def main(): parser = argparse.ArgumentParser(epilog=__doc__) HMC.add_options(parser) parser.add_argument("commands_to_run", metavar="command(s)", nargs='*', help="Command(s) to run") parser.add_argument("--cpu", type=str, choices=cpu_types.keys(), default="atomic", help="CPU model to use") parser.add_argument("--cpu-freq", type=str, default="4GHz") parser.add_argument("--num-cores", type=int, default=1, help="Number of CPU cores") # parser.add_argument("--mem-type", default="DDR3_1600_8x8", # choices=MemConfig.mem_names(), # help = "type of memory to use") # parser.add_argument("--mem-channels", type=int, default=2, # help = "number of memory channels") # parser.add_argument("--mem-ranks", type=int, default=None, # help = "number of memory ranks per channel") parser.add_argument("--mem-size", action="store", type=str, default="2GB", help="Specify the physical memory size") args = parser.parse_args() # Create a single root node for gem5's object hierarchy. There can # only exist one root node in the simulator at any given # time. Tell gem5 that we want to use syscall emulation mode # instead of full system mode. root = Root(full_system=False) # Populate the root node with a system. A system corresponds to a # single node with shared memory. root.system = create(args) # Instantiate the C++ object hierarchy. After this point, # SimObjects can't be instantiated anymore. m5.instantiate() # Start the simulator. This gives control to the C++ world and # starts the simulator. The returned event tells the simulation # script why the simulator exited. event = m5.simulate() # Print the reason for the simulation exit. Some exit codes are # requests for service (e.g., checkpoints) from the simulation # script. We'll just ignore them here and exit. print(event.getCause(), " @ ", m5.curTick()) sys.exit(event.getCode())
def main(): parser = argparse.ArgumentParser(description="Simple system using HMC as\ main memory") HMC.add_options(parser) add_options(parser) options = parser.parse_args() # build the system root = build_system(options) # instantiate all of the objects we've created so far m5.instantiate() print("Beginning simulation!") event = m5.simulate(10000000000) m5.stats.dump() print('Exiting @ tick %i because %s (exit code is %i)' % (m5.curTick(), event.getCause(), event.getCode())) print("Done")
def config_mem(options, system): """ Create the memory controllers based on the options and attach them. If requested, we make a multi-channel configuration of the selected memory controller class by creating multiple instances of the specific class. The individual controllers have their parameters set such that the address range is interleaved between them. """ # Mandatory options opt_mem_channels = options.mem_channels # Semi-optional options # Must have either mem_type or nvm_type or both opt_mem_type = getattr(options, "mem_type", None) opt_nvm_type = getattr(options, "nvm_type", None) if not opt_mem_type and not opt_nvm_type: fatal("Must have option for either mem-type or nvm-type, or both") # Optional options opt_tlm_memory = getattr(options, "tlm_memory", None) opt_external_memory_system = getattr(options, "external_memory_system", None) opt_elastic_trace_en = getattr(options, "elastic_trace_en", False) opt_mem_ranks = getattr(options, "mem_ranks", None) opt_nvm_ranks = getattr(options, "nvm_ranks", None) opt_hybrid_channel = getattr(options, "hybrid_channel", False) opt_dram_powerdown = getattr(options, "enable_dram_powerdown", None) opt_mem_channels_intlv = getattr(options, "mem_channels_intlv", 128) opt_xor_low_bit = getattr(options, "xor_low_bit", 0) if opt_mem_type == "HMC_2500_1x32": HMChost = HMC.config_hmc_host_ctrl(options, system) HMC.config_hmc_dev(options, system, HMChost.hmc_host) subsystem = system.hmc_dev xbar = system.hmc_dev.xbar else: subsystem = system xbar = system.membus if opt_tlm_memory: system.external_memory = m5.objects.ExternalSlave( port_type="tlm_slave", port_data=opt_tlm_memory, port=system.membus.master, addr_ranges=system.mem_ranges) system.workload.addr_check = False return if