def fluxes(my_data, rp, ivars, solid, tc): """ unsplitFluxes returns the fluxes through the x and y interfaces by doing an unsplit reconstruction of the interface values and then solving the Riemann problem through all the interfaces at once currently we assume a gamma-law EOS Parameters ---------- my_data : CellCenterData2d object The data object containing the grid and advective scalar that we are advecting. rp : RuntimeParameters object The runtime parameters for the simulation vars : Variables object The Variables object that tells us which indices refer to which variables tc : TimerCollection object The timers we are using to profile Returns ------- out : ndarray, ndarray The fluxes on the x- and y-interfaces """ tm_flux = tc.timer("unsplitFluxes") tm_flux.begin() myg = my_data.grid gamma = rp.get_param("eos.gamma") # ========================================================================= # compute the primitive variables # ========================================================================= # Q = (rho, u, v, p) q = comp.cons_to_prim(my_data.data, gamma, ivars, myg) # ========================================================================= # compute the flattening coefficients # ========================================================================= # there is a single flattening coefficient (xi) for all directions use_flattening = rp.get_param("compressible.use_flattening") if use_flattening: xi_x = reconstruction.flatten(myg, q, 1, ivars, rp) xi_y = reconstruction.flatten(myg, q, 2, ivars, rp) xi = reconstruction.flatten_multid(myg, q, xi_x, xi_y, ivars) else: xi = 1.0 # monotonized central differences in x-direction tm_limit = tc.timer("limiting") tm_limit.begin() limiter = rp.get_param("compressible.limiter") ldx = myg.scratch_array(nvar=ivars.nvar) ldy = myg.scratch_array(nvar=ivars.nvar) for n in range(ivars.nvar): ldx[:, :, n] = xi * reconstruction.limit(q[:, :, n], myg, 1, limiter) ldy[:, :, n] = xi * reconstruction.limit(q[:, :, n], myg, 2, limiter) tm_limit.end() # if we are doing a well-balanced scheme, then redo the pressure # note: we only have gravity in the y direction, so we will only # modify the y pressure slope well_balanced = rp.get_param("compressible.well_balanced") grav = rp.get_param("compressible.grav") if well_balanced: ldy[:, :, ivars.ip] = reconstruction.well_balance(q, myg, limiter, ivars, grav) # ========================================================================= # x-direction # ========================================================================= # left and right primitive variable states tm_states = tc.timer("interfaceStates") tm_states.begin() V_l = myg.scratch_array(ivars.nvar) V_r = myg.scratch_array(ivars.nvar) for n in range(ivars.nvar): V_l.ip(1, n=n, buf=2)[:, :] = q.v(n=n, buf=2) + 0.5 * ldx.v(n=n, buf=2) V_r.v(n=n, buf=2)[:, :] = q.v(n=n, buf=2) - 0.5 * ldx.v(n=n, buf=2) tm_states.end() # transform interface states back into conserved variables U_xl = comp.prim_to_cons(V_l, gamma, ivars, myg) U_xr = comp.prim_to_cons(V_r, gamma, ivars, myg) # ========================================================================= # y-direction # ========================================================================= # left and right primitive variable states tm_states.begin() for n in range(ivars.nvar): if well_balanced and n == ivars.ip: # we want to do p0 + p1 on the interfaces. We found the # limited slope for p1 (it's average is 0). So now we # need p0 on the interface too V_l.jp(1, n=n, buf=2)[:, :] = q.v(n=ivars.ip, buf=2) + \ 0.5 * myg.dy * q.v(n=ivars.irho, buf=2) * \ grav + 0.5 * ldy.v(n=ivars.ip, buf=2) V_r.v(n=n, buf=2)[:, :] = q.v(n=ivars.ip, buf=2) - \ 0.5 * myg.dy * q.v(n=ivars.irho, buf=2) * \ grav - 0.5 * ldy.v(n=ivars.ip, buf=2) else: V_l.jp(1, n=n, buf=2)[:, :] = q.v(n=n, buf=2) + 0.5 * ldy.v(n=n, buf=2) V_r.v(n=n, buf=2)[:, :] = q.v(n=n, buf=2) - 