def cbc_avalanche_effect(): print('---------- CBC ----------') plaintext = 'From:Lucas\nTo:Pedro\nContent:the CBC mode of encryption is vulnerable to bit flipping' print('Original plaintext:', plaintext, sep='\n', end='\n\n') ciphertext = cbc.encrypt(plaintext, KEY) print('Ciphertext:', ciphertext, end="\n\n") print('List of bytes of the ciphertext:', list(ciphertext), sep='\n', end="\n\n") plaintext = cbc.decrypt(ciphertext, KEY) print('Decrypted ciphertext:', plaintext, sep='\n', end="\n\n") plaintext = 'From:Lucas\nTo:Pedro\nContent:the CBC mode of encription is vulnerable to bit flipping' print('Modified plaintext:', plaintext, sep='\n', end='\n\n') ciphertext = cbc.encrypt(plaintext, KEY) print('Ciphertext:', ciphertext, end="\n\n") print('List of bytes of the ciphertext:', list(ciphertext), sep='\n', end="\n\n") plaintext = cbc.decrypt(ciphertext, KEY) print('Decrypted ciphertext:', plaintext, sep='\n', end="\n\n")
def main(): random.seed(time.time()) # regular communication message = "This is a secret message".decode("base64") alice = DiffieHellman(NIST_GENERATOR, NIST_PRIME) bob = DiffieHellman(NIST_GENERATOR, NIST_PRIME) bob.get_response(alice.make_secret()) alice.get_response(bob.make_secret()) print "Alice's key:" print "%r" % (alice.session_key(),) print "Bob's key:" print "%r" % (bob.session_key(),) assert bob.session_key() == alice.session_key() bob_iv = os.urandom(16) alice_iv = os.urandom(16) alice_message = alice_iv + cbc.encrypt(alice.session_key()[:16], message, IV = alice_iv) bob_message = bob_iv + cbc.encrypt(bob.session_key()[:16], cbc.decrypt(bob.session_key()[:16], alice_message)[16:], IV = bob_iv) # mitm'd message = "Tm8gb25lIGNhbiByZWFkIHRoaXM=".decode("base64") alice = DiffieHellman(NIST_GENERATOR, NIST_PRIME) bob = DiffieHellman(NIST_GENERATOR, NIST_PRIME) mitm = DiffieHellman(NIST_GENERATOR, NIST_PRIME) alice.make_secret() bob.make_secret() bob.get_response(NIST_PRIME) alice.get_response(NIST_PRIME) assert bob.session_key() == alice.session_key() real_key = bob.session_key() alice_message = alice_iv + cbc.encrypt(alice.session_key()[:16], message, IV = alice_iv) relayed_msg = alice_message bob_message = bob_iv + cbc.encrypt(bob.session_key()[:16], cbc.decrypt(bob.session_key()[:16], relayed_msg)[16:], IV = bob_iv) injected_key = sha1.sha1(hex(0).strip("0xL")).hexdigest().decode("hex") print "Alice and Bob's secret message:" print "%r" % (cbc.decrypt(injected_key[:16], relayed_msg)[16:],)
def pcbc_bitflipping(): print('---------- PCBC ----------') plaintext = 'From:Lucas\nTo:Pedro\nContent:the PCBC mode of encryption is NOT vulnerable to bit flipping' print('Original plaintext:', plaintext, sep='\n', end='\n\n') ciphertext = cbc.encrypt(plaintext, KEY) ##### modifying the IV to bitflip the first block ##### iv = bytearray(ciphertext[:pcbc.IV_SIZE]) iv[5:] = common.xor(iv[5:], common.xor(b'Lucas', b'Mario')) ciphertext = bytes(iv) + ciphertext[pcbc.IV_SIZE:] ####################################################### print('Bitflipping Lucas to Mario...') plaintext = pcbc.decrypt(ciphertext, KEY) print('Decrypted ciphertext:', plaintext, sep='\n', end="\n\n") print('List of bytes of the plaintext:', list(bytes(plaintext, 'utf-8')), sep='\n', end="\n\n") ##### modifying the second block ##### block = bytearray(ciphertext[pcbc.BLOCK_SIZE:pcbc.BLOCK_SIZE * 2]) block[4:9] = common.xor(block[4:9], common.xor(b'Pedro', b'Mario')) ciphertext = ciphertext[:pcbc. BLOCK_SIZE] + block + ciphertext[pcbc.BLOCK_SIZE * 2:] ###################################### print('Bitflipping Pedro to Mario...') plaintext = pcbc.decrypt(ciphertext, KEY) print('Decrypted ciphertext:', plaintext, end="\n\n")
def sendData(self, obj): plaintext = self.data_to_send.text ciphertext = CBC.encrypt(self.cipher, plaintext) self.console.text = self.console.text + '\n' + 'Text to be sent: ' + self.data_to_send.text hmacVal = hmac_gen.genHmac(self.shared_secret_hash, plaintext) print "[Outgoing] encrypted ciphertext to send: " + ciphertext print "[Outgoing] hmac value " + hmacVal self.socket.sendall(MSG_TYPE_REGULAR + hmacVal + ciphertext + TERMINATORS) self.data_to_send.text = ''
def encryption_oracle(ptext): key = get_random_AES_key() random.seed(None) before = random.randint(5, 10) after = random.randint(5, 10) btext = get_random_bytes(before) btext += ptext.encode('UTF-8') btext += get_random_bytes(after) if (random.randint(0, 1) == 0): if ((len(btext) % 16) != 0): btext = padding.padding(btext, len(btext) + 16 - (len(btext) % 16)) obj = AES.new(bytes(key), AES.MODE_ECB) cip = obj.encrypt(bytes(btext)) #print ("ECB") else: iv = get_random_bytes(16) cip = cbc.encrypt(btext, bytes(key), iv) #print ("CBC") return cip