opt_external_memory_system: subsystem.external_memory = m5.objects.ExternalSlave( port_type=opt_external_memory_system, port_data="init_mem0", port=xbar.master, addr_ranges=system.mem_ranges) subsystem.workload.addr_check = False return nbr_mem_ctrls = opt_mem_channels import math from m5.util import fatal intlv_bits = int(math.log(nbr_mem_ctrls, 2)) if 2 ** intlv_bits != nbr_mem_ctrls: fatal("Number of memory channels must be a power of 2") if opt_mem_type: intf = ObjectList.mem_list.get(opt_mem_type) if opt_nvm_type: n_intf = ObjectList.mem_list.get(opt_nvm_type) nvm_intfs = [] mem_ctrls = [] if opt_elastic_trace_en and not issubclass(intf, m5.objects.SimpleMemory): fatal("When elastic trace is enabled, configure mem-type as " "simple-mem.") # The default behaviour is to interleave memory channels on 128 # byte granularity, or cache line granularity if larger than 128 # byte. This value is based on the locality seen across a large # range of workloads. intlv_size = max(opt_mem_channels_intlv, system.cache_line_size.value) # For every range (most systems will only have one), create an # array of memory interfaces and set their parameters to match # their address mapping in the case of a DRAM range_iter = 0 for r in system.mem_ranges: # As the loops iterates across ranges, assign them alternatively # to DRAM and NVM if both configured, starting with DRAM range_iter += 1 for i in range(nbr_mem_ctrls): if opt_mem_type and (not opt_nvm_type or range_iter % 2 != 0): # Create the DRAM interface dram_intf = create_mem_intf(intf, r, i, nbr_mem_ctrls, intlv_bits, intlv_size, opt_xor_low_bit) # Set the number of ranks based on the command-line # options if it was explicitly set if issubclass(intf, m5.objects.DRAMInterface) and \ opt_mem_ranks: dram_intf.ranks_per_channel = opt_mem_ranks # Enable low-power DRAM states if option is set if issubclass(intf, m5.objects.DRAMInterface): dram_intf.enable_dram_powerdown = opt_dram_powerdown if opt_elastic_trace_en: dram_intf.latency = '1ns' print("For elastic trace, over-riding Simple Memory " "latency to 1ns.") # Create the controller that will drive the interface if opt_mem_type == "HMC_2500_1x32": # The static latency of the vault controllers is estimated # to be smaller than a full DRAM channel controller mem_ctrl = m5.objects.MemCtrl(min_writes_per_switch = 8, static_backend_latency = '4ns', static_frontend_latency = '4ns') elif opt_mem_type == "SimpleMemory": mem_ctrl = m5.objects.SimpleMemory() else: mem_ctrl = m5.objects.MemCtrl() # Hookup the controller to the interface and add to the list if opt_mem_type != "SimpleMemory": mem_ctrl.dram = dram_intf mem_ctrls.append(mem_ctrl) elif opt_nvm_type and (not opt_mem_type or range_iter % 2 == 0): nvm_intf = create_mem_intf(n_intf, r, i, nbr_mem_ctrls, intlv_bits, intlv_size) # Set the number of ranks based on the command-line # options if it was explicitly set if issubclass(n_intf, m5.objects.NVMInterface) and \ opt_nvm_ranks: nvm_intf.ranks_per_channel = opt_nvm_ranks # Create a controller if not sharing a channel with DRAM # in which case the controller has already been created if not opt_hybrid_channel: mem_ctrl = m5.objects.MemCtrl() mem_ctrl.nvm = nvm_intf mem_ctrls.append(mem_ctrl) else: nvm_intfs.append(nvm_intf) # hook up NVM interface when channel is shared with DRAM + NVM for i in range(len(nvm_intfs)): mem_ctrls[i].nvm = nvm_intfs[i]; # Connect the controller to the xbar port for i in range(len(mem_ctrls)): if opt_mem_type == "HMC_2500_1x32": # Connect the controllers to the membus mem_ctrls[i].port = xbar[i/4].master # Set memory device size. There is an independent controller # for each vault. All vaults are same size. mem_ctrls[i].dram.device_size = options.hmc_dev_vault_size else: # Connect the controllers to the membus mem_ctrls[i].port = xbar.master subsystem.mem_ctrls = mem_ctrls
