            images.append(Image.open('CameraRGB0/'+path0[i]))
            images.append(Image.open('CameraRGB2/'+path2[i]))
            new_im = Image.new('RGB', (total_width, max_height))
            x_offset = 0
            for im in images:
                new_im.paste(im, (x_offset,0))
                x_offset += im.size[0]
                new_im.save('CameraRGB/'+path0[i])
            i = i+1'''

        return experiments_vector
示例#23
0
def run_carla_client(args):
    # Here we will run 1 episodes with 1000 frames each.
    number_of_episodes = 1
    frames_per_episode = 1000

    # We assume the CARLA server is already waiting for a client to connect at
    # host:port. To create a connection we can use the `make_carla_client`
    # context manager, it creates a CARLA client object and starts the
    # connection. It will throw an exception if something goes wrong. The
    # context manager makes sure the connection is always cleaned up on exit.
    with make_carla_client(args.host, args.port) as client:
        print('CarlaClient connected')

        for episode in range(0, number_of_episodes):
            # Start a new episode.

            if args.settings_filepath is None:

                # Create a CarlaSettings object. This object is a wrapper around
                # the CarlaSettings.ini file. Here we set the configuration we
                # want for the new episode.
                settings = CarlaSettings()
                settings.set(
                    SynchronousMode=True,
                    SendNonPlayerAgentsInfo=True,
                    NumberOfVehicles=0,
                    NumberOfPedestrians=0,
                    WeatherId=args.weatherId,  #bbescos
                    QualityLevel=args.quality_level)

                # Now we want to add a few cameras to the player vehicle.
                # We will collect the images produced by these cameras every
                # frame.

                # The default camera captures RGB images of the scene.
                camera0 = Camera('RGB')
                # Set image resolution in pixels.
                camera0.set_image_size(800, 600)
                # Set its position relative to the car in meters.
                camera0.set_position(1.80, 0, 1.30)
                settings.add_sensor(camera0)

                # Let's add another RGB camera in the back of the car
                camera0_b = Camera('RGB_back')
                camera0_b.set_image_size(800, 600)
                camera0_b.set_position(-1.70, 0, 1.30)  #bbescos
                camera0_b.set_rotation(0, 180, 0)
                settings.add_sensor(camera0_b)

                # Let's add another camera producing ground-truth depth.
                camera1 = Camera('Depth', PostProcessing='Depth')
                camera1.set_image_size(800, 600)
                camera1.set_position(1.80, 0, 1.30)
                settings.add_sensor(camera1)

                # Let's add another camera producing ground-truth depth for the back.
                camera1_b = Camera('Depth_back', PostProcessing='Depth')
                camera1_b.set_image_size(800, 600)
                camera1_b.set_position(-1.70, 0, 1.30)
                camera1_b.set_rotation(0, 180, 0)
                settings.add_sensor(camera1_b)

                # Let's add another camera producing ground-truth semantic segmentation.
                camera2 = Camera('SemanticSegmentation',
                                 PostProcessing='SemanticSegmentation')
                camera2.set_image_size(800, 600)
                camera2.set_position(1.80, 0, 1.30)
                settings.add_sensor(camera2)

                # Let's add another camera producing ground-truth semantic segmentation for the back.
                camera2_b = Camera('SemanticSegmentation_back',
                                   PostProcessing='SemanticSegmentation')
                camera2_b.set_image_size(800, 600)
                camera2_b.set_position(-1.70, 0, 1.30)
                camera2_b.set_rotation(0, 180, 0)
                settings.add_sensor(camera2_b)

                if args.lidar:
                    lidar = Lidar('Lidar32')
                    lidar.set_position(0, 0, 2.50)
                    lidar.set_rotation(0, 0, 0)
                    lidar.set(Channels=32,
                              Range=50,
                              PointsPerSecond=100000,
                              RotationFrequency=10,
                              UpperFovLimit=10,
                              LowerFovLimit=-30)
                    settings.add_sensor(lidar)

            else:

                # Alternatively, we can load these settings from a file.
                with open(args.settings_filepath, 'r') as fp:
                    settings = fp.read()

            # Now we load these settings into the server. The server replies
            # with a scene description containing the available start spots for
            # the player. Here we can provide a CarlaSettings object or a
            # CarlaSettings.ini file as string.
            scene = client.load_settings(settings)

            # Choose one player start.
            number_of_player_starts = len(scene.player_start_spots)
            player_start = args.playerStart

            # Notify the server that we want to start the episode at the
            # player_start index. This function blocks until the server is ready
            # to start the episode.
            print('Starting new episode...')
            client.start_episode(player_start)

            # Iterate every frame in the episode.
            for frame in range(0, frames_per_episode):

                print('Frame : ', frame)
                save_bool = True

                # Read the data produced by the server this frame.
                measurements, sensor_data = client.read_data()

                # Save Trajectory
                save_trajectory(frame, measurements)

                # Read trajectory to check if it is the same #bbescos
                file = open(args.trajectoryFile, 'r')
                lines = file.readlines()
                line = lines[frame]
                words = line.split()
                pos_x_s = float(words[1])
                if abs(pos_x_s -
                       measurements.player_measurements.transform.location.x
                       ) > 0.1:
                    save_bool = False
                    print(
                        pos_x_s,
                        measurements.player_measurements.transform.location.x)
                pos_y_s = float(words[2])
                if abs(pos_y_s -
                       measurements.player_measurements.transform.location.y
                       ) > 0.1:
                    save_bool = False
                    print(
                        pos_y_s,
                        measurements.player_measurements.transform.location.y)
                file.close()

                # Save the images to disk if requested.
                if args.save_images_to_disk and frame % 10 == 0 and frame > 29 and save_bool:
                    for name, measurement in sensor_data.items():
                        filename = args.out_filename_format.format(
                            episode, name, frame)
                        measurement.save_to_disk(filename)

                # Now we have to send the instructions to control the vehicle.
                # If we are in synchronous mode the server will pause the
                # simulation until we send this control.
                if not args.autopilot:

                    client.send_control(steer=random.uniform(-1.0, 1.0),
                                        throttle=0.5,
                                        brake=0.0,
                                        hand_brake=False,
                                        reverse=False)
                else:

                    # Together with the measurements, the server has sent the
                    # control that the in-game autopilot would do this frame. We
                    # can enable autopilot by sending back this control to the
                    # server.
                    control = measurements.player_measurements.autopilot_control
                    # Read control file
                    file = open(args.controlFile, 'r')
                    lines = file.readlines()
                    line = lines[frame]
                    words = line.split()
                    steer = float(words[1])
                    throttle = float(words[2])
                    brake = float(words[3])
                    hand_brake = (words[4] == 'True')
                    reverse = (words[5] == 'True')
                    file.close()
                    control.steer = steer
                    control.throttle = throttle
                    control.brake = brake
                    control.hand_brake = hand_brake
                    control.reverse = reverse
                    save_control(frame, control)
                    client.send_control(control)
    def build_experiments(self):
        """
        Creates the whole set of experiment objects,
        The experiments created depend on the selected Town.

        """

        # We set the camera
        # This single RGB camera is used on every experiment

        camera = Camera('CameraRGB')
        camera.set(FOV=100)
        camera.set_image_size(800, 600)
        camera.set_position(2.0, 0.0, 1.4)
        camera.set_rotation(-15.0, 0, 0)
        if self._task == 'go-straight':
            task_select = 0
        elif self._task == 'right_turn':
            task_select = 1
        elif self._task == 'left_turn':
            task_select = 2
        elif self._task == 'intersection-straight':
            task_select = 3
        elif self._task == 'intersection-right':
            task_select = 4
        elif self._task == 'intersection-left':
            task_select = 5

        if self._city_name == 'Town01':
            poses_tasks = self._poses_town01()
            vehicles_tasks = [0, 0, 0, 20]
            pedestrians_tasks = [0, 0, 0, 50]
        elif self._city_name == 'Town02':
            poses_tasks = self._poses_town02()
            vehicles_tasks = [0, 0, 0, 20]
            pedestrians_tasks = [0, 0, 0, 50]
        elif 'Town01_nemesis' in self._city_name:
            poses_tasks = [self._poses_town01_nemesis()[task_select]]
            vehicles_tasks = [0, 0, 0, 0, 0, 0]
            pedestrians_tasks = [0, 0, 0, 0, 0, 0]
        elif 'town01' in self._city_name:
            poses_tasks = [self._poses_town01_nemesis()[task_select]]
            vehicles_tasks = [0, 0, 0, 0, 0, 0]
            pedestrians_tasks = [0, 0, 0, 0, 0, 0]
        elif 'Town02_nemesis' in self._city_name:
            poses_tasks = [self._poses_town02_nemesis()[task_select]]
            vehicles_tasks = [0, 0, 0, 0, 0, 0]
            pedestrians_tasks = [0, 0, 0, 0, 0, 0]

        experiments_vector = []
        """repeating experiment"""
        num_iters = 1
        weathers_iters = [self._weather] * num_iters

        # 0 - Default
        # 1 - ClearNoon
        # 2 - CloudyNoon
        # 3 - WetNoon
        # 4 - WetCloudyNoon
        # 5 - MidRainyNoon
        # 6 - HardRainNoon
        # 7 - SoftRainNoon
        # 8 - ClearSunset
        # 9 - CloudySunset
        # 10 - WetSunset
        # 11 - WetCloudySunset
        # 12 - MidRainSunset
        # 13 - HardRainSunset
        # 14 - SoftRainSunset

        for weather in weathers_iters:

            # for iteration in range(len(poses_tasks)):
            for iteration in range(0, 1):
                poses = poses_tasks[iteration]
                vehicles = vehicles_tasks[iteration]
                pedestrians = pedestrians_tasks[iteration]

                conditions = CarlaSettings()
                conditions.set(SendNonPlayerAgentsInfo=True,
                               NumberOfVehicles=vehicles,
                               NumberOfPedestrians=pedestrians,
                               WeatherId=weather)
                # Add all the cameras that were set for this experiments

                conditions.add_sensor(camera)

                experiment = Experiment()
                experiment.set(Conditions=conditions,
                               Poses=poses,
                               Task=iteration,
                               Repetitions=1)
                experiments_vector.append(experiment)

        return experiments_vector
class CarlaEnvironmentWrapper(EnvironmentWrapper):
    def __init__(self, tuning_parameters):
        EnvironmentWrapper.__init__(self, tuning_parameters)

        self.tp = tuning_parameters

        # server configuration
        self.server_height = self.tp.env.server_height
        self.server_width = self.tp.env.server_width
        self.port = get_open_port()
        self.host = 'localhost'
        self.map = CarlaLevel().get(self.tp.env.level)

        # client configuration
        self.verbose = self.tp.env.verbose
        self.depth = self.tp.env.depth
        self.stereo = self.tp.env.stereo
        self.semantic_segmentation = self.tp.env.semantic_segmentation
        self.height = self.server_height * (1 + int(self.depth) +
                                            int(self.semantic_segmentation))
        self.width = self.server_width * (1 + int(self.stereo))
        self.size = (self.width, self.height)

        self.config = self.tp.env.config
        if self.config:
            # load settings from file
            with open(self.config, 'r') as fp:
                self.settings = fp.read()
        else:
            # hard coded settings
            self.settings = CarlaSettings()
            self.settings.set(SynchronousMode=True,
                              SendNonPlayerAgentsInfo=False,
                              NumberOfVehicles=15,
                              NumberOfPedestrians=30,
                              WeatherId=1)
            self.settings.randomize_seeds()

            # add cameras
            camera = Camera('CameraRGB')
            camera.set_image_size(self.width, self.height)
            camera.set_position(200, 0, 140)
            camera.set_rotation(0, 0, 0)
            self.settings.add_sensor(camera)

        # open the server
        self.server = self._open_server()

        logging.disable(40)

        # open the client
        self.game = CarlaClient(self.host, self.port, timeout=99999999)
        self.game.connect()
        scene = self.game.load_settings(self.settings)

        # get available start positions
        positions = scene.player_start_spots
        self.num_pos = len(positions)
        self.iterator_start_positions = 0

        # action space
        self.discrete_controls = False
        self.action_space_size = 2
        self.action_space_high = [1, 1]
        self.action_space_low = [-1, -1]
        self.action_space_abs_range = np.maximum(
            np.abs(self.action_space_low), np.abs(self.action_space_high))
        self.steering_strength = 0.5
        self.gas_strength = 1.0
        self.brake_strength = 0.5
        self.actions = {
            0: [0., 0.],
            1: [0., -self.steering_strength],
            2: [0., self.steering_strength],
            3: [self.gas_strength, 0.],
            4: [-self.brake_strength, 0],
            5: [self.gas_strength, -self.steering_strength],
            6: [self.gas_strength, self.steering_strength],
            7: [self.brake_strength, -self.steering_strength],
            8: [self.brake_strength, self.steering_strength]
        }
        self.actions_description = [
            'NO-OP', 'TURN_LEFT', 'TURN_RIGHT', 'GAS', 'BRAKE',
            'GAS_AND_TURN_LEFT', 'GAS_AND_TURN_RIGHT', 'BRAKE_AND_TURN_LEFT',
            'BRAKE_AND_TURN_RIGHT'
        ]
        for idx, action in enumerate(self.actions_description):
            for key in key_map.keys():
                if action == key:
                    self.key_to_action[key_map[key]] = idx
        self.num_speedup_steps = 30