0.5 * ldy.v(n=n, buf=2) tm_states.end() # transform interface states back into conserved variables U_yl = comp.prim_to_cons(V_l, gamma, ivars, myg) U_yr = comp.prim_to_cons(V_r, gamma, ivars, myg) # ========================================================================= # construct the fluxes normal to the interfaces # ========================================================================= tm_riem = tc.timer("Riemann") tm_riem.begin() riemann = rp.get_param("compressible.riemann") if riemann == "HLLC": riemannFunc = interface.riemann_hllc elif riemann == "CGF": riemannFunc = interface.riemann_cgf else: msg.fail("ERROR: Riemann solver undefined") _fx = riemannFunc(1, myg.ng, ivars.idens, ivars.ixmom, ivars.iymom, ivars.iener, ivars.irhox, ivars.naux, solid.xl, solid.xr, gamma, U_xl, U_xr) _fy = riemannFunc(2, myg.ng, ivars.idens, ivars.ixmom, ivars.iymom, ivars.iener, ivars.irhox, ivars.naux, solid.yl, solid.yr, gamma, U_yl, U_yr) F_x = ai.ArrayIndexer(d=_fx, grid=myg) F_y = ai.ArrayIndexer(d=_fy, grid=myg) tm_riem.end() # ========================================================================= # apply artificial viscosity # ========================================================================= cvisc = rp.get_param("compressible.cvisc") _ax, _ay = interface.artificial_viscosity(myg.ng, myg.dx, myg.dy, cvisc, q.v(n=ivars.iu, buf=myg.ng), q.v(n=ivars.iv, buf=myg.ng)) avisco_x = ai.ArrayIndexer(d=_ax, grid=myg) avisco_y = ai.ArrayIndexer(d=_ay, grid=myg) b = (2, 1) for n in range(ivars.nvar): # F_x = F_x + avisco_x * (U(i-1,j) - U(i,j)) var = my_data.get_var_by_index(n) F_x.v(buf=b, n=n)[:, :] += \ avisco_x.v(buf=b) * (var.ip(-1, buf=b) - var.v(buf=b)) # F_y = F_y + avisco_y * (U(i,j-1) - U(i,j)) F_y.v(buf=b, n=n)[:, :] += \ avisco_y.v(buf=b) * (var.jp(-1, buf=b) - var.v(buf=b)) tm_flux.end() return F_x, F_y
def unsplit_fluxes(my_data, my_aux, rp, ivars, solid, tc, dt): """ unsplitFluxes returns the fluxes through the x and y interfaces by doing an unsplit reconstruction of the interface values and then solving the Riemann problem through all the interfaces at once currently we assume a gamma-law EOS The runtime parameter grav is assumed to be the gravitational acceleration in the y-direction Parameters ---------- my_data : CellCenterData2d object The data object containing the grid and advective scalar that we are advecting. rp : RuntimeParameters object The runtime parameters for the simulation vars : Variables object The Variables object that tells us which indices refer to which variables tc : TimerCollection object The timers we are using to profile dt : float The timestep we are advancing through. Returns ------- out : ndarray, ndarray The fluxes on the x- and y-interfaces """ tm_flux = tc.timer("unsplitFluxes") tm_flux.begin() myg = my_data.grid gamma = rp.get_param("eos.gamma") # ========================================================================= # compute the primitive variables # ========================================================================= # Q = (rho, u, v, p, {X}) dens = my_data.get_var("density") ymom = my_data.get_var("y-momentum") q = comp.cons_to_prim(my_data.data, gamma, ivars, myg) # ========================================================================= # compute the flattening coefficients # ========================================================================= # there is a single flattening coefficient (xi) for all directions use_flattening = rp.get_param("compressible.use_flattening") if use_flattening: xi_x = reconstruction.flatten(myg, q, 1, ivars, rp) xi_y = reconstruction.flatten(myg, q, 2, ivars, rp) xi = reconstruction.flatten_multid(myg, q, xi_x, xi_y, ivars) else: xi = 1.0 # monotonized central differences tm_limit = tc.timer("limiting") tm_limit.begin() limiter = rp.get_param("compressible.limiter") ldx = myg.scratch_array(nvar=ivars.nvar) ldy = myg.scratch_array(nvar=ivars.nvar) for n in range(ivars.nvar): ldx[:, :, n] = xi*reconstruction.limit(q[:, :, n], myg, 1, limiter) ldy[:, :, n] = xi*reconstruction.limit(q[:, :, n], myg, 2, limiter) tm_limit.end() # ========================================================================= # x-direction # ========================================================================= # left and right primitive variable states tm_states = tc.timer("interfaceStates") tm_states.begin() V_l, V_r = ifc.states(1, myg.ng, myg.dx, dt, ivars.irho, ivars.iu, ivars.iv, ivars.ip, ivars.ix, ivars.naux, gamma, q, ldx) tm_states.end() # transform interface states back into conserved variables U_xl = comp.prim_to_cons(V_l, gamma, ivars, myg) U_xr = comp.prim_to_cons(V_r, gamma, ivars, myg) # ========================================================================= # y-direction # ========================================================================= # left and right primitive variable states tm_states.begin() _V_l, _V_r = ifc.states(2, myg.ng, myg.dy, dt, ivars.irho, ivars.iu, ivars.iv, ivars.ip, ivars.ix, ivars.naux, gamma, q, ldy) V_l = ai.ArrayIndexer(d=_V_l, grid=myg) V_r = ai.ArrayIndexer(d=_V_r, grid=myg) tm_states.end() # transform interface states back into conserved variables U_yl = comp.prim_to_cons(V_l, gamma, ivars, myg) U_yr = comp.prim_to_cons(V_r, gamma, ivars, myg) # ========================================================================= # apply source terms # ========================================================================= grav = rp.get_param("compressible.grav") ymom_src = my_aux.get_var("ymom_src") ymom_src.v()[:, :] = dens.v()*grav my_aux.fill_BC("ymom_src") E_src = my_aux.get_var("E_src") E_src.v()[:, :] = ymom.v()*grav my_aux.fill_BC("E_src") # ymom_xl[i,j] += 0.5*dt*dens[i-1,j]*grav U_xl.v(buf=1, n=ivars.iymom)[:, :] += 0.5*dt*ymom_src.ip(-1, buf=1) U_xl.v(buf=1, n=ivars.iener)[:, :] += 0.5*dt*E_src.ip(-1, buf=1) # ymom_xr[i,j] += 0.5*dt*dens[i,j]*grav U_xr.v(buf=1, n=ivars.iymom)[:, :] += 0.5*dt*ymom_src.v(buf=1) U_xr.v(buf=1, n=ivars.iener)[:, :] += 0.5*dt*E_src.v(buf=1) # ymom_yl[i,j] += 0.5*dt*dens[i,j-1]*grav U_yl.v(buf=1, n=ivars.iymom)[:, :] += 0.5*dt*ymom_src.jp(-1, buf=1) U_yl.v(buf=1, n=ivars.iener)[:, :] += 0.5*dt*E_src.jp(-1, buf=1) # ymom_yr[i,j] += 0.5*dt*dens[i,j]*grav U_yr.v(buf=1, n=ivars.iymom)[:, :] += 0.5*dt*ymom_src.v(buf=1) U_yr.v(buf=1, n=ivars.iener)[:, :] += 0.5*dt*E_src.v(buf=1) # ========================================================================= # compute transverse fluxes # ========================================================================= tm_riem = tc.timer("riemann") tm_riem.begin() riemann = rp.get_param("compressible.riemann") if riemann == "HLLC": riemannFunc = ifc.riemann_hllc elif riemann == "CGF": riemannFunc = ifc.riemann_cgf else: msg.fail("ERROR: Riemann solver undefined") _fx = riemannFunc(1, myg.ng, ivars.idens, ivars.ixmom, ivars.iymom, ivars.iener, ivars.irhox, ivars.naux, solid.xl, solid.xr, gamma, U_xl, U_xr) _fy = riemannFunc(2, myg.ng, ivars.idens, ivars.ixmom, ivars.iymom, ivars.iener, ivars.irhox, ivars.naux, solid.yl, solid.yr, gamma, U_yl, U_yr) F_x = ai.ArrayIndexer(d=_fx, grid=myg) F_y = ai.ArrayIndexer(d=_fy, grid=myg) tm_riem.end() # ========================================================================= # construct the interface values of U now # ========================================================================= """ finally, we can construct the state perpendicular to the interface by adding the central difference part to the trasverse flux difference. The states that we represent by indices i,j are shown below (1,2,3,4): j+3/2--+----------+----------+----------+ | | | | | | | | j+1 -+ | | | | | | | | | | | 1: U_xl[i,j,:] = U j+1/2--+----------XXXXXXXXXXXX----------+ i-1/2,j,L | X X | | X X | j -+ 