# Author: Éder F. Zulian import sys import argparse import m5 from m5.objects import * from m5.util import * addToPath('../') from common import MemConfig from common import HMC pd = "Simple 'hello world' example using HMC as main memory" parser = argparse.ArgumentParser(description=pd) HMC.add_options(parser) options = parser.parse_args() # create the system we are going to simulate system = System() # use timing mode for the interaction between master-slave ports system.mem_mode = 'timing' # set the clock fequency of the system clk = '1GHz' vd = VoltageDomain(voltage='1V') system.clk_domain = SrcClockDomain(clock=clk, voltage_domain=vd) # create a simple CPU system.cpu = TimingSimpleCPU() # config memory system MemConfig.config_mem(options, system) # hook the CPU ports up to the membus system.cpu.icache_port = system.membus.slave
def config_mem(options, system): """ Create the memory controllers based on the options and attach them. If requested, we make a multi-channel configuration of the selected memory controller class by creating multiple instances of the specific class. The individual controllers have their parameters set such that the address range is interleaved between them. """ # Mandatory options opt_mem_type = options.mem_type opt_mem_channels = options.mem_channels # Optional options opt_tlm_memory = getattr(options, "tlm_memory", None) opt_external_memory_system = getattr(options, "external_memory_system", None) opt_elastic_trace_en = getattr(options, "elastic_trace_en", False) opt_mem_ranks = getattr(options, "mem_ranks", None) opt_dram_powerdown = getattr(options, "enable_dram_powerdown", None) opt_mem_channels_intlv = getattr(options, "mem_channels_intlv", 128) if opt_mem_type == "HMC_2500_1x32": HMChost = HMC.config_hmc_host_ctrl(options, system) HMC.config_hmc_dev(options, system, HMChost.hmc_host) subsystem = system.hmc_dev xbar = system.hmc_dev.xbar else: subsystem = system xbar = system.membus if opt_tlm_memory: system.external_memory = m5.objects.ExternalSlave( port_type="tlm_slave", port_data=opt_tlm_memory, port=system.membus.master, addr_ranges=system.mem_ranges) system.workload.addr_check = False return if opt_external_memory_system: subsystem.external_memory = m5.objects.ExternalSlave( port_type=opt_external_memory_system, port_data="init_mem0", port=xbar.master, addr_ranges=system.mem_ranges) subsystem.workload.addr_check = False return nbr_mem_ctrls = opt_mem_channels import math from m5.util import fatal intlv_bits = int(math.log(nbr_mem_ctrls, 2)) if 2**intlv_bits != nbr_mem_ctrls: fatal("Number of memory channels must be a power of 2") cls = ObjectList.mem_list.get(opt_mem_type) mem_ctrls = [] if opt_elastic_trace_en and not issubclass(cls, m5.objects.SimpleMemory): fatal("When elastic trace is enabled, configure mem-type as " "simple-mem.") # The default behaviour is to interleave memory channels on 128 # byte granularity, or cache line granularity if larger than 128 # byte. This value is based on the locality seen across a large # range of workloads. intlv_size = max(opt_mem_channels_intlv, system.cache_line_size.value) # For every range (most systems will only have one), create an # array of controllers and set their parameters to match their # address mapping in the case of a DRAM for r in system.mem_ranges: for i in range(nbr_mem_ctrls): mem_ctrl = create_mem_ctrl(cls, r, i, nbr_mem_ctrls, intlv_bits, intlv_size) # Set the number of ranks based on the command-line # options if it was explicitly set if issubclass(cls, m5.objects.DRAMCtrl) and opt_mem_ranks: mem_ctrl.ranks_per_channel = opt_mem_ranks # Enable low-power DRAM states if option is set if issubclass(cls, m5.objects.DRAMCtrl): mem_ctrl.enable_dram_powerdown = opt_dram_powerdown if opt_elastic_trace_en: mem_ctrl.latency = '1ns' print("For elastic trace, over-riding Simple Memory " "latency to 1ns.") mem_ctrls.append(mem_ctrl) subsystem.mem_ctrls = mem_ctrls # Connect the controllers to the membus for i in range(len(subsystem.mem_ctrls)): if opt_mem_type == "HMC_2500_1x32": subsystem.mem_ctrls[i].port = xbar[i / 4].master # Set memory device size. There is an independent controller for # each vault. All vaults are same size. subsystem.mem_ctrls[i].device_size = options.hmc_dev_vault_size else: subsystem.mem_ctrls[i].port = xbar.master