        # measurements
        self.measurements_size = (1, )
        self.autopilot = None

        # env initialization
        self.reset(True)

        # render
        if self.is_rendered:
            image = self.get_rendered_image()
            self.renderer.create_screen(image.shape[1], image.shape[0])

    def _open_server(self):
        log_path = path.join(logger.experiments_path,
                             "CARLA_LOG_{}.txt".format(self.port))
        with open(log_path, "wb") as out:
            cmd = [
                path.join(environ.get('CARLA_ROOT'),
                          'CarlaUE4.sh'), self.map, "-benchmark",
                "-carla-server", "-fps=10", "-world-port={}".format(self.port),
                "-windowed -ResX={} -ResY={}".format(self.server_width,
                                                     self.server_height),
                "-carla-no-hud"
            ]
            if self.config:
                cmd.append("-carla-settings={}".format(self.config))
            p = subprocess.Popen(cmd, stdout=out, stderr=out)

        return p

    def _close_server(self):
        os.killpg(os.getpgid(self.server.pid), signal.SIGKILL)

    def _update_state(self):
        # get measurements and observations
        measurements = []
        while type(measurements) == list:
            measurements, sensor_data = self.game.read_data()

        self.location = (measurements.player_measurements.transform.location.x,
                         measurements.player_measurements.transform.location.y,
                         measurements.player_measurements.transform.location.z)

        is_collision = measurements.player_measurements.collision_vehicles != 0 \
                       or measurements.player_measurements.collision_pedestrians != 0 \
                       or measurements.player_measurements.collision_other != 0

        speed_reward = measurements.player_measurements.forward_speed - 1
        if speed_reward > 30.:
            speed_reward = 30.
        self.reward = speed_reward \
                      - (measurements.player_measurements.intersection_otherlane * 5) \
                      - (measurements.player_measurements.intersection_offroad * 5) \
                      - is_collision * 100 \
                      - np.abs(self.control.steer) * 10

        # update measurements
        self.state = {
            'observation': sensor_data['CameraRGB'].data,
            'measurements': [measurements.player_measurements.forward_speed],
        }
        self.autopilot = measurements.player_measurements.autopilot_control

        # action_p = ['%.2f' % member for member in [self.control.throttle, self.control.steer]]
        # screen.success('REWARD: %.2f, ACTIONS: %s' % (self.reward, action_p))

        if (measurements.game_timestamp >=
                self.tp.env.episode_max_time) or is_collision:
            # screen.success('EPISODE IS DONE. GameTime: {}, Collision: {}'.format(str(measurements.game_timestamp),
            #                                                                      str(is_collision)))
            self.done = True

    def _take_action(self, action_idx):
        if type(action_idx) == int:
            action = self.actions[action_idx]
        else:
            action = action_idx
        self.last_action_idx = action

        self.control = VehicleControl()
        self.control.throttle = np.clip(action[0], 0, 1)
        self.control.steer = np.clip(action[1], -1, 1)
        self.control.brake = np.abs(np.clip(action[0], -1, 0))
        if not self.tp.env.allow_braking:
            self.control.brake = 0
        self.control.hand_brake = False
        self.control.reverse = False

        self.game.send_control(self.control)

    def _restart_environment_episode(self, force_environment_reset=False):
        self.iterator_start_positions += 1
        if self.iterator_start_positions >= self.num_pos:
            self.iterator_start_positions = 0

        try:
            self.game.start_episode(self.iterator_start_positions)
        except:
            self.game.connect()
            self.game.start_episode(self.iterator_start_positions)

        # start the game with some initial speed
        state = None
        for i in range(self.num_speedup_steps):
            state = self.step([1.0, 0])['state']
        self.state = state

        return state
示例#26
0
def run_carla_client(args):
    # Here we will run args._episode episodes with args._frames frames each.
    number_of_episodes = args._episode
    frames_per_episode = args._frames

    # set speed and yaw rate variable to default
    speedyawrate = np.nan

    #call init in eval file to load model
    checkpoint_dir_loc = args.chckpt_loc
    prefix = args.model_name
    tf_carla_eval.init(checkpoint_dir_loc, prefix)

    # create the carla client
    with make_carla_client(args.host, args.port, timeout=100000) as client:
        print('CarlaClient connected')

        for episode in range(0, number_of_episodes):

            if args.settings_filepath is None:

                # if same starting position arg set use same weather
                if args._sameStart > -1:
                    choice = 1
                    nrVehicles = 0
                    nrPedestrians = 0
                else:
                    choice = random.choice([1, 3, 7, 8, 14])
                    nrVehicles = 150
                    nrPedestrians = 100

                settings = CarlaSettings()
                settings.set(SynchronousMode=args.synchronous_mode,
                             SendNonPlayerAgentsInfo=True,
                             NumberOfVehicles=nrVehicles,
                             NumberOfPedestrians=nrPedestrians,
                             WeatherId=choice,
                             QualityLevel=args.quality_level)
                settings.randomize_seeds()

                camera0 = Camera('CameraRGB')
                camera0.set_image_size(1920, 640)
                camera0.set_position(2.00, 0, 1.30)
                settings.add_sensor(camera0)

                camera1 = Camera('CameraDepth', PostProcessing='Depth')
                camera1.set_image_size(1920, 640)
                camera1.set_position(2.00, 0, 1.30)
                settings.add_sensor(camera1)

                camera2 = Camera('CameraSegmentation',
                                 PostProcessing='SemanticSegmentation')
                camera2.set_image_size(1920, 640)
                camera2.set_position(2.00, 0, 1.30)
                settings.add_sensor(camera2)

                if args._save:
                    camera3 = Camera('CameraRGB_top',
                                     PostProcessing='SceneFinal')
                    camera3.set_image_size(800, 800)
                    camera3.set_position(-6.0, 0, 4.0)
                    camera3.set_rotation(yaw=0, roll=0, pitch=-10)
                    settings.add_sensor(camera3)

            else:
                with open(args.settings_filepath, 'r') as fp:
                    settings = fp.read()

            scene = client.load_settings(settings)

            # Choose one player start at random.
            number_of_player_starts = len(scene.player_start_spots)
            if args._sameStart > -1:
                player_start = args._sameStart
            else:
                player_start = random.randint(
                    0, max(0, number_of_player_starts - 1))

            print('Starting new episode at %r...' % scene.map_name)
            client.start_episode(player_start)

            if args._save:
                # initialize stuck variable. if car does not move after colliding for x frames we restart episode.
                nrStuck = 0
                # maximum number of times we can get stuck before restarting
                maxStuck = 5

                # last location variable to keep track if car is changing position
                last_loc = namedtuple('last_loc', 'x y z')
                last_loc.__new__.__defaults__ = (0.0, 0.0, 0.0)
                last_loc.x = -1
                last_loc.y = -1

                # delete frames of previous run to not interfere with video creation
                for rmf in glob.glob(args.file_loc + 'tmpFrameFolder/frame*'):
                    os.remove(rmf)

            # Iterate every frame in the episode.
            for frame in range(0, frames_per_episode):

                measurements, sensor_data = client.read_data()

                # if we are saving video of episode move to next episode if we get stuck
                if args._save:
                    player_measurements = measurements.player_measurements
                    col_other = player_measurements.collision_other
                    col_cars = player_measurements.collision_vehicles
                    curr_loc = player_measurements.transform.location
                    if player_measurements.forward_speed <= 0.05 and sqrdist(
                            last_loc, curr_loc) < 2 and frame > 30:
                        if nrStuck == maxStuck:
                            print(
                                "\nWe are stuck! Writing to video and restarting."
                            )
                            #args._sameStart += 1
                            break
                        else:
                            print("Stuck: " + str(nrStuck) + "/" +
                                  str(maxStuck))
                            nrStuck += 1
                    last_loc = curr_loc

                # Skip first couple of images due to setup time.
                if frame > 19:
                    player_measurements = measurements.player_measurements

                    for name, curr_measurements in sensor_data.items():
                        if name == 'CameraDepth':
                            depth = curr_measurements.return_depth_map()
                        if name == 'CameraSegmentation':
                            segmentation = curr_measurements.return_segmentation_map(
                            )
                        if name == 'CameraRGB':
                            rgb = curr_measurements.return_rgb()

                    yaw, yaw_rate, speed, prev_time = process_odometry(
                        measurements, yaw_shift, yaw_old, prev_time)
                    yaw_old = yaw

                    im = Image.new('L', (256 * 6, 256 * 6), (127))
                    shift = 256 * 6 / 2
                    draw = ImageDraw.Draw(im)

                    gmTime = time.time()
                    for agent in measurements.non_player_agents:
                        if agent.HasField('vehicle') or agent.HasField(
                                'pedestrian'):
                            participant = agent.vehicle if agent.HasField(
                                'vehicle') else agent.pedestrian
                            if not participantInRange(
                                    participant.transform.location,
                                    player_measurements.transform.location):
                                continue
                            angle = cart2pol(
                                participant.transform.orientation.x,
                                participant.transform.orientation.y)
                            polygon = agent2world(participant, angle)
                            polygon = world2player(
                                polygon, math.radians(-yaw),
                                player_measurements.transform)
                            polygon = player2image(polygon,
                                                   shift,
                                                   multiplier=25)
                            polygon = [tuple(row) for row in polygon.T]

                            draw.polygon(polygon, 0, 0)

                    im = im.resize((256, 256), Image.ANTIALIAS)
                    im = im.rotate(imrotate)
                    gmTime = time.time() - gmTime
                    if not args.all_data:
                        print("only all data supported for now")
                        exit()
                    else:
                        if args._opd:
                            ppTime, evTime, imTime, tkTime, speedyawrate, direction = tf_carla_eval.eval_only_drive(
                                im, rgb, depth, segmentation, -yaw_rate, speed)
                        else:
                            ppTime, evTime, imTime, tkTime, speedyawrate, direction, imReady, im = tf_carla_eval.eval(
                                im, rgb, depth, segmentation, -yaw_rate, speed)
                            if args._save and imReady:
                                # append frame to array for video output
                                for name, curr_measurements in sensor_data.items(
                                ):
                                    if name == 'CameraRGB_top':
                                        filename = args.file_loc + "tmpFrameFolder/frame" + str(
                                            frame).zfill(4) + ".jpg"
                                        Image.fromarray(
                                            np.concatenate([
                                                im,
                                                curr_measurements.return_rgb()
                                            ], 1)).save(filename)
                                        break

                        #printTimePerEval(gmTime, ppTime, evTime, imTime, tkTime)

                else:
                    # get first values
                    yaw_shift = measurements.player_measurements.transform.rotation.yaw
                    yaw_old = ((yaw_shift - 180) % 360) - 180
                    imrotate = round(yaw_old) + 90
                    shift_x = measurements.player_measurements.transform.location.x
                    shift_y = measurements.player_measurements.transform.location.y
                    prev_time = np.int64(measurements.game_timestamp)

                if not args.autopilot:
                    control = getKeyboardControl()
                else:
                    # values are nan while script is gathering frames before first prediction
                    if np.any(np.isnan(speedyawrate)):
                        control = measurements.player_measurements.autopilot_control
                        control.steer += random.uniform(-0.01, 0.01)
                    else:
                        control = VehicleControl()
                        # speedyawrate contains T entries, first entry is first prediction
                        dirAvgEncoding = np.mean(
                            np.squeeze(np.array(direction)), 0)
                        speedyawrate = np.asarray(speedyawrate)
                        steerAvgEncoding = np.mean(np.squeeze(speedyawrate), 0)
                        control.throttle = mapThrottle(player_measurements,
                                                       speedyawrate)
                        control.brake = int(control.throttle == -1)
                        control.steer = mapSteer(steerAvgEncoding[1])
                        #printSteering(measurements.player_measurements.forward_speed,
                        #              measurements.player_measurements.autopilot_control.throttle,
                        #              measurements.player_measurements.autopilot_control.steer,
                        #              speedyawrate, control.throttle, control.steer,
                        #              dirAvgEncoding, steerAvgEncoding)

                client.send_control(control)
            if args._save:
                print("\nConverting frames to video...")
                os.system(
                    "ffmpeg -r 10 -f image2 -start_number 20 -i {}frame%04d.jpg -vcodec libx264 -crf 15 -pix_fmt yuv420p {}"
                    .format(
                        args.file_loc + "tmpFrameFolder/", args.file_loc +
                        "video" + str(time.time() * 1000) + ".mp4"))
                print("Finished conversion.")
示例#27
0
def make_carla_settings():
    """Make a CarlaSettings object with the settings we need."""

    settings = CarlaSettings()
    settings.set(SendNonPlayerAgentsInfo=True,
                 SynchronousMode=True,
                 NumberOfVehicles=30,
                 NumberOfPedestrians=50,
                 WeatherId=1)

    settings.set(DisableTwoWheeledVehicles=True)

    settings.randomize_seeds()  # IMPORTANT TO RANDOMIZE THE SEEDS EVERY TIME
    camera0 = sensor.Camera('CentralSemanticSeg',
                            PostProcessing='SemanticSegmentation')
    camera0.set_image_size(WINDOW_WIDTH, WINDOW_HEIGHT)
    camera0.set(FOV=FOV)
    camera0.set_position(2.0, 0.0, 1.4)
    camera0.set_rotation(-15.0, 0, 0)

    settings.add_sensor(camera0)
    camera0 = sensor.Camera('CentralRGB')
    camera0.set_image_size(WINDOW_WIDTH, WINDOW_HEIGHT)
    camera0.set(FOV=FOV)
    camera0.set_position(2.0, 0.0, 1.4)
    camera0.set_rotation(-15.0, 0, 0)

    settings.add_sensor(camera0)
    camera0 = sensor.Camera('CentralDepth', PostProcessing='Depth')
    camera0.set_image_size(WINDOW_WIDTH, WINDOW_HEIGHT)
    camera0.set(FOV=FOV)
    camera0.set_position(2.0, 0.0, 1.4)
    camera0.set_rotation(-15.0, 0, 0)

    settings.add_sensor(camera0)

    camera0 = sensor.Camera('LeftSemanticSeg',
                            PostProcessing='SemanticSegmentation')
    camera0.set_image_size(WINDOW_WIDTH, WINDOW_HEIGHT)
    camera0.set(FOV=FOV)
    camera0.set_position(2.0, 0.0, 1.4)
    camera0.set_rotation(-15.0, -30.0, 0)

    settings.add_sensor(camera0)
    camera0 = sensor.Camera('LeftRGB')
    camera0.set_image_size(WINDOW_WIDTH, WINDOW_HEIGHT)
    camera0.set(FOV=FOV)
    camera0.set_position(2.0, 0.0, 1.4)
    camera0.set_rotation(-15.0, -30.0, 0)

    settings.add_sensor(camera0)
    camera0 = sensor.Camera('LeftDepth', PostProcessing='Depth')
    camera0.set_image_size(WINDOW_WIDTH, WINDOW_HEIGHT)
    camera0.set(FOV=FOV)
    camera0.set_position(2.0, 0.0, 1.4)
    camera0.set_rotation(-15.0, -30.0, 0)

    settings.add_sensor(camera0)

    camera0 = sensor.Camera('RightSemanticSeg',
                            PostProcessing='SemanticSegmentation')
    camera0.set_image_size(WINDOW_WIDTH, WINDOW_HEIGHT)
    camera0.set(FOV=FOV)
    camera0.set_position(2.0, 0.0, 1.4)
    camera0.set_rotation(-15.0, 30.0, 0)

    settings.add_sensor(camera0)
    camera0 = sensor.Camera('RightRGB')
    camera0.set_image_size(WINDOW_WIDTH, WINDOW_HEIGHT)
    camera0.set(FOV=FOV)
    camera0.set_position(2.0, 0.0, 1.4)
    camera0.set_rotation(-15.0, 30.0, 0)

    settings.add_sensor(camera0)
    camera0 = sensor.Camera('RightDepth', PostProcessing='Depth')
    camera0.set_image_size(WINDOW_WIDTH, WINDOW_HEIGHT)
    camera0.set(FOV=FOV)
    camera0.set_position(2.0, 0.0, 1.4)
    camera0.set_rotation(-15.0, 30.0, 0)

    settings.add_sensor(camera0)

    lidar = sensor.Lidar('Lidar32')
    lidar.set_position(0, 0, 2.5)
    lidar.set_rotation(0, 0, 0)
    lidar.set(Channels=32,
              Range=50,
              PointsPerSecond=100000,
              RotationFrequency=10,
              UpperFovLimit=10,
              LowerFovLimit=-30)
    settings.add_sensor(lidar)
    return settings
def run_carla_client(args, classifier, plt, plt_index):
    global global_steering_indicator
    # Here we will run 3 episodes with 300 frames each.
    frames_per_episode = args.frames
    
    if args.position:
      number_of_episodes = 1
    else:
      number_of_episodes = 3

    # We assume the CARLA server is already waiting for a client to connect at
    # host:port. To create a connection we can use the `make_carla_client`
    # context manager, it creates a CARLA client object and starts the
    # connection. It will throw an exception if something goes wrong. The
    # context manager makes sure the connection is always cleaned up on exit.
    with make_carla_client(args.host, args.port) as client:
        print('CarlaClient connected')

        for episode in range(0, number_of_episodes):
            # Start a new episode.

            if args.settings_filepath is None:

                # Create a CarlaSettings object. This object is a wrapper around
                # the CarlaSettings.ini file. Here we set the configuration we
                # want for the new episode.
                settings = CarlaSettings()
                settings.set(
                    SynchronousMode=True,
                    SendNonPlayerAgentsInfo=True,
                    NumberOfVehicles=0,
                    NumberOfPedestrians=0,
                    WeatherId=random.choice([2]),
                    QualityLevel=args.quality_level)
                settings.randomize_seeds()

                # Now we want to add a couple of cameras to the player vehicle.
                # We will collect the images produced by these cameras every
                # frame.

                # # The default camera captures RGB images of the scene.
                # camera0 = Camera('CameraRGB')
                # # Set image resolution in pixels.
                # camera0.set_image_size(256, 256)
                # # Set its position relative to the car in meters.
                # camera0.set_position(2.2, 0, 1.30)
                # settings.add_sensor(camera0)

                if args.lidar:
                    # Adding a lidar sensor
                    lidar = Lidar('Lidar32')
                    lidar.set_position(0, 0, 2.50)
                    lidar.set_rotation(0, 0, 0)
                    lidar.set(
                        Channels=32,
                        Range=50,
                        PointsPerSecond=args.lidar_pps,
                        RotationFrequency=10,
                        UpperFovLimit=10,
                        LowerFovLimit=-30)
                    settings.add_sensor(lidar)
                else:
                    # Let's add another camera producing ground-truth depth.
                    camera1 = Camera('CameraDepth', PostProcessing='Depth')
                    camera1.set_image_size(256, 256)
                    camera1.set_position(2.2, 0, 1.30)
                    camera1.set(FOV=90.0)
                    #camera1.set_rotation(pitch=-8, yaw=0, roll=0)
                    settings.add_sensor(camera1)

                    camera2 = Camera('CameraSeg', PostProcessing='SemanticSegmentation')
                    camera2.set_image_size(256, 256)
                    camera2.set_position(2.2, 0, 1.30)
                    camera2.set(FOV=90.0)
                    #camera2.set_rotation(pitch=-8, yaw=0, roll=0)
                    settings.add_sensor(camera2)

                if args.capture:
                  camera3 = Camera('CameraRGB')
                  camera3.set_image_size(512, 256)
                  camera3.set_position(-8, 0, 5)
                  camera3.set(FOV=90.0)
                  camera3.set_rotation(pitch=-20, yaw=0, roll=0)
                  settings.add_sensor(camera3)


            else:

                # Alternatively, we can load these settings from a file.
                with open(args.settings_filepath, 'r') as fp:
                    settings = fp.read()

            # Now we load these settings into the server. The server replies
            # with a scene description containing the available start spots for
            # the player. Here we can provide a CarlaSettings object or a
            # CarlaSettings.ini file as string.
            scene = client.load_settings(settings)

            # Choose one player start at random.
            number_of_player_starts = len(scene.player_start_spots)
            if args.position:
              player_start = args.position
            else:
              player_start = random.choice([42,67,69,79,94,97, 70, 44,85,102])
            

            # Notify the server that we want to start the episode at the
            # player_start index. This function blocks until the server is ready
            # to start the episode.
            print('Starting new episode at %r...' % scene.map_name)

            """ Begin added code """
            if args.capture:
              directory = '_capture/pos{}'.format(player_start)
              if not os.path.exists(directory):
                  os.makedirs(directory)
              print("Capturing point clouds to {}".format(directory))


            """ End added code """

            client.start_episode(player_start)

            # Iterate every frame in the episode.
            for frame in range(0, frames_per_episode):

                # Read the data produced by the server this frame.
                measurements, sensor_data = client.read_data()

                """ Begin added code """
                # dict of steering directions of available curves
                # [1,0] if the next curve will be a left one
                # [0,1] if the next curve will be a right one
                directions = {
                  67: [[1,0]], # straight
                  42: [[1,0]], # straight or left
                  69: [[0,1]], # right
                  79: [[0,1]], # right
                  94: [[0,1]], # right
                  97: [[0,1]], # right
                  70: [[1,0]], # left
                  44: [[1,0]], # left
                  85: [[1,0]], # left
                  102: [[1,0]] # left
                }

                #dynamically set the global steering indicator during the game
                if(args.key_control):
                  set_steering_indicator_from_keypress()

                steering_direction = args.steering_indicator or global_steering_indicator

                if args.use_steering_indicator:
                  if steering_direction == "left":
                    steering_indicator = [[1,0]]
                  elif steering_direction == "right":
                    steering_indicator = [[0,1]]
                  else:
                    steering_indicator = [[0,0]]
                  steering_indicator = torch.Tensor(steering_indicator)
                  if cuda_available:
                    steering_indicator = steering_indicator.cuda()

                if args.lidar:
                    point_cloud = sensor_data['Lidar32'].data
                    if args.lidar_fov == 180:
                      print("FOV 180")
                      print("Before", point_cloud.shape)
                      point_cloud = filter_fov(point_cloud)
                      print("After", point_cloud.shape)


                else:
                    # Get depth and seg as numpy array for further processing
                    depth_obj = sensor_data['CameraDepth']
                    depth = depth_obj.data
                    fov = depth_obj.fov
                    
                    # Filter seg to get intersection points
                    seg = sensor_data['CameraSeg'].data
                    filtered_seg = pp.filter_seg_image(seg)

                    # Add following lines to measure performance of generating pointcloud
                    # def f():
                    #   return pp.depth_to_local_point_cloud(depth, fov, filtered_seg)
                    # print(timeit.timeit(f, number=1000) / 1000)

                    # Create pointcloud from seg and depth (but only take intersection points)
                    point_cloud = pp.depth_to_local_point_cloud(depth, fov, filtered_seg)

                # Save point cloud for later visualization
                if args.capture:
                  pp.save_to_disk(point_cloud, "{}/point_clouds/point_cloud_{:0>5d}.ply".format(directory, frame))
                  sensor_data['CameraRGB'].save_to_disk('{}/images/image_{:0>5d}.png'.format(directory, frame))
                

                # Normalizing the point cloud
                if not args.no_center or not args.no_norm:
                  point_cloud = point_cloud - np.expand_dims(np.mean(point_cloud, axis=0), 0)  # center
                
                if not args.no_norm:
                  dist = np.max(np.sqrt(np.sum(point_cloud ** 2, axis=1)), 0)
                  point_cloud = point_cloud / dist  # scale

                #pp.save_point_cloud(point_cloud, 'test')
                # pp.save_seg_image(filtered_seg)
                """ End added code """
                # Print some of the measurements.
                #print_measurements(measurements)

                # # Save the images to disk if requested.
                # if args.save_images_to_disk:
                #     for name, measurement in sensor_data.items():
                #         filename = args.out_filename_format.format(episode, name, frame)
                #         measurement.save_to_disk(filename)

                # We can access the encoded data of a given image as numpy
                # array using its "data" property. For instance, to get the
                # depth value (normalized) at pixel X, Y
                #
                #     depth_array = sensor_data['CameraDepth'].data
                #     value_at_pixel = depth_array[Y, X]
                #

                # Now we have to send the instructions to control the vehicle.
                # If we are in synchronous mode the server will pause the
                # simulation until we send this control.
                
                if not args.autopilot:
                    client.send_control(
                        steer=random.uniform(-1.0, 1.0),
                        throttle=0.5,
                        brake=0.0,
                        hand_brake=False,
                        reverse=False)

                else:

                    # Together with the measurements, the server has sent the
                    # control that the in-game autopilot would do this frame. We
                    # can enable autopilot by sending back this control to the
                    # server. We can modify it if wanted, here for instance we
                    # will add some noise to the steer.


                    """ Beginn added code """
                    control = measurements.player_measurements.autopilot_control
                    #steer = control.steer
                    #print(control)

                    point_cloud = point_cloud.transpose()
                    points = np.expand_dims(point_cloud, axis=0)
                    points = torch.from_numpy(points.astype(np.float32))
                    #print(points)
                    if cuda_available:
                      points = points.cuda()
                    classifier = classifier.eval()

                    if args.use_steering_indicator:
                      #print("Using PointNetReg2")
                      steer, _, _ = classifier((points, steering_indicator))
                    else:
                      #print("Using PointNetReg")
                      steer, _, _ = classifier(points)
                    steer = steer.item()
                    if args.use_steering_indicator:
                      print("Using steering indicator: {} / {}".format(steering_direction, steering_indicator))
                    print("Autopilot steer: ", control.steer)
                    print("Pointnet steer: ", steer)
                    print("Relative difference: ", steer / control.steer if control.steer != 0.0 else 'NaN')
                    print("Absolute difference: ", control.steer - steer)
                    print("FOV:", args.lidar_fov)

                    # Plot some visualizations to visdom
                    if args.visdom:
                      plt.plot_point_cloud(points, var_name='pointcloud')
                      plt.plot('steering', 'PointNet', 'Steering', plt_index, steer)
                      plt.plot('steering', 'Autopilot', 'Steering', plt_index, control.steer)
                      plt_index += 1

                    # Let pointnet take over steering control
                    if True:
                      print("Who's in command: POINTNET")
                      control.steer = steer
                      if args.ignore_red_lights or args.use_steering_indicator:
                        control.throttle = 0.5
                        control.brake=0.0
                        hand_brake=False

                    else:
                      print("Who's in command: AUTOPILOT")

                    print("_________")
                    #pdb.set_trace()
                    """ End added code """
                    client.send_control(control)
示例#29
0
def run_carla_client(host, port, autopilot_on, save_images_to_disk,
                     image_filename_format):
    # Here we will run 3 episodes with 300 frames each.
    number_of_episodes = 3
    frames_per_episode = 300

    # We assume the CARLA server is already waiting for a client to connect at
    # host:port. To create a connection we can use the `make_carla_client`
    # context manager, it creates a CARLA client object and starts the
    # connection. It will throw an exception if something goes wrong. The
    # context manager makes sure the connection is always cleaned up on exit.
    with make_carla_client(host, port) as client:
        print('CarlaClient connected')

        for episode in range(0, number_of_episodes):
            # Start a new episode.

            # Create a CarlaSettings object. This object is a handy wrapper
            # around the CarlaSettings.ini file. Here we set the configuration
            # we want for the new episode.
            settings = CarlaSettings()
            settings.set(SynchronousMode=True,
                         NumberOfVehicles=30,
                         NumberOfPedestrians=50,
                         WeatherId=random.choice([1, 3, 7, 8, 14]))
            settings.randomize_seeds()

            # Now we want to add a couple of cameras to the player vehicle. We
            # will collect the images produced by these cameras every frame.

            # The default camera captures RGB images of the scene.
            camera0 = Camera('CameraRGB')
            # Set image resolution in pixels.
            camera0.set_image_size(800, 600)
            # Set its position relative to the car in centimeters.
            camera0.set_position(30, 0, 130)
            settings.add_camera(camera0)

            # Let's add another camera producing ground-truth depth.
            camera1 = Camera('CameraDepth', PostProcessing='Depth')
            camera1.set_image_size(800, 600)
            camera1.set_position(30, 0, 130)
            settings.add_camera(camera1)

            print('Requesting new episode...')

            # Now we request a new episode with these settings. The server
            # replies with a scene description containing the available start
            # spots for the player. Here instead of a CarlaSettings object we
            # could also provide a CarlaSettings.ini file as string.
            scene = client.request_new_episode(settings)

            # Choose one player start at random.
            number_of_player_starts = len(scene.player_start_spots)
            player_start = random.randint(0, max(0,
                                                 number_of_player_starts - 1))

            # Notify the server that we want to start the episode at
            # `player_start`. This function blocks until the server is ready to
            # start the episode.
            client.start_episode(player_start)

            # Iterate every frame in the episode.
            for frame in range(0, frames_per_episode):

                # Read the measurements and images produced by the server this
                # frame.
                measurements, images = client.read_measurements()

                # Print some of the measurements we received.
                print_player_measurements(measurements.player_measurements)

                # Save the images to disk if requested.
                if save_images_to_disk:
                    for n, image in enumerate(images):
                        image.save_to_disk(
                            image_filename_format.format(episode, n, frame))

                # Now we have to send the instructions to control the vehicle.
                # If we are in synchronous mode the server will pause the
                # simulation until we send this control.

                if not autopilot_on:

                    client.send_control(steer=random.uniform(-1.0, 1.0),
                                        throttle=0.3,
                                        brake=False,
                                        hand_brake=False,
                                        reverse=False)

                else:

                    # Together with the measurements, the server has sent the
                    # control that the in-game AI would do this frame. We can
                    # enable autopilot by sending back this control to the
                    # server. Here we will also add some noise to the steer.

                    control = measurements.player_measurements.ai_control
                    control.steer += random.uniform(-0.1, 0.1)
                    client.send_control(control)

    print('Done.')
    return True
示例#30
0
class CarlaRosBridge(object):
    """
    Carla Ros bridge
    """
    def __init__(self, client, params):
        """

        :param params: dict of parameters, see settings.yaml
        :param rate: rate to query data from carla in Hz
        """
        self.setup_carla_client(client=client, params=params)
        self.frames_per_episode = params['Framesperepisode']

        self.tf_to_publish = []
        self.msgs_to_publish = []
        self.publishers = {}

        # definitions useful for time
        self.cur_time = rospy.Time.from_sec(
            0)  # at the beginning of simulation
        self.carla_game_stamp = 0
        self.carla_platform_stamp = 0

        # creating handler to handle vehicles messages
        self.player_handler = PlayerAgentHandler(
            "player_vehicle", process_msg_fun=self.process_msg)
        self.non_players_handler = NonPlayerAgentsHandler(
            "vehicles", process_msg_fun=self.process_msg)

        # creating handler for sensors
        self.sensors = {}
        for name, _ in self.param_sensors.items():
            self.add_sensor(name)

        # creating input controller listener
        self.input_controller = InputController()

    def setup_carla_client(self, client, params):
        self.client = client
        self.param_sensors = params.get('sensors', {})
        self.carla_settings = CarlaSettings()
        self.carla_settings.set(
            SendNonPlayerAgentsInfo=params.get('SendNonPlayerAgentsInfo',
                                               True),
            NumberOfVehicles=params.get('NumberOfVehicles', 20),
            NumberOfPedestrians=params.get('NumberOfPedestrians', 40),
            WeatherId=params.get('WeatherId', random.choice([1, 3, 7, 8, 14])),
            SynchronousMode=params.get('SynchronousMode', True),
            QualityLevel=params.get('QualityLevel', 'Low'))
        self.carla_settings.randomize_seeds()

    def add_sensor(self, name):
        rospy.loginfo("Adding sensor {}".format(name))
        sensor_type = self.param_sensors[name]['SensorType']
        params = self.param_sensors[name]['carla_settings']
        sensor_handler = None
        if sensor_type == 'LIDAR_RAY_CAST':
            sensor_handler = LidarHandler
        if sensor_type == 'CAMERA':
            sensor_handler = CameraHandler
        if sensor_handler:
            self.sensors[name] = sensor_handler(
                name,
                params,
                carla_settings=self.carla_settings,
                process_msg_fun=self.process_msg)
        else:
            rospy.logerr(
                "Unable to handle sensor {name} of type {sensor_type}".format(
                    sensor_type=sensor_type, name=name))

    def on_shutdown(self):
        rospy.loginfo("Shutdown requested")

    def process_msg(self, topic=None, msg=None):
        """
        Function used to process message

        Here we create publisher if not yet created
        Store the message in a list (waiting for their publication) with their associated publisher

        Messages for /tf topics are handle differently in order to publish all transform in the same message
        :param topic: topic to publish the message on
        :param msg: ros message
        """
        if topic not in self.publishers:
            if topic == 'tf':
                self.publishers[topic] = rospy.Publisher(topic,
                                                         TFMessage,
                                                         queue_size=100)
            else:
                self.publishers[topic] = rospy.Publisher(topic,
                                                         type(msg),
                                                         queue_size=10)

        if topic == 'tf':
            # transform are merged in same message
            self.tf_to_publish.append(msg)
        else:
            self.msgs_to_publish.append((self.publishers[topic], msg))

    def send_msgs(self):
        for publisher, msg in self.msgs_to_publish:
            publisher.publish(msg)
        self.msgs_to_publish = []

        tf_msg = TFMessage(self.tf_to_publish)
        self.publishers['tf'].publish(tf_msg)
        self.tf_to_publish = []

    def compute_cur_time_msg(self):
        self.process_msg('clock', Clock(self.cur_time))

    def run(self):
        self.publishers['clock'] = rospy.Publisher("clock",
                                                   Clock,
                                                   queue_size=10)

        # load settings into the server
        scene = self.client.load_settings(self.carla_settings)
        # Choose one player start at random.
        number_of_player_starts = len(scene.player_start_spots)
        player_start = random.randint(0, max(0, number_of_player_starts - 1))

        # Send occupancy grid to rivz
        map_handler = MapHandler(scene.map_name)
        map_handler.send_map()

        self.client.start_episode(player_start)

        for frame in count():
            if (frame == self.frames_per_episode) or rospy.is_shutdown():
                break
            measurements, sensor_data = self.client.read_data()

            # handle time
            self.carla_game_stamp = measurements.game_timestamp
            self.cur_time = rospy.Time.from_sec(self.carla_game_stamp * 1e-3)
            self.compute_cur_time_msg()

            # handle agents
            self.player_handler.process_msg(measurements.player_measurements,
                                            cur_time=self.cur_time)
            self.non_players_handler.process_msg(
                measurements.non_player_agents, cur_time=self.cur_time)

            # handle sensors
            for name, data in sensor_data.items():
                self.sensors[name].process_sensor_data(data, self.cur_time)

            # publish all messages
            self.send_msgs()

            # handle control
            if rospy.get_param('carla_autopilot', True):
                control = measurements.player_measurements.autopilot_control
                self.client.send_control(control)
            else:
                control = self.input_controller.cur_control
                self.client.send_control(**control)

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        rospy.loginfo("Exiting Bridge")
        return None
def run_carla_client(args):
    # Here we will run 3 episodes with 300 frames each.
    number_of_episodes = 15
    frames_per_episode = 1400
    #              [0 , 1 , 2 , 3 , 4  , 5  , 6  , 7  , 8  , 9  , 10, 11, 12, 13, 14]
    vehicles_num = [
        30, 60, 50, 80, 120, 100, 100, 120, 110, 100, 80, 70, 70, 80, 100
    ]

    # We assume the CARLA server is already waiting for a client to connect at
    # host:port. To create a connection we can use the `make_carla_client`
    # context manager, it creates a CARLA client object and starts the
    # connection. It will throw an exception if something goes wrong. The
    # context manager makes sure the connection is always cleaned up on exit.
    with make_carla_client(args.host, args.port) as client:
        print('CarlaClient connected')

        for episode in range(10, number_of_episodes):
            # Start a new episode.

            if args.settings_filepath is None:

                # Create a CarlaSettings object. This object is a wrapper around
                # the CarlaSettings.ini file. Here we set the configuration we
                # want for the new episode.
                settings = CarlaSettings()
                settings.set(
                    SynchronousMode=True,
                    SendNonPlayerAgentsInfo=False,
                    NumberOfVehicles=vehicles_num[
                        episode],  #random.choice([0, 20, 15, 20, 25, 21, 24, 18, 40, 35, 25, 30]), #25,
                    NumberOfPedestrians=80,
                    DisableTwoWheeledVehicles=False,
                    WeatherId=episode,  #1, #random.choice([1, 3, 7, 8, 14]),
                    QualityLevel=args.quality_level)
                settings.randomize_seeds()

                # Now we want to add a couple of cameras to the player vehicle.
                # We will collect the images produced by these cameras every
                # frame.

                # LEFT RGB CAMERA
                camera_l = Camera('LeftCameraRGB', PostProcessing='SceneFinal')
                camera_l.set_image_size(800, 600)
                camera_l.set_position(1.30, -0.27, 1.50)
                settings.add_sensor(camera_l)

                # LEFT DEPTH
                camera_ld = Camera('LeftCameraDepth', PostProcessing='Depth')
                camera_ld.set_image_size(800, 600)
                camera_ld.set_position(1.30, -0.27, 1.50)
                settings.add_sensor(camera_ld)

                # LEFT SEGMENTATION
                camera_ls = Camera('LeftCameraSeg',
                                   PostProcessing='SemanticSegmentation')
                camera_ls.set_image_size(800, 600)
                camera_ls.set_position(1.30, -0.27, 1.50)
                settings.add_sensor(camera_ls)

                # RIGHT RGB CAMERA
                camera_r = Camera('RightCameraRGB',
                                  PostProcessing='SceneFinal')
                camera_r.set_image_size(800, 600)
                camera_r.set_position(1.30, 0.27, 1.50)
                settings.add_sensor(camera_r)

                # RIGHT DEPTH
                camera_rd = Camera('RightCameraDepth', PostProcessing='Depth')
                camera_rd.set_image_size(800, 600)
                camera_rd.set_position(1.30, 0.27, 1.50)
                settings.add_sensor(camera_rd)

                # RIGHT SEGMENTATION
                camera_rs = Camera('RightCameraSeg',
                                   PostProcessing='SemanticSegmentation')
                camera_rs.set_image_size(800, 600)
                camera_rs.set_position(1.30, 0.27, 1.50)
                settings.add_sensor(camera_rs)
                '''
                # LEFT 15 DEGREE RGB CAMERA
                camera_l_15 = Camera('15_LeftCameraRGB', PostProcessing='SceneFinal')
                camera_l_15.set_image_size(800, 600)
                camera_l_15.set_position(1.30, -0.7, 1.50) # [X, Y, Z]
                camera_l_15.set_rotation(0, -15.0, 0)      # [pitch(Y), yaw(Z), roll(X)]
                settings.add_sensor(camera_l_15)

                # LEFT 15 DEGREE DEPTH
                camera_ld_15 = Camera('15_LeftCameraDepth', PostProcessing='Depth')
                camera_ld_15.set_image_size(800, 600)
                camera_ld_15.set_position(1.30, -0.7, 1.50)
                camera_ld_15.set_rotation(0, -15.0, 0)
                settings.add_sensor(camera_ld_15)

                # LEFT 15 DEGREE SEGMENTATION
                camera_ls_15 = Camera('15_LeftCameraSeg', PostProcessing='SemanticSegmentation')
                camera_ls_15.set_image_size(800, 600)
                camera_ls_15.set_position(1.30, -0.7, 1.50)
                camera_ls_15.set_rotation(0, -15.0, 0)
                settings.add_sensor(camera_ls_15)

                # Right 15 DEGREE RGB CAMERA
                camera_r_15 = Camera('15_RightCameraRGB', PostProcessing='SceneFinal')
                camera_r_15.set_image_size(800, 600)
                camera_r_15.set_position(1.30, 0.7, 1.50)
                camera_r_15.set_rotation(0, 15.0, 0)
                settings.add_sensor(camera_r_15)

                # Right 15 DEGREE DEPTH
                camera_rd_15 = Camera('15_RightCameraDepth', PostProcessing='Depth')
                camera_rd_15.set_image_size(800, 600)
                camera_rd_15.set_position(1.30, 0.7, 1.50)
                camera_rd_15.set_rotation(0, 15.0, 0)
                settings.add_sensor(camera_rd_15)

                # RIGHT 15 DEGREE SEGMENTATION
                camera_ls_15 = Camera('15_RightCameraSeg', PostProcessing='SemanticSegmentation')
                camera_ls_15.set_image_size(800, 600)
                camera_ls_15.set_position(1.30, 0.7, 1.50)
                camera_ls_15.set_rotation(0, 15.0, 0)
                settings.add_sensor(camera_ls_15)

                # LEFT 30 DEGREE RGB CAMERA
                camera_l_30 = Camera('30_LeftCameraRGB', PostProcessing='SceneFinal')
                camera_l_30.set_image_size(800, 600)
                camera_l_30.set_position(1.30, -0.7, 1.50)
                camera_l_30.set_rotation(0, -30.0, 0)
                settings.add_sensor(camera_l_30)

                # LEFT 30 DEGREE DEPTH
                camera_ld_30 = Camera('30_LeftCameraDepth', PostProcessing='Depth')
                camera_ld_30.set_image_size(800, 600)
                camera_ld_30.set_position(1.30, -0.7, 1.50)
                camera_ld_30.set_rotation(0, -30.0, 0)
                settings.add_sensor(camera_ld_30)

                # LEFT 30 DEGREE SEGMENTATION
                camera_ls_30 = Camera('30_LeftCameraSeg', PostProcessing='SemanticSegmentation')
                camera_ls_30.set_image_size(800, 600)
                camera_ls_30.set_position(1.30, -0.7, 1.50)
                camera_ls_30.set_rotation(0, -30.0, 0)
                settings.add_sensor(camera_ls_30)

                # RIGHT 30 DEGREE RGB CAMERA
                camera_r_30 = Camera('30_RightCameraRGB', PostProcessing='SceneFinal')
                camera_r_30.set_image_size(800, 600)
                camera_r_30.set_position(1.30, 0.7, 1.50)
                camera_r_30.set_rotation(0, 30.0, 0)
                settings.add_sensor(camera_r_30)

                # RIGHT 30 DEGREE DEPTH
                camera_rd_30 = Camera('30_RightCameraDepth', PostProcessing='Depth')
                camera_rd_30.set_image_size(800, 600)
                camera_rd_30.set_position(1.30, 0.7, 1.50)
                camera_rd_30.set_rotation(0, 30.0, 0)
                settings.add_sensor(camera_rd_30)

                # RIGHT 30 DEGREE SEGMENTATION
                camera_rs_30 = Camera('30_RightCameraSeg', PostProcessing='SemanticSegmentation')
                camera_rs_30.set_image_size(800, 600)
                camera_rs_30.set_position(1.30, 0.7, 1.50)
                camera_rs_30.set_rotation(0, 30.0, 0)
                settings.add_sensor(camera_rs_30)
                '''
                '''
                if args.lidar:
                    lidar = Lidar('Lidar32')
                    lidar.set_position(0, 0, 2.50)
                    lidar.set_rotation(0, 0, 0)
                    lidar.set(
                        Channels=32,
                        Range=50,
                        PointsPerSecond=100000,
                        RotationFrequency=10,
                        UpperFovLimit=10,
                        LowerFovLimit=-30)
                    settings.add_sensor(lidar)
                '''

            else:

                # Alternatively, we can load these settings from a file.
                with open(args.settings_filepath, 'r') as fp:
                    settings = fp.read()

            # Now we load these settings into the server. The server replies
            # with a scene description containing the available start spots for
            # the player. Here we can provide a CarlaSettings object or a
            # CarlaSettings.ini file as string.
            scene = client.load_settings(settings)

            # Choose one player start at random.
            number_of_player_starts = len(scene.player_start_spots)
            player_start = random.randint(0, max(0,
                                                 number_of_player_starts - 1))

            # Notify the server that we want to start the episode at the
            # player_start index. This function blocks until the server is ready
            # to start the episode.
            print('Starting new episode...')
            client.start_episode(player_start)

            if not os.path.isdir(
                    "/data/khoshhal/Dataset/episode_{:0>4d}".format(episode)):
                os.makedirs(
                    "/data/khoshhal/Dataset/episode_{:0>4d}".format(episode))

            # Iterate every frame in the episode.
            for frame in range(0, frames_per_episode):

                # Read the data produced by the server this frame.
                measurements, sensor_data = client.read_data()

                #image = sensor_data.get('LeftCameraSeg', None)
                # array = image_converter.depth_to_logarithmic_grayscale(image)
                #array = image_converter.labels_to_cityscapes_palette(image)
                #filename = '{:0>6d}'.format(frame)
                #filename += '.png'
                #cv2.imwrite(filename, array)
                #image.save_to_disk("/data/khoshhal/Dataset/episode_{:0>4d}/{:s}/{:0>6d}".format(episode, "LeftCameraSeg", frame))

                # Print some of the measurements.
                # print_measurements(measurements)

                # Save the images to disk if requested.
                if frame > 199:
                    if args.save_images_to_disk:
                        for name, measurement in sensor_data.items():
                            filename = args.out_filename_format.format(
                                episode, name, frame - 200)
                            measurement.save_to_disk(filename)

                    player_measurements = measurements.player_measurements
                    with open(
                            "/data/khoshhal/Dataset/episode_{:0>4d}".format(
                                episode) + ".txt", 'a') as myfile:
                        line = "{},{:.1f},{:.1f},{:.1f},{:.1f},{:.1f},{:.1f}\n".format(
                            frame - 200,
                            player_measurements.transform.location.x,
                            player_measurements.transform.location.y,
                            player_measurements.transform.location.z,
                            player_measurements.transform.rotation.pitch,
                            player_measurements.transform.rotation.yaw,
                            player_measurements.transform.rotation.roll)
                        myfile.write(line)

                # We can access the encoded data of a given image as numpy
                # array using its "data" property. For instance, to get the
                # depth value (normalized) at pixel X, Y
                #
                #     depth_array = sensor_data['CameraDepth'].data
                #     value_at_pixel = depth_array[Y, X]
                #

                # Now we have to send the instructions to control the vehicle.
                # If we are in synchronous mode the server will pause the
                # simulation until we send this control.

                if not args.autopilot:

                    client.send_control(steer=random.uniform(-1.0, 1.0),
                                        throttle=0.5,
                                        brake=0.0,
                                        hand_brake=False,
                                        reverse=False)

                else:

                    # Together with the measurements, the server has sent the
                    # control that the in-game autopilot would do this frame. We
                    # can enable autopilot by sending back this control to the
                    # server. We can modify it if wanted, here for instance we
                    # will add some noise to the steer.

                    control = measurements.player_measurements.autopilot_control
                    #control.steer += random.uniform(-0.1, 0.1)
                    client.send_control(control)

                #time.sleep(1)

            myfile.close()
示例#32
0
    def _reset(self):
        self.num_steps = 0
        self.total_reward = 0
        self.prev_measurement = None
        self.prev_image = None
        self.episode_id = datetime.today().strftime("%Y-%m-%d_%H-%M-%S_%f")
        self.measurements_file = None

        # Create a CarlaSettings object. This object is a wrapper around
        # the CarlaSettings.ini file. Here we set the configuration we
        # want for the new episode.
        settings = CarlaSettings()
        self.scenario = random.choice(self.config["scenarios"])
        assert self.scenario["city"] == self.city, (self.scenario, self.city)
        self.weather = random.choice(self.scenario["weather_distribution"])
        settings.set(
            SynchronousMode=True,
            # ServerTimeOut=10000, # CarlaSettings: no key named 'ServerTimeOut'
            SendNonPlayerAgentsInfo=True,
            NumberOfVehicles=self.scenario["num_vehicles"],
            NumberOfPedestrians=self.scenario["num_pedestrians"],
            WeatherId=self.weather)
        settings.randomize_seeds()

        if self.config["use_depth_camera"]:
            camera1 = Camera("CameraDepth", PostProcessing="Depth")
            camera1.set_image_size(self.config["render_x_res"],
                                   self.config["render_y_res"])
            # camera1.set_position(30, 0, 130)
            camera1.set(FOV=120)
            camera1.set_position(2.0, 0.0, 1.4)
            camera1.set_rotation(0.0, 0.0, 0.0)

            settings.add_sensor(camera1)

        camera2 = Camera("CameraRGB")
        camera2.set_image_size(self.config["render_x_res"],
                               self.config["render_y_res"])
        # camera2.set_position(30, 0, 130)
        # camera2.set_position(0.3, 0.0, 1.3)
        camera2.set(FOV=120)
        camera2.set_position(2.0, 0.0, 1.4)
        camera2.set_rotation(0.0, 0.0, 0.0)

        settings.add_sensor(camera2)

        # Setup start and end positions
        scene = self.client.load_settings(settings)
        positions = scene.player_start_spots
        self.start_pos = positions[self.scenario["start_pos_id"]]
        self.end_pos = positions[self.scenario["end_pos_id"]]
        self.start_coord = [
            self.start_pos.location.x // 100, self.start_pos.location.y // 100
        ]
        self.end_coord = [
            self.end_pos.location.x // 100, self.end_pos.location.y // 100
        ]
        print("Start pos {} ({}), end {} ({})".format(
            self.scenario["start_pos_id"], self.start_coord,
            self.scenario["end_pos_id"], self.end_coord))

        # Notify the server that we want to start the episode at the
        # player_start index. This function blocks until the server is ready
        # to start the episode.
        print("Starting new episode...")
        self.client.start_episode(self.scenario["start_pos_id"])

        # Process observations: self._read_observation() returns image and py_measurements.
        image, py_measurements = self._read_observation()
        self.prev_measurement = py_measurements
        return self.encode_obs(self.preprocess_image(image), py_measurements)
def run_carla_client(host, port, far):
    # Here we will run a single episode with 300 frames.
    number_of_frames = 3000
    frame_step = 10  # Save one image every 100 frames
    output_folder = '_out'
    image_size = [1280, 720]
    camera_local_pos = [0.3, 0.0, 1.3]  # [X, Y, Z]
    camera_local_rotation = [0, 0, 0]  # [pitch(Y), yaw(Z), roll(X)]
    fov = 59
    WINDOW_WIDTH = 1280
    WINDOW_HEIGHT = 720
    MINI_WINDOW_WIDTH = 320
    MINI_WINDOW_HEIGHT = 180

    WINDOW_WIDTH_HALF = WINDOW_WIDTH / 2
    WINDOW_HEIGHT_HALF = WINDOW_HEIGHT / 2

    k = np.identity(3)
    k[0, 2] = WINDOW_WIDTH_HALF
    k[1, 2] = WINDOW_HEIGHT_HALF
    k[0, 0] = k[1, 1] = WINDOW_WIDTH / \
        (2.0 * math.tan(59.0 * math.pi / 360.0))
    intrinsic = k
    # Connect with the server
    with make_carla_client(host, port) as client:
        print('CarlaClient connected')

        # Here we load the settings.
        settings = CarlaSettings()
        settings.set(SynchronousMode=True,
                     SendNonPlayerAgentsInfo=False,
                     NumberOfVehicles=20,
                     NumberOfPedestrians=40,
                     WeatherId=1)
        settings.randomize_seeds()

        camera1 = Camera('CameraDepth', PostProcessing='Depth', FOV=fov)
        camera1.set_image_size(*image_size)
        camera1.set_position(*camera_local_pos)
        camera1.set_rotation(*camera_local_rotation)
        settings.add_sensor(camera1)

        camera2 = Camera('CameraRGB', PostProcessing='SceneFinal', FOV=fov)
        camera2.set_image_size(*image_size)
        camera2.set_position(*camera_local_pos)
        camera2.set_rotation(*camera_local_rotation)
        settings.add_sensor(camera2)

        client.load_settings(settings)

        # Start at location index id '0'
        client.start_episode(0)

        # Compute the camera transform matrix
        camera_to_car_transform = camera2.get_unreal_transform()
        print("camera_to_car_transform", camera_to_car_transform)

        # Iterate every frame in the episode except for the first one.
        for frame in range(1, number_of_frames):
            # Read the data produced by the server this frame.
            measurements, sensor_data = client.read_data()

            # Save one image every 'frame_step' frames
            if not frame % frame_step:
                # Start transformations time mesure.

                # RGB image [[[r,g,b],..[r,g,b]],..[[r,g,b],..[r,g,b]]]
                image_RGB = to_rgb_array(sensor_data['CameraRGB'])
                image_depth = to_rgb_array(sensor_data['CameraDepth'])
                #measurements.player_measurements.transform.location.x-=40
                #measurements.player_measurements.transform.location.z-=2
                world_transform = Transform(
                    measurements.player_measurements.transform)

                im_bgr = cv2.cvtColor(image_RGB, cv2.COLOR_RGB2BGR)

                pos_vector = np.array(
                    [[measurements.player_measurements.transform.location.x],
                     [measurements.player_measurements.transform.location.y],
                     [measurements.player_measurements.transform.location.z],
                     [1.0]])
                carla_utils_obj = segmentation.carla_utils(
                    intrinsic, camera_to_car_transform, world_transform)
                get_2d_point = carla_utils_obj.run_seg(frame)

                fdfd = str(world_transform)
                sdsd = fdfd[1:-1].split('\n')
                new = []
                for i in sdsd:
                    dd = i[:-1].lstrip('[ ')
                    ff = re.sub("\s+", ",", dd.strip())
                    gg = ff.split(',')
                    new.append([float(i) for i in gg])
                newworld = np.array(new)
                fdfd = str(camera_to_car_transform)
                sdsd = fdfd[1:-1].split('\n')
                new = []
                for i in sdsd:
                    dd = i[:-1].lstrip('[ ')
                    ff = re.sub("\s+", ",", dd.strip())
                    gg = ff.split(',')
                    new.append([float(i) for i in gg])
                newcam = np.array(new)
                extrinsic = np.matmul(newworld, newcam)
                depth = image_depth[int(get_2d_point[1]), int(get_2d_point[0])]
                scale = depth[0] + depth[1] * 256 + depth[2] * 256 * 256
                scale = scale / ((256 * 256 * 256) - 1)
                depth = scale * 1000
                pos2d = np.array([(WINDOW_WIDTH - get_2d_point[0]) * depth,
                                  (WINDOW_HEIGHT - get_2d_point[1]) * depth,
                                  depth])

                first = np.dot(np.linalg.inv(intrinsic), pos2d)
                first = np.append(first, 1)
                sec = np.matmul((extrinsic), first)
                print('goal-', sec)
            client.send_control(
                measurements.player_measurements.autopilot_control)
class CarlaEnv(Env):
    def __init__(self, city_name="Town01", ep_length=400, z_size=512):
        self.z_size = z_size
        self.HEIGHT = 160
        self.WIDTH = 80
        self.NUM_CHANNEL = 3

        # self.action_space = Box(low=np.array([-1.0]), high=np.array([-1.0]), dtype=np.float32)  # Throttle, steer, break
        # self.observation_space = Box(low=0, high=255, shape=(self.HEIGHT, self.WIDTH, self.NUM_CHANNEL), dtype=np.int32)

        self.action_space = Box(low=np.array([-0.5]), high=np.array([0.5]), dtype=np.float32)
        self.observation_space = Box(low=np.finfo(np.float32).min,
                                     high=np.finfo(np.float32).max,
                                     shape=(1, self.z_size), dtype=np.float32)
        self.ep_length = ep_length
        self.current_step = 0
        self.dim = self.observation_space.shape  # The shape of the input on which we are learning

        # Carla Settings
        self.MAX_ALLOWED_OFFROAD = 0.3

        self.carla_settings = CarlaSettings()
        self.carla_settings.set(SynchronousMode=True,
                                SendNonPlayerAgentsInfo=True,
                                NumberOfVehicles=20,
                                NumberOfPedestrians=40,
                                QualityLevel='Low',
                                )

    def client_init(self, client):

        self.client = client

        self.carla_settings = CarlaSettings()
        self.carla_settings.set(SynchronousMode=True,
                                SendNonPlayerAgentsInfo=True,
                                NumberOfVehicles=20,
                                NumberOfPedestrians=40,
                                QualityLevel='Low',
                                )

        camera0 = Camera('CameraRGB')
        camera0.set_image_size(self.HEIGHT, self.WIDTH)
        camera0.set_position(2.0, 0.0, 1.4)
        camera0.set_rotation(0.0, 0.0, 0.0)
        camera1 = Camera('CameraSegmentation', PostProcessing='SemanticSegmentation')
        camera1.set_image_size(self.HEIGHT, self.WIDTH)
        camera1.set_position(2.0, 0, 1.4)

        self.settings = CarlaSettings()
        self.settings.add_sensor(camera0)
        self.settings.add_sensor(camera1)

        scene = self.client.load_settings(self.settings)
        start_spots = scene.player_start_spots
        self.target = start_spots[26]
        self.player_start = 26
        cv2.namedWindow('im', cv2.WINDOW_NORMAL)

    def reset(self):
        self.current_step = 0
        while True:
            '''Sometimes the client looses connection to the server. So we retry connection until connected'''
            try:
                self.client.start_episode(self.player_start)
                observation, done = self._get_observation()
                break
            except:
                print('could not connect')
                self.client.disconnect()
                time.sleep(5)
                self.client.connect()
                time.sleep(10)

        return observation

    def step(self, action):
        self.current_step += 1
        self.action = action
        control = Control()
        control.throttle = 0.4  # action[0]
        control.steer = action[0]
        control.brake = 0  # action[2]
        try:
            self.client.send_control(control)
            observation, done = self._get_observation()

        except:
            print('Lost Connection')
            self.reset()
            self.client.send_control(control)
            observation, done = self._get_observation()
        reward = self._get_reward(done=done)
        info = {}
        #print("reward: ", reward)
        #print(observation, reward, done, info)

        observation = np.random.random((1, 512))
        reward = np.random.random()
        done = False
        info = {}

        return observation, reward, done, info

    def _get_observation(self):
        measurements, snesor_data = self.client.read_data()
        carla_im = snesor_data.get('CameraSegmentation', None)
        '''For RGB image'''
        #self.observation_image = image_converter.to_rgb_array(carla_im)

        '''For Semantic Segmentation Image'''
        #print(type(carla_im))
        self.observation_image = np.uint8(image_converter.labels_to_cityscapes_palette(carla_im))
        cv2.imshow('im', self.observation_image)
        cv2.waitKey(1)
        stats = measurements.player_measurements

        pos = measurements.player_measurements.transform
        movement = self.get_movemet(pos)
        # print('Movemene ', movement)

        self.percentage_intersection_other_lane = abs(stats.intersection_otherlane)
        self.percentage_offroad = stats.intersection_offroad

        collision = stats.collision_vehicles or stats.collision_pedestrians or stats.collision_other

        '''Sometimes, the collision sensor doesn't register, so I check for distnce moved between each step, after 100
        timesteps because at lower time steps the distance moved is pretty low'''
        car_stuck = self.is_car_stuck(movement)

        done = self._is_game_over(collision, car_stuck)
        #print(type(done))

        observation = self.vae_observation(observation_image=self.observation_image)
        return observation, done

    def vae_observation(self, observation_image):
        """Appending for the vae buffer here. vae.optimize() uses this buffer to train """
        self.vae.buffer_append(observation_image)
        ob = self.vae.encode(observation_image)
        # print(ob)
        return ob

    def get_movemet(self, pos):
        if self.current_step == 0:
            self.old_pos = pos
            return 1e-7
        else:
            dist_moved = np.sqrt(
                (self.old_pos.location.x - pos.location.x) ** 2 + (self.old_pos.location.y - pos.location.y) ** 2)
            self.old_pos = pos

            return dist_moved

    def is_car_stuck(self, dist_moved):
        if dist_moved < 0.01 and self.current_step > 100:
            return True
        else:
            return False

    def _is_game_over(self, collision, car_stuck):
        ''' Game is over after a collision '''
        if collision or car_stuck:
            return True
        else:
            return False

    def _get_reward(self, done):
        ''' Here we try to follow the road divider, so ideally the lane intersection should be 50% '''
        if done:
            return 0.0
        if self.percentage_offroad > self.MAX_ALLOWED_OFFROAD:
            return 0.0
        return 1 - abs(self.action)

    def set_vae(self, vae):
        self.vae = vae

    def render(self, mode='human'):
        cv2.imshow('im', self.observation_image)
        cv2.waitKey(1)
示例#35
0
def run_carla_client(args):
    # Here we will run args._episode episodes with args._frames frames each.
    number_of_episodes = args._episode
    frames_per_episode = args._frames

    # create the carla client
    with make_carla_client(args.host, args.port, timeout=100000) as client:
        print('CarlaClient connected')

        for episode in range(0, number_of_episodes):

            if args.settings_filepath is None:

                settings = CarlaSettings()
                settings.set(SynchronousMode=args.synchronous_mode,
                             SendNonPlayerAgentsInfo=True,
                             NumberOfVehicles=150,
                             NumberOfPedestrians=100,
                             WeatherId=random.choice([1, 3, 7, 8, 14]),
                             QualityLevel=args.quality_level)
                settings.randomize_seeds()

                camera0 = Camera('CameraRGB')
                camera0.set_image_size(1920, 640)
                camera0.set_position(2.00, 0, 1.30)
                settings.add_sensor(camera0)

                camera1 = Camera('CameraDepth', PostProcessing='Depth')
                camera1.set_image_size(1920, 640)
                camera1.set_position(2.00, 0, 1.30)
                settings.add_sensor(camera1)

                camera2 = Camera('CameraSegmentation',
                                 PostProcessing='SemanticSegmentation')
                camera2.set_image_size(1920, 640)
                camera2.set_position(2.00, 0, 1.30)
                settings.add_sensor(camera2)

            else:

                # Alternatively, we can load these settings from a file.
                with open(args.settings_filepath, 'r') as fp:
                    settings = fp.read()

            scene = client.load_settings(settings)

            # Choose one player start at random.
            number_of_player_starts = len(scene.player_start_spots)
            player_start = random.randint(0, max(0,
                                                 number_of_player_starts - 1))

            # create folder for current episode
            file_loc = args.file_loc
            if not os.path.exists(file_loc):
                os.makedirs(file_loc)

            #set destination path for the tfrecords
            preprocessing_situ_all_data.set_dest_path(
                file_loc, args._samples_per_record, args._K, args._T,
                args._image_size, args._seq_length, args._step_size)

            print('Starting new episode at %r...' % scene.map_name)
            client.start_episode(player_start)

            # take unique time snapshot used for naming
            prefix = str(int(round(args.start_time))) + '_' + str(episode)

            #update the prefix of the tfrecord name and reset the globals when starting a new episode
            preprocessing_situ_all_data.update_episode_reset_globals(prefix)

            # Iterate every frame in the episode.
            for frame in range(0, frames_per_episode):

                measurements, sensor_data = client.read_data()

                #discard episode if misbehaviour flag is set and a form of collision is detected
                if args.no_misbehaviour:
                    player_measurements = measurements.player_measurements
                    col_cars = player_measurements.collision_vehicles
                    col_ped = player_measurements.collision_pedestrians
                    col_other = player_measurements.collision_other
                    if col_cars + col_ped + col_other > 0:
                        print(
                            "MISBEHAVIOUR DETECTED! Discarding Episode... \n")
                        break

                print_measurements(measurements)

                # Save the images to disk if requested. Skip first couple of images due to setup time.
                if args.save_images_to_disk and frame > 19:
                    player_measurements = measurements.player_measurements

                    for name, measurement in sensor_data.items():
                        if name == 'CameraDepth':
                            depth = measurement.return_depth_map()
                        if name == 'CameraSegmentation':
                            segmentation = measurement.return_segmentation_map(
                            )
                        if name == 'CameraRGB':
                            rgb = measurement.return_rgb()

                    yaw, yaw_rate, speed, prev_time = process_odometry(
                        measurements, yaw_shift, yaw_old, prev_time)
                    yaw_old = yaw

                    #generate image with bounding boxes, will be transformed to gridmaps in preprocessing
                    im = Image.new('L', (256 * 6, 256 * 6), (127))
                    shift = 256 * 6 / 2
                    draw = ImageDraw.Draw(im)
                    for agent in measurements.non_player_agents:
                        if agent.HasField('vehicle') or agent.HasField(
                                'pedestrian'):
                            participant = agent.vehicle if agent.HasField(
                                'vehicle') else agent.pedestrian
                            angle = cart2pol(
                                participant.transform.orientation.x,
                                participant.transform.orientation.y)
                            polygon = agent2world(participant, angle)
                            polygon = world2player(
                                polygon, math.radians(-yaw),
                                player_measurements.transform)
                            polygon = player2image(polygon,
                                                   shift,
                                                   multiplier=25)
                            polygon = [tuple(row) for row in polygon.T]
                            draw.polygon(polygon, 0, 0)
                    im = im.resize((256, 256), Image.ANTIALIAS)
                    im = im.rotate(imrotate)

                    #pass frame by frame to the preprocessor, it buffers these and stores them as tfrecords
                    if not args.all_data:
                        preprocessing_situ.main(im, -yaw_rate, speed)
                    else:
                        preprocessing_situ_all_data.main(
                            im, rgb, depth, segmentation, -yaw_rate, speed)

                else:
                    # get values while frame < 20 to be used when frame == 20
                    yaw_shift = measurements.player_measurements.transform.rotation.yaw
                    yaw_old = ((yaw_shift - 180) % 360) - 180
                    imrotate = round(yaw_old) + 90
                    shift_x = measurements.player_measurements.transform.location.x
                    shift_y = measurements.player_measurements.transform.location.y
                    prev_time = np.int64(measurements.game_timestamp)

                if not args.autopilot:

                    client.send_control(steer=random.uniform(-1.0, 1.0),
                                        throttle=0.5,
                                        brake=0.0,
                                        hand_brake=False,
                                        reverse=False)

                else:

                    # Together with the measurements, the server has sent the
                    # control that the in-game autopilot would do this frame. We
                    # can enable autopilot by sending back this control to the
                    # server. We can modify it if wanted, here for instance we
                    # will add some noise to the steer.

                    control = measurements.player_measurements.autopilot_control
                    control.steer += random.uniform(-0.01, 0.01)
                    client.send_control(control)
示例#36
0
    def _reset(self):
        self.num_steps = 0
        self.total_reward = 0
        self.prev_measurement = None
        self.prev_image = None
        self.episode_id = datetime.today().strftime("%Y-%m-%d_%H-%M-%S_%f")
        self.measurements_file = None
        self.enable_autopilot = np.random.random() < expert_probability

        self.pre_intersection = np.array([0.0, 0.0])

        # Create a CarlaSettings object. This object is a wrapper around
        # the CarlaSettings.ini file. Here we set the configuration we
        # want for the new episode.
        settings = CarlaSettings()
        self.scenario = random.choice(self.config["scenarios"])
        assert self.scenario["city"] == self.city, (self.scenario, self.city)
        self.weather = random.choice(self.scenario["weather_distribution"])
        settings.set(
            SynchronousMode=True,
            # ServerTimeOut=10000, # CarlaSettings: no key named 'ServerTimeOut'
            SendNonPlayerAgentsInfo=True,
            NumberOfVehicles=self.scenario["num_vehicles"],
            NumberOfPedestrians=self.scenario["num_pedestrians"],
            WeatherId=self.weather)
        settings.randomize_seeds()

        if ENV_CONFIG["use_radar"]:
            camera_radar = Camera("Camera_radar", PostProcessing="Depth")
            camera_radar.set_image_size(self.config["render_x_res"],
                                        self.config["render_y_res"])
            camera_radar.set_position(2.15, 0.0, 0.5)

            settings.add_sensor(camera_radar)

        if self.config["use_sensor"] == 'use_semantic':
            camera0 = Camera("CameraSemantic",
                             PostProcessing="SemanticSegmentation")
            camera0.set_image_size(self.config["render_x_res"],
                                   self.config["render_y_res"])
            # camera0.set_position(30, 0, 130)
            camera0.set(FOV=120)
            camera0.set_position(2.0, 0.0, 1.4)
            camera0.set_rotation(0.0, 0.0, 0.0)

            settings.add_sensor(camera0)

        if self.config["use_sensor"] in ['use_depth', 'use_logdepth']:
            camera1 = Camera("CameraDepth", PostProcessing="Depth")
            camera1.set_image_size(self.config["render_x_res"],
                                   self.config["render_y_res"])
            # camera1.set_position(30, 0, 130)
            camera1.set(FOV=120)
            camera1.set_position(2.0, 0.0, 1.4)
            camera1.set_rotation(0.0, 0.0, 0.0)

            settings.add_sensor(camera1)

        if self.config["use_sensor"] == 'use_rgb':
            camera2 = Camera("CameraRGB")
            camera2.set_image_size(self.config["render_x_res"],
                                   self.config["render_y_res"])
            # camera2.set_position(30, 0, 130)
            # camera2.set_position(0.3, 0.0, 1.3)

            camera2.set_position(1.0, 0.0, 1.5)

            # camera2.set_position(2.15, 0.0, 0.5)  # for radar

            # camera2.set(FOV=110)
            # camera2.set_position(1.5, 0.0, 1.4)
            # camera2.set_rotation(0.0, 0.0, 0.0)

            settings.add_sensor(camera2)

        if self.config["use_sensor"] == 'use_2rgb':
            camera_l = Camera("CameraRGB_L")
            camera_l.set_image_size(self.config["render_x_res"],
                                    self.config["render_y_res"])
            camera_l.set_position(1.0, -0.1, 1.5)
            # camera_l.set(FOV=120)
            # camera_l.set_position(2.0, -0.1, 1.4)
            # camera_l.set_rotation(0.0, 0.0, 0.0)
            settings.add_sensor(camera_l)

            camera_r = Camera("CameraRGB_R")
            camera_r.set_image_size(self.config["render_x_res"],
                                    self.config["render_y_res"])
            camera_r.set_position(1.0, 0.1, 1.5)
            # camera_r.set(FOV=120)
            # camera_r.set_position(2.0, 0.1, 1.4)
            # camera_r.set_rotation(0.0, 0.0, 0.0)
            settings.add_sensor(camera_r)

        if self.config["use_sensor"] == 'use_rgb_semantic':
            camera_rgb = Camera("Camera_rgb")
            camera_rgb.set_image_size(self.config["render_x_res"],
                                      self.config["render_y_res"])
            camera_rgb.set_position(1.0, 0.0, 1.3)
            settings.add_sensor(camera_rgb)

            camera_semantic = Camera("Camera_semantic",
                                     PostProcessing="SemanticSegmentation")
            camera_semantic.set_image_size(self.config["render_x_res"],
                                           self.config["render_y_res"])
            camera_semantic.set_position(1.0, 0.0, 1.3)
            settings.add_sensor(camera_semantic)

        # Setup start and end positions
        scene = self.client.load_settings(settings)
        self.positions = positions = scene.player_start_spots
        self.start_pos = positions[self.scenario["start_pos_id"]]

        self.pre_pos = self.start_pos.location
        self.cnt1 = 0
        self.displacement = 1000.0

        self.end_pos = positions[self.scenario["end_pos_id"]]
        self.start_coord = [
            self.start_pos.location.x // 1, self.start_pos.location.y // 1
        ]
        self.end_coord = [
            self.end_pos.location.x // 1, self.end_pos.location.y // 1
        ]
        print("Start pos {} ({}), end {} ({})".format(
            self.scenario["start_pos_id"], self.start_coord,
            self.scenario["end_pos_id"], self.end_coord))

        # Notify the server that we want to start the episode at the
        # player_start index. This function blocks until the server is ready
        # to start the episode.
        print("Starting new episode...")
        self.client.start_episode(self.scenario["start_pos_id"])

        # remove the vehicle dropping when starting a new episode.
        cnt = 1
        z1 = 0
        zero_control = VehicleControl()
        while (cnt < 3):
            self.client.send_control(
                zero_control
            )  # VehicleControl().steer = 0, VehicleControl().throttle = 0, VehicleControl().reverse = False
            z0 = z1
            z1 = self.client.read_data(
            )[0].player_measurements.transform.location.z
            print(z1)
            if z0 - z1 == 0:
                cnt += 1
        print('Starting new episode done.\n')

        # Process observations: self._read_observation() returns image and py_measurements.
        image, py_measurements = self._read_observation()
        py_measurements["collided"] = np.array(0.0, dtype=np.float32)
        self.prev_measurement = py_measurements

        # self.current_heading = self.pre_heading = np.array([py_measurements["x_orient"], py_measurements["y_orient"]])
        # self.angular_speed = 0.0

        self.pre_heading_degree = self.current_heading_degree = py_measurements[
            "current_heading_degree"]
        self.angular_speed_degree = np.array(0.0)

        return self.encode_obs(self.preprocess_image(image),
                               py_measurements), py_measurements
示例#37
0
def run_carla_client(args):

    # Settings
    # Town 1
    ## Natural turns: [42,67,69,79,94,97,70,44,85,102], [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]
    ## T-intersection: [88,90,107,133,136]
    ## Side intersection left: [ 66, 16, 25 ]
    ## Side intersection right: [ 138, 19, 26 ]
    ## Staight: [14, 149, 78, 71, 89]

    # Town 2
    ## Natural turns right: [65, 78, 44, 1]
    ## Natural turns left: [49, 50, 57, 70]
    ## T-intersection [2, 5, 10, 11, 19, 26, 34, 37]
    ## Side intersection left: [7, 23, 16, 39, 6, 43, 79]
    ## Side intersection right: [40, 20, 28, 32, 34, 46, 71, 74]
    ## Straight: [61, 64, 77, 51]

    positions = args.positions or [65, 78, 49, 50, 2, 5, 10, 7, 23, 40, 20, 61]
    levels_of_randomness = args.randomness or [0.0, 0.2, 0.4, 0.6]
    frames_per_level = args.frames or [
        200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200
    ]

    print("Positions: ", positions)
    print("Levels of randomness: ", levels_of_randomness)
    print("Frames per level: ", frames_per_level)

    # We assume the CARLA server is already waiting for a client to connect at
    # host:port. To create a connection we can use the `make_carla_client`
    # context manager, it creates a CARLA client object and starts the
    # connection. It will throw an exception if something goes wrong. The
    # context manager makes sure the connection is always cleaned up on exit.
    with make_carla_client(args.host, args.port) as client:
        print('CarlaClient connected')

        directions = ["_left", "_right"
                      ] if args.force_left_and_right else ["_"]
        for direction in directions:
            print("Direction ", direction)
            # Create a CarlaSettings object. This object is a wrapper around
            # the CarlaSettings.ini file. Here we set the configuration we
            # want for the new episode.
            settings = CarlaSettings()
            direction_var = 6 if direction == "_right" else 0
            settings.set(SynchronousMode=True,
                         SendNonPlayerAgentsInfo=True,
                         NumberOfVehicles=0,
                         NumberOfPedestrians=0,
                         WeatherId=random.choice([2]),
                         QualityLevel=args.quality_level,
                         SeedVehicles=direction_var)
            #settings.randomize_seeds()

            if args.capture:
                # To create visualisation of the current run
                camera3 = Camera('CameraRGB')
                camera3.set_image_size(512, 256)
                camera3.set_position(-8, 0, 5)
                camera3.set(FOV=args.fov)
                camera3.set_rotation(pitch=-20, yaw=0, roll=0)
                settings.add_sensor(camera3)
                # Now we want to add a couple of cameras to the player vehicle.
                # We will collect the images produced by these cameras every
                # frame.
                if args.point_cloud:
                    # Camera to produce point Cloud
                    camera1 = Camera('CameraDepth', PostProcessing='Depth')
                    camera1.set_image_size(256, 256)
                    camera1.set_position(2.2, 0, 1.30)
                    camera1.set(FOV=args.fov)
                    settings.add_sensor(camera1)

                    camera2 = Camera('CameraSeg',
                                     PostProcessing='SemanticSegmentation')
                    camera2.set_image_size(256, 256)
                    camera2.set_position(2.2, 0, 1.30)
                    camera2.set(FOV=args.fov)
                    settings.add_sensor(camera2)

                if args.lidar:
                    lidar = Lidar('Lidar32')
                    lidar.set_position(0, 0, 2.50)
                    lidar.set_rotation(0, 0, 0)
                    lidar.set(Channels=32,
                              Range=50,
                              PointsPerSecond=100000,
                              RotationFrequency=10,
                              UpperFovLimit=10,
                              LowerFovLimit=-30)
                    settings.add_sensor(lidar)

            # Now we load these settings into the server. The server replies
            # with a scene description containing the available start spots for
            # the player. Here we can provide a CarlaSettings object or a
            # CarlaSettings.ini file as string.
            scene = client.load_settings(settings)

            # Notify the server that we want to start the episode at the
            # player_start index. This function blocks until the server is ready
            # to start the episode.

            for episode, position in enumerate(positions):
                for randomness, frames in zip(levels_of_randomness,
                                              frames_per_level):
                    crashed = True
                    while crashed:
                        crashed = False
                        # Start a new episode.
                        print('Starting new episode at %r...' % scene.map_name)
                        print('Episode {}, Position {}, Randomness {}'.format(
                            episode, position, randomness))
                        client.start_episode(position)

                        if args.capture:
                            # Make sure directories exist
                            directory = '_out/pos{}{}/randomness_{}'.format(
                                position, direction, randomness)
                            ply_dir = '{}/point_clouds'.format(directory)
                            ply_dir_full = '{}/point_clouds_full'.format(
                                directory)
                            lidar_dir = '{}/lidar'.format(directory)
                            img_dir = '{}/images'.format(directory)
                            if not os.path.exists(img_dir):
                                os.makedirs(img_dir)
                            if args.point_cloud and not os.path.exists(
                                    ply_dir):
                                os.makedirs(ply_dir)
                            if args.point_cloud and not os.path.exists(
                                    ply_dir_full):
                                os.makedirs(ply_dir_full)
                            if args.lidar and not os.path.exists(lidar_dir):
                                os.makedirs(lidar_dir)
                            # Write steering data to csv file
                            if args.point_cloud:
                                csv = open(
                                    "{}/driving_data.csv".format(ply_dir), "w")
                            elif args.lidar:
                                csv = open(
                                    "{}/driving_data.csv".format(lidar_dir),
                                    "w")
                            csv.write(",name,speed,throttle,steer\n")

                        # Iterate every frame in the episode
                        for frame in tqdm(range(frames)):
                            # Read the data produced by the server this frame.
                            measurements, sensor_data = client.read_data()

                            if args.capture:
                                if args.point_cloud:
                                    # Save processed point clouds and autopilot steering to disk if requested
                                    # Get depth and seg as numpy array for further processing
                                    depth_obj = sensor_data['CameraDepth']
                                    depth = depth_obj.data
                                    fov = depth_obj.fov

                                    # Filter seg to get intersection points
                                    seg = sensor_data['CameraSeg'].data
                                    filtered_seg = pp.filter_seg_image(seg)

                                    if args.full_point_cloud:
                                        # Converting depth image to grayscale
                                        point_cloud_full = pp.depth_to_local_point_cloud(
                                            depth,
                                            fov,
                                            seg,
                                            max_depth=0.05,
                                            full=True)
                                        filename_full = "point_cloud_full_{:0>5d}".format(
                                            frame)
                                        pp.save_to_disk(
                                            point_cloud_full,
                                            "{}/{}.ply".format(
                                                ply_dir_full, filename_full))

                                    # Create pointcloud from seg and depth (but only take intersection points)
                                    point_cloud = pp.depth_to_local_point_cloud(
                                        depth,
                                        fov,
                                        filtered_seg,
                                        max_depth=0.05)
                                    filename = "point_cloud_{:0>5d}".format(
                                        frame)
                                    pp.save_to_disk(
                                        point_cloud,
                                        "{}/{}.ply".format(ply_dir, filename))

                                if args.lidar:
                                    sensor_data['Lidar32'].save_to_disk(
                                        '{}/point_cloud_{:0>5d}'.format(
                                            lidar_dir, frame))

                                # Save steering data of this frame
                                control = measurements.player_measurements.autopilot_control
                                csv.write("0,image_{:0>5d},0,0,{}\n".format(
                                    frame, control.steer))

                                # Save rgb image to visualize later
                                sensor_data['CameraRGB'].save_to_disk(
                                    '{}/image_{:0>5d}.png'.format(
                                        img_dir, frame))

                            # Now we have to send the instructions to control the vehicle.
                            # If we are in synchronous mode the server will pause the
                            # simulation until we send this control.

                            control = measurements.player_measurements.autopilot_control
                            speed = measurements.player_measurements.forward_speed
                            old_steer = control.steer
                            control.steer += random.uniform(
                                -randomness, randomness)

                            if args.ignore_red_lights:
                                control.throttle = 0.5
                                control.brake = 0.0
                                control.hand_brake = False
                                control.reverse = False

                            client.send_control(control)
                            crashed = False
                            if speed < 1 and abs(old_steer) > 0.5:
                                print(
                                    "\nSeems like we crashed.\nTrying again..."
                                )
                                crashed = True
                                break
示例#38
0
def run_carla_client(host, port, autopilot_on, save_images_to_disk, image_filename_format):
    # Here we will run 3 episodes with 300 frames each.
    number_of_episodes = 3
    frames_per_episode = 300

    # We assume the CARLA server is already waiting for a client to connect at
    # host:port. To create a connection we can use the `make_carla_client`
    # context manager, it creates a CARLA client object and starts the
    # connection. It will throw an exception if something goes wrong. The
    # context manager makes sure the connection is always cleaned up on exit.
    with make_carla_client(host, port) as client:
        print('CarlaClient connected')

        for episode in range(0, number_of_episodes):
            # Start a new episode.

            # Create a CarlaSettings object. This object is a handy wrapper
            # around the CarlaSettings.ini file. Here we set the configuration
            # we want for the new episode.
            settings = CarlaSettings()
            settings.set(
                SynchronousMode=True,
                NumberOfVehicles=30,
                NumberOfPedestrians=50,
                WeatherId=random.choice([1, 3, 7, 8, 14]))
            settings.randomize_seeds()

            # Now we want to add a couple of cameras to the player vehicle. We
            # will collect the images produced by these cameras every frame.

            # The default camera captures RGB images of the scene.
            camera0 = Camera('CameraRGB')
            # Set image resolution in pixels.
            camera0.set_image_size(800, 600)
            # Set its position relative to the car in centimeters.
            camera0.set_position(30, 0, 130)
            settings.add_camera(camera0)

            # Let's add another camera producing ground-truth depth.
            camera1 = Camera('CameraDepth', PostProcessing='Depth')
            camera1.set_image_size(800, 600)
            camera1.set_position(30, 0, 130)
            settings.add_camera(camera1)

            print('Requesting new episode...')