1 X 2 X | 2: U_xr[i,j,:] = U | X X | i-1/2,j,R | X 4 X | j-1/2--+----------XXXXXXXXXXXX----------+ | | 3 | | 3: U_yl[i,j,:] = U | | | | i,j-1/2,L j-1 -+ | | | | | | | | | | | 4: U_yr[i,j,:] = U j-3/2--+----------+----------+----------+ i,j-1/2,R | | | | | | | i-1 i i+1 i-3/2 i-1/2 i+1/2 i+3/2 remember that the fluxes are stored on the left edge, so F_x[i,j,:] = F_x i-1/2, j F_y[i,j,:] = F_y i, j-1/2 """ tm_transverse = tc.timer("transverse flux addition") tm_transverse.begin() dtdx = dt/myg.dx dtdy = dt/myg.dy b = (2, 1) for n in range(ivars.nvar): # U_xl[i,j,:] = U_xl[i,j,:] - 0.5*dt/dy * (F_y[i-1,j+1,:] - F_y[i-1,j,:]) U_xl.v(buf=b, n=n)[:, :] += \ - 0.5*dtdy*(F_y.ip_jp(-1, 1, buf=b, n=n) - F_y.ip(-1, buf=b, n=n)) # U_xr[i,j,:] = U_xr[i,j,:] - 0.5*dt/dy * (F_y[i,j+1,:] - F_y[i,j,:]) U_xr.v(buf=b, n=n)[:, :] += \ - 0.5*dtdy*(F_y.jp(1, buf=b, n=n) - F_y.v(buf=b, n=n)) # U_yl[i,j,:] = U_yl[i,j,:] - 0.5*dt/dx * (F_x[i+1,j-1,:] - F_x[i,j-1,:]) U_yl.v(buf=b, n=n)[:, :] += \ - 0.5*dtdx*(F_x.ip_jp(1, -1, buf=b, n=n) - F_x.jp(-1, buf=b, n=n)) # U_yr[i,j,:] = U_yr[i,j,:] - 0.5*dt/dx * (F_x[i+1,j,:] - F_x[i,j,:]) U_yr.v(buf=b, n=n)[:, :] += \ - 0.5*dtdx*(F_x.ip(1, buf=b, n=n) - F_x.v(buf=b, n=n)) tm_transverse.end() # ========================================================================= # construct the fluxes normal to the interfaces # ========================================================================= # up until now, F_x and F_y stored the transverse fluxes, now we # overwrite with the fluxes normal to the interfaces tm_riem.begin() _fx = riemannFunc(1, myg.ng, ivars.idens, ivars.ixmom, ivars.iymom, ivars.iener, ivars.irhox, ivars.naux, solid.xl, solid.xr, gamma, U_xl, U_xr) _fy = riemannFunc(2, myg.ng, ivars.idens, ivars.ixmom, ivars.iymom, ivars.iener, ivars.irhox, ivars.naux, solid.yl, solid.yr, gamma, U_yl, U_yr) F_x = ai.ArrayIndexer(d=_fx, grid=myg) F_y = ai.ArrayIndexer(d=_fy, grid=myg) tm_riem.end() # ========================================================================= # apply artificial viscosity # ========================================================================= cvisc = rp.get_param("compressible.cvisc") _ax, _ay = ifc.artificial_viscosity(myg.ng, myg.dx, myg.dy, cvisc, q.v(n=ivars.iu, buf=myg.ng), q.v(n=ivars.iv, buf=myg.ng)) avisco_x = ai.ArrayIndexer(d=_ax, grid=myg) avisco_y = ai.ArrayIndexer(d=_ay, grid=myg) b = (2, 1) for n in range(ivars.nvar): # F_x = F_x + avisco_x * (U(i-1,j) - U(i,j)) var = my_data.get_var_by_index(n) F_x.v(buf=b, n=n)[:, :] += \ avisco_x.v(buf=b)*(var.ip(-1, buf=b) - var.v(buf=b)) # F_y = F_y + avisco_y * (U(i,j-1) - U(i,j)) F_y.v(buf=b, n=n)[:, :] += \ avisco_y.v(buf=b)*(var.jp(-1, buf=b) - var.v(buf=b)) tm_flux.end() return F_x, F_y
def fluxes(my_data, rp, ivars, solid, tc): """ unsplitFluxes returns the fluxes through the x and y interfaces by doing an unsplit reconstruction of the interface values and then solving the Riemann problem through all the interfaces at once currently we assume a gamma-law EOS Parameters ---------- my_data : CellCenterData2d object The data object containing the grid and advective scalar that we are advecting. rp : RuntimeParameters object The runtime parameters for the simulation vars : Variables object The Variables object that tells us which indices refer to which variables tc : TimerCollection object The timers we are using to profile Returns ------- out : ndarray, ndarray The fluxes on the x- and y-interfaces """ tm_flux = tc.timer("unsplitFluxes") tm_flux.begin() myg = my_data.grid gamma = rp.get_param("eos.gamma") # ========================================================================= # compute the primitive variables # ========================================================================= # Q = (rho, u, v, p) q = comp.cons_to_prim(my_data.data, gamma, ivars, myg) # ========================================================================= # compute