def encryption_oracle(ptext): key=get_random_AES_key() random.seed(None) before = random.randint(5, 10) after = random.randint(5, 10) btext = get_random_bytes(before) btext += ptext.encode('UTF-8') btext += get_random_bytes(after) if(random.randint(0, 1)==0): if ((len(btext)%16)!=0): btext = padding.padding(btext, len(btext)+ 16 -(len(btext)%16)) obj = AES.new(bytes(key), AES.MODE_ECB) cip = obj.encrypt(bytes(btext)) #print ("ECB") else: iv=get_random_bytes(16) cip = cbc.encrypt(btext, bytes(key), iv) #print ("CBC") return cip
def test(self): cipherText = cbc.encrypt(self.encryptCipher, self.message) print cipherText plainText = cbc.decrypt(self.decryptCipher, cipherText) print plainText self.assertEqual(plainText, self.message)
import cbc inp = "Yellow Submarine is cool" key = ("YELLOW SUBMARINE").encode('UTF-8') iv = bytes(16) ip = inp.encode('UTF-8') a = cbc.encrypt(ip, key, iv) print(a) b = cbc.decrypt(a, key, iv) print(b)
def get_ciphertext(): return cbc.encrypt(random_key, random.choice(plaintexts).decode("base64"))
import cbc inp = "Yellow Submarine is cool" key= ("YELLOW SUBMARINE").encode('UTF-8') iv = bytes(16) ip = inp.encode('UTF-8') a = cbc.encrypt(ip, key, iv) print (a) b = cbc.decrypt(a, key, iv) print (b)
def main(): random.seed(time.time()) # regular communication message = "This is a secret message".decode("base64") alice = DiffieHellman(NIST_GENERATOR, NIST_PRIME) bob = DiffieHellman(NIST_GENERATOR, NIST_PRIME) bob.get_response(alice.make_secret()) alice.get_response(bob.make_secret()) assert bob.session_key() == alice.session_key() # g = 1 # 1^x = 1 mod p for any x message = "ZyA9IDEgc3V4=".decode("base64") alice = DiffieHellman(1, NIST_PRIME) bob = DiffieHellman(1, NIST_PRIME) bob.get_response(alice.make_secret()) alice.get_response(bob.make_secret()) assert bob.session_key() == alice.session_key() real_key = bob.session_key() bob_iv = os.urandom(16) alice_iv = os.urandom(16) alice_message = alice_iv + cbc.encrypt(alice.session_key()[:16], message, IV = alice_iv) relayed_msg = alice_message bob_message = bob_iv + cbc.encrypt(bob.session_key()[:16], cbc.decrypt(bob.session_key()[:16], relayed_msg)[16:], IV = bob_iv) injected_key = sha1.sha1(hex(1).strip("0xL")).hexdigest().decode("hex") print "g = 1:" print "Alice and Bob's secret message:" print "%r" % (cbc.decrypt(injected_key[:16], relayed_msg)[16:],) # g = p # p^x = 0 mod p for any x message = "ZyA9IHAgaXMgdXNlbGVzcw==".decode("base64") alice = DiffieHellman(NIST_PRIME, NIST_PRIME) bob = DiffieHellman(NIST_PRIME, NIST_PRIME) bob.get_response(alice.make_secret()) alice.get_response(bob.make_secret()) assert bob.session_key() == alice.session_key() real_key = bob.session_key() bob_iv = os.urandom(16) alice_iv = os.urandom(16) alice_message = alice_iv + cbc.encrypt(alice.session_key()[:16], message, IV = alice_iv) relayed_msg = alice_message bob_message = bob_iv + cbc.encrypt(bob.session_key()[:16], cbc.decrypt(bob.session_key()[:16], relayed_msg)[16:], IV = bob_iv) injected_key = sha1.sha1(hex(0).strip("0xL")).hexdigest().decode("hex") print "g = p:" print "Alice and Bob's secret message:" print "%r" % (cbc.decrypt(injected_key[:16], relayed_msg)[16:],) # g = p - 1 # If the exponent is even the result will be 1, if odd, it will be (p-1) # for that reason, in any combination of results, the final session key will always be either 1 or p-1 (only if both a & b turned out odd thus g^a == g^b == p-1 == g^ab) message = "ZXZlbiBvciBvZGQ/".decode("base64") alice = DiffieHellman(NIST_PRIME-1 , NIST_PRIME) bob = DiffieHellman(NIST_PRIME-1, NIST_PRIME) alice_secret = alice.make_secret() bob_secret = bob.make_secret() bob.get_response(alice_secret) alice.get_response(bob_secret) assert bob.session_key() == alice.session_key() real_key = bob.session_key() bob_iv = os.urandom(16) alice_iv = os.urandom(16) alice_message = alice_iv + cbc.encrypt(alice.session_key()[:16], message, IV = alice_iv) relayed_msg = alice_message bob_message = bob_iv + cbc.encrypt(bob.session_key()[:16], cbc.decrypt(bob.session_key()[:16], relayed_msg)[16:], IV = bob_iv) if (alice_secret + bob_secret == 2*(NIST_PRIME-1)): # 25% chance of the session key being p-1 injected_key = sha1.sha1(hex(NIST_PRIME-1).strip("0xL")).hexdigest().decode("hex") else: injected_key = sha1.sha1(hex(1).strip("0xL")).hexdigest().decode("hex") print "g = p-1:" print "Alice and Bob's secret message:" print "%r" % (cbc.decrypt(injected_key[:16], relayed_msg)[16:],)