            # Now we request a new episode with these settings. The server
            # replies with a scene description containing the available start
            # spots for the player. Here instead of a CarlaSettings object we
            # could also provide a CarlaSettings.ini file as string.
            scene = client.request_new_episode(settings)

            # Choose one player start at random.
            number_of_player_starts = len(scene.player_start_spots)
            player_start = random.randint(0, max(0, number_of_player_starts - 1))

            # Notify the server that we want to start the episode at
            # `player_start`. This function blocks until the server is ready to
            # start the episode.
            client.start_episode(player_start)

            # Iterate every frame in the episode.
            for frame in range(0, frames_per_episode):

                # Read the measurements and images produced by the server this
                # frame.
                measurements, images = client.read_measurements()

                # Print some of the measurements we received.
                print_player_measurements(measurements.player_measurements)

                # Save the images to disk if requested.
                if save_images_to_disk:
                    for n, image in enumerate(images):
                        image.save_to_disk(image_filename_format.format(episode, n, frame))

                # Now we have to send the instructions to control the vehicle.
                # If we are in synchronous mode the server will pause the
                # simulation until we send this control.

                if not autopilot_on:

                    client.send_control(
                        steer=random.uniform(-1.0, 1.0),
                        throttle=0.3,
                        brake=False,
                        hand_brake=False,
                        reverse=False)

                else:

                    # Together with the measurements, the server has sent the
                    # control that the in-game AI would do this frame. We can
                    # enable autopilot by sending back this control to the
                    # server. Here we will also add some noise to the steer.

                    control = measurements.player_measurements.ai_control
                    control.steer += random.uniform(-0.1, 0.1)
                    client.send_control(control)

    print('Done.')
    return True
示例#39
0
def run_carla_client(args):
    frames_per_episode = 10000
    spline_points = 10000

    report = {
        'num_episodes': args.num_episodes,
        'controller_name': args.controller_name,
        'distances': [],
        'target_speed': args.target_speed,
    }

    track_DF = pd.read_csv('racetrack{}.txt'.format(args.racetrack),
                           header=None)
    # The track data are rescaled by 100x with relation to Carla measurements
    track_DF = track_DF / 100

    pts_2D = track_DF.loc[:, [0, 1]].values
    tck, u = splprep(pts_2D.T, u=None, s=2.0, per=1, k=3)
    u_new = np.linspace(u.min(), u.max(), spline_points)
    x_new, y_new = splev(u_new, tck, der=0)
    pts_2D = np.c_[x_new, y_new]

    steer = 0.0
    throttle = 0.5

    depth_array = None

    if args.controller_name == 'mpc':
        weather_id = 2
        controller = MPCController(args.target_speed)
    elif args.controller_name == 'pd':
        weather_id = 1
        controller = PDController(args.target_speed)
    elif args.controller_name == 'pad':
        weather_id = 5
        controller = PadController()
    elif args.controller_name == 'nn':
        # Import it here because importing TensorFlow is time consuming
        from neural_network_controller import NNController  # noqa
        weather_id = 11
        controller = NNController(
            args.target_speed,
            args.model_dir_name,
            args.which_model,
            args.throttle_coeff_A,
            args.throttle_coeff_B,
            args.ensemble_prediction,
        )
        report['model_dir_name'] = args.model_dir_name
        report['which_model'] = args.which_model
        report['throttle_coeff_A'] = args.throttle_coeff_A
        report['throttle_coeff_B'] = args.throttle_coeff_B
        report['ensemble_prediction'] = args.ensemble_prediction

    with make_carla_client(args.host, args.port) as client:
        print('CarlaClient connected')
        episode = 0
        num_fails = 0

        while episode < args.num_episodes:
            # Start a new episode

            if args.store_data:
                depth_storage = np.zeros(
                    ((IMAGE_CLIP_LOWER - IMAGE_CLIP_UPPER) // IMAGE_DECIMATION,
                     IMAGE_SIZE[1] // IMAGE_DECIMATION,
                     frames_per_episode)).astype(DTYPE)
                log_dicts = frames_per_episode * [None]
            else:
                depth_storage = None
                log_dicts = None

            if args.settings_filepath is None:

                # Create a CarlaSettings object. This object is a wrapper around
                # the CarlaSettings.ini file. Here we set the configuration we
                # want for the new episode.
                settings = CarlaSettings()

                settings.set(SynchronousMode=True,
                             SendNonPlayerAgentsInfo=False,
                             NumberOfVehicles=0,
                             NumberOfPedestrians=0,
                             WeatherId=weather_id,
                             QualityLevel=args.quality_level)

                settings.randomize_seeds()

                # Now we want to add a couple of cameras to the player vehicle.
                # We will collect the images produced by these cameras every
                # frame.

                # Let's add another camera producing ground-truth depth.
                camera = Camera('CameraDepth',
                                PostProcessing='Depth',
                                FOV=69.4)
                # MD: I got the 69.4 from here: https://click.intel.com/intelr-realsensetm-depth-camera-d435.html
                camera.set_image_size(IMAGE_SIZE[1], IMAGE_SIZE[0])
                camera.set_position(2.30, 0, 1.30)
                settings.add_sensor(camera)

            else:
                # Alternatively, we can load these settings from a file.
                with open(args.settings_filepath, 'r') as fp:
                    settings = fp.read()

            # Now we load these settings into the server. The server replies
            # with a scene description containing the available start spots for
            # the player. Here we can provide a CarlaSettings object or a
            # CarlaSettings.ini file as string.
            scene = client.load_settings(settings)

            # Choose one player start at random.
            num_of_player_starts = len(scene.player_start_spots)
            player_start = random.randint(0, max(0, num_of_player_starts - 1))

            # Notify the server that we want to start the episode at the
            # player_start index. This function blocks until the server is ready
            # to start the episode.
            print('Starting new episode...', )
            client.start_episode(player_start)

            status, depth_storage, one_log_dict, log_dicts, distance_travelled = run_episode(
                client, controller, pts_2D, depth_storage, log_dicts,
                frames_per_episode, args.controller_name, args.store_data)

            if 'FAIL' in status:
                num_fails += 1
                print(status)
                continue
            else:
                print('SUCCESS: ' + str(episode))
                report['distances'].append(distance_travelled)
                if args.store_data:
                    np.save(
                        'depth_data/{}_racetrack{}_depth_data{}.npy'.format(
                            args.controller_name, args.racetrack, episode),
                        depth_storage)
                    pd.DataFrame(log_dicts).to_csv(
                        'logs/{}_racetrack{}_log{}.txt'.format(
                            args.controller_name, args.racetrack, episode),
                        index=False)
                episode += 1

    report['num_fails'] = num_fails

    report_output = os.path.join('reports', args.report_filename)
    pd.to_pickle(report, report_output)
def run_carla_client(host, port, far):
    # Here we will run a single episode with 300 frames.
    number_of_frames = 3000
    frame_step = 10  # Save one image every 100 frames
    output_folder = '_out'
    image_size = [1280, 720]
    camera_local_pos = [0.3, 0.0, 1.3]  # [X, Y, Z]
    camera_local_rotation = [0, 0, 0]  # [pitch(Y), yaw(Z), roll(X)]
    fov = 59

    # Connect with the server
    with make_carla_client(host, port) as client:
        print('CarlaClient connected')

        # Here we load the settings.
        settings = CarlaSettings()
        settings.set(SynchronousMode=True,
                     SendNonPlayerAgentsInfo=False,
                     NumberOfVehicles=20,
                     NumberOfPedestrians=40,
                     WeatherId=7)
        settings.randomize_seeds()

        camera1 = Camera('CameraDepth', PostProcessing='Depth', FOV=fov)
        camera1.set_image_size(*image_size)
        camera1.set_position(*camera_local_pos)
        camera1.set_rotation(*camera_local_rotation)
        settings.add_sensor(camera1)

        camera2 = Camera('CameraRGB', PostProcessing='SceneFinal', FOV=fov)
        camera2.set_image_size(*image_size)
        camera2.set_position(*camera_local_pos)
        camera2.set_rotation(*camera_local_rotation)
        settings.add_sensor(camera2)

        client.load_settings(settings)

        # Start at location index id '0'
        client.start_episode(0)

        # Compute the camera transform matrix
        camera_to_car_transform = camera2.get_unreal_transform()
        print("camera_to_car_transform", camera_to_car_transform)

        # Iterate every frame in the episode except for the first one.
        for frame in range(1, number_of_frames):
            # Read the data produced by the server this frame.
            measurements, sensor_data = client.read_data()

            # Save one image every 'frame_step' frames
            if not frame % frame_step:
                # Start transformations time mesure.

                # RGB image [[[r,g,b],..[r,g,b]],..[[r,g,b],..[r,g,b]]]
                image_RGB = to_rgb_array(sensor_data['CameraRGB'])
                world_transform = Transform(
                    measurements.player_measurements.transform)

                # Compute the final transformation matrix.
                car_to_world_transform = world_transform * camera_to_car_transform
                print("{}.png".format(str(frame)))
                print([
                    measurements.player_measurements.transform.location.x,
                    measurements.player_measurements.transform.location.y,
                    measurements.player_measurements.transform.location.z
                ])
                print("world_transform\n", world_transform)
                #print("car_to_world_transform\n",car_to_world_transform)
                print('\n')

                im_bgr = cv2.cvtColor(image_RGB, cv2.COLOR_RGB2BGR)
                cv2.imwrite("./{}/{}.png".format(output_folder, str(frame)),
                            im_bgr)
                # 2d to (camera) local 3d
                # We use the image_RGB to colorize each 3D point, this is optional.
                # "max_depth" is used to keep only the points that are near to the
                # camera, meaning 1.0 the farest points (sky)

                # Save PLY to disk
                # This generates the PLY string with the 3D points and the RGB colors
                # for each row of the file.

            client.send_control(
                measurements.player_measurements.autopilot_control)
示例#41
0
def run_carla_client(args):
    # Here we will run 3 episodes with 300 frames each.
    number_of_episodes = 3
    frames_per_episode = 300

    # We assume the CARLA server is already waiting for a client to connect at
    # host:port. To create a connection we can use the `make_carla_client`
    # context manager, it creates a CARLA client object and starts the
    # connection. It will throw an exception if something goes wrong. The
    # context manager makes sure the connection is always cleaned up on exit.
    with make_carla_client(args.host, args.port) as client:
        print('CarlaClient connected')

        for episode in range(0, number_of_episodes):
            # Start a new episode.

            if args.settings_filepath is None:

                # Create a CarlaSettings object. This object is a wrapper around
                # the CarlaSettings.ini file. Here we set the configuration we
                # want for the new episode.
                settings = CarlaSettings()
                settings.set(
                    SynchronousMode=True,
                    SendNonPlayerAgentsInfo=True,
                    NumberOfVehicles=20,
                    NumberOfPedestrians=40,
                    WeatherId=random.choice([1, 3, 7, 8, 14]),
                    QualityLevel=args.quality_level)
                settings.randomize_seeds()

                # Now we want to add a couple of cameras to the player vehicle.
                # We will collect the images produced by these cameras every
                # frame.

                # The default camera captures RGB images of the scene.
                camera0 = Camera('CameraRGB')
                # Set image resolution in pixels.
                camera0.set_image_size(800, 600)
                # Set its position relative to the car in meters.
                camera0.set_position(0.30, 0, 1.30)
                settings.add_sensor(camera0)

                # Let's add another camera producing ground-truth depth.
                camera1 = Camera('CameraDepth', PostProcessing='Depth')
                camera1.set_image_size(800, 600)
                camera1.set_position(0.30, 0, 1.30)
                settings.add_sensor(camera1)

                if args.lidar:
                    lidar = Lidar('Lidar32')
                    lidar.set_position(0, 0, 2.50)
                    lidar.set_rotation(0, 0, 0)
                    lidar.set(
                        Channels=32,
                        Range=50,
                        PointsPerSecond=100000,
                        RotationFrequency=10,
                        UpperFovLimit=10,
                        LowerFovLimit=-30)
                    settings.add_sensor(lidar)

            else:

                # Alternatively, we can load these settings from a file.
                with open(args.settings_filepath, 'r') as fp:
                    settings = fp.read()

            # Now we load these settings into the server. The server replies
            # with a scene description containing the available start spots for
            # the player. Here we can provide a CarlaSettings object or a
            # CarlaSettings.ini file as string.
            scene = client.load_settings(settings)

            # Choose one player start at random.
            number_of_player_starts = len(scene.player_start_spots)
            player_start = random.randint(0, max(0, number_of_player_starts - 1))

            # Notify the server that we want to start the episode at the
            # player_start index. This function blocks until the server is ready
            # to start the episode.
            print('Starting new episode at %r...' % scene.map_name)
            client.start_episode(player_start)

            # Iterate every frame in the episode.
            for frame in range(0, frames_per_episode):

                # Read the data produced by the server this frame.
                measurements, sensor_data = client.read_data()

                # Print some of the measurements.
                print_measurements(measurements)

                # Save the images to disk if requested.
                if args.save_images_to_disk:
                    for name, measurement in sensor_data.items():
                        filename = args.out_filename_format.format(episode, name, frame)
                        measurement.save_to_disk(filename)

                # We can access the encoded data of a given image as numpy
                # array using its "data" property. For instance, to get the
                # depth value (normalized) at pixel X, Y
                #
                #     depth_array = sensor_data['CameraDepth'].data
                #     value_at_pixel = depth_array[Y, X]
                #

                # Now we have to send the instructions to control the vehicle.
                # If we are in synchronous mode the server will pause the
                # simulation until we send this control.

                if not args.autopilot:

                    client.send_control(
                        steer=random.uniform(-1.0, 1.0),
                        throttle=0.5,
                        brake=0.0,
                        hand_brake=False,
                        reverse=False)

                else:

                    # Together with the measurements, the server has sent the
                    # control that the in-game autopilot would do this frame. We
                    # can enable autopilot by sending back this control to the
                    # server. We can modify it if wanted, here for instance we
                    # will add some noise to the steer.

                    control = measurements.player_measurements.autopilot_control
                    control.steer += random.uniform(-0.1, 0.1)
                    client.send_control(control)