the flattening coefficients # ========================================================================= # there is a single flattening coefficient (xi) for all directions use_flattening = rp.get_param("compressible.use_flattening") if use_flattening: xi_x = reconstruction.flatten(myg, q, 1, ivars, rp) xi_y = reconstruction.flatten(myg, q, 2, ivars, rp) xi = reconstruction.flatten_multid(myg, q, xi_x, xi_y, ivars) else: xi = 1.0 # monotonized central differences in x-direction tm_limit = tc.timer("limiting") tm_limit.begin() limiter = rp.get_param("compressible.limiter") ldx = myg.scratch_array(nvar=ivars.nvar) ldy = myg.scratch_array(nvar=ivars.nvar) for n in range(ivars.nvar): ldx[:, :, n] = xi * reconstruction.limit(q[:, :, n], myg, 1, limiter) ldy[:, :, n] = xi * reconstruction.limit(q[:, :, n], myg, 2, limiter) tm_limit.end() # if we are doing a well-balanced scheme, then redo the pressure # note: we only have gravity in the y direction, so we will only # modify the y pressure slope well_balanced = rp.get_param("compressible.well_balanced") grav = rp.get_param("compressible.grav") if well_balanced: ldy[:, :, ivars.ip] = reconstruction.well_balance( q, myg, limiter, ivars, grav) # ========================================================================= # x-direction # ========================================================================= # left and right primitive variable states tm_states = tc.timer("interfaceStates") tm_states.begin() V_l = myg.scratch_array(ivars.nvar) V_r = myg.scratch_array(ivars.nvar) for n in range(ivars.nvar): V_l.ip(1, n=n, buf=2)[:, :] = q.v(n=n, buf=2) + 0.5 * ldx.v(n=n, buf=2) V_r.v(n=n, buf=2)[:, :] = q.v(n=n, buf=2) - 0.5 * ldx.v(n=n, buf=2) tm_states.end() # transform interface states back into conserved variables U_xl = comp.prim_to_cons(V_l, gamma, ivars, myg) U_xr = comp.prim_to_cons(V_r, gamma, ivars, myg) # ========================================================================= # y-direction # ========================================================================= # left and right primitive variable states tm_states.begin() for n in range(ivars.nvar): if well_balanced and n == ivars.ip: # we want to do p0 + p1 on the interfaces. We found the # limited slope for p1 (it's average is 0). So now we # need p0 on the interface too V_l.jp(1, n=n, buf=2)[:, :] = q.v(n=ivars.ip, buf=2) + \ 0.5 * myg.dy * q.v(n=ivars.irho, buf=2) * \ grav + 0.5 * ldy.v(n=ivars.ip, buf=2) V_r.v(n=n, buf=2)[:, :] = q.v(n=ivars.ip, buf=2) - \ 0.5 * myg.dy * q.v(n=ivars.irho, buf=2) * \ grav - 0.5 * ldy.v(n=ivars.ip, buf=2) else: V_l.jp(1, n=n, buf=2)[:, :] = q.v( n=n, buf=2) + 0.5 * ldy.v(n=n, buf=2) V_r.v(n=n, buf=2)[:, :] = q.v(n=n, buf=2) - 0.5 * ldy.v(n=n, buf=2) tm_states.end() # transform interface states back into conserved variables U_yl = comp.prim_to_cons(V_l, gamma, ivars, myg) U_yr = comp.prim_to_cons(V_r, gamma, ivars, myg) # ========================================================================= # construct the fluxes normal to the interfaces # ========================================================================= tm_riem = tc.timer("Riemann") tm_riem.begin() riemann = rp.get_param("compressible.riemann") if riemann == "HLLC": riemannFunc = interface.riemann_hllc elif riemann == "CGF": riemannFunc = interface.riemann_cgf else: msg.fail("ERROR: Riemann solver undefined") _fx = riemannFunc(1, myg.ng, ivars.idens, ivars.ixmom, ivars.iymom, ivars.iener, ivars.irhox, ivars.naux, solid.xl, solid.xr, gamma, U_xl, U_xr) _fy = riemannFunc(2, myg.ng, ivars.idens, ivars.ixmom, ivars.iymom, ivars.iener, ivars.irhox, ivars.naux, solid.yl, solid.yr, gamma, U_yl, U_yr) F_x = ai.ArrayIndexer(d=_fx, grid=myg) F_y = ai.ArrayIndexer(d=_fy, grid=myg) tm_riem.end() # ========================================================================= # apply artificial viscosity # ========================================================================= cvisc = rp.get_param("compressible.cvisc") _ax, _ay = interface.artificial_viscosity(myg.ng, myg.dx, myg.dy, cvisc, q.v(n=ivars.iu, buf=myg.ng), q.v(n=ivars.iv, buf=myg.ng)) avisco_x = ai.ArrayIndexer(d=_ax, grid=myg) avisco_y = ai.ArrayIndexer(d=_ay, grid=myg) b = (2, 1) for n in range(ivars.nvar): # F_x = F_x + avisco_x * (U(i-1,j) - U(i,j)) var = my_data.get_var_by_index(n) F_x.v(buf=b, n=n)[:, :] += \ avisco_x.v(buf=b) * (var.ip(-1, buf=b) - var.v(buf=b)) # F_y = F_y + avisco_y * (U(i,j-1) - U(i,j)) F_y.v(buf=b, n=n)[:, :] += \ avisco_y.v(buf=b) * (var.jp(-1, buf=b) - var.v(buf=b)) tm_flux.end() return F_x, F_y
def unsplit_fluxes(my_data, my_aux, rp, ivars, solid, tc, dt): """ unsplitFluxes returns the fluxes through the x and y interfaces by doing an unsplit reconstruction of the interface values and then solving the Riemann problem through all the interfaces at once currently we assume a gamma-law EOS The runtime parameter grav is assumed to be the gravitational acceleration in the y-direction Parameters ---------- my_data : CellCenterData2d object The data object containing the grid and advective scalar that we are advecting. rp : RuntimeParameters object The runtime parameters for the simulation vars : Variables object The Variables object that tells us which indices refer to which variables tc : TimerCollection object The timers we are using to profile dt : float The timestep we are advancing through. Returns ------- out : ndarray, ndarray The fluxes on the x- and y-interfaces """ tm_flux = tc.timer("unsplitFluxes") tm_flux.begin() myg = my_data.grid gamma = rp.get_param("eos.gamma") # ========================================================================= # compute the primitive variables # ========================================================================= # Q = (rho, u, v, p, {X}) dens = my_data.get_var("density") ymom = my_data.get_var("y-momentum") q = comp.cons_to_prim(my_data.data, gamma, ivars, myg) # ========================================================================= # compute the flattening coefficients # ========================================================================= # there is a single flattening coefficient (xi) for all directions use_flattening = rp.get_param("compressible.use_flattening") if use_flattening: xi_x = reconstruction.flatten(myg, q, 1, ivars, rp) xi_y = reconstruction.flatten(myg, q, 2, ivars, rp) xi = reconstruction.flatten_multid(myg, q, xi_x, xi_y, ivars) else: xi = 1.0 # monotonized central differences tm_limit = tc.timer("limiting") tm_limit.begin() limiter = rp.get_param("compressible.limiter") ldx = myg.scratch_array(nvar=ivars.nvar) ldy = myg.scratch_array(nvar=ivars.nvar) for n in range(ivars.nvar): ldx[:, :, n] = xi * reconstruction.limit(q[:, :, n], myg, 1, limiter) ldy[:, :, n] = xi * reconstruction.limit(q[:, :, n], myg, 2, limiter) tm_limit.end() # ========================================================================= # x-direction # ========================================================================= # left and right primitive variable states tm_states = tc.timer("interfaceStates") tm_states.begin() V_l, V_r = ifc.states(1, myg.qx, myg.qy, myg.ng, myg.dx, dt, ivars.irho, ivars.iu, ivars.iv, ivars.ip, ivars.ix, ivars.nvar, ivars.naux, gamma, q, ldx) tm_states.end() # transform interface states back into conserved variables U_xl = comp.prim_to_cons(V_l, gamma, ivars, myg) U_xr = comp.prim_to_cons(V_r, gamma, ivars, myg) # ========================================================================= # y-direction # ========================================================================= # left and right primitive variable states tm_states.begin() _V_l, _V_r = ifc.states(2, myg.qx, myg.qy, myg.ng, myg.dy, dt, ivars.irho, ivars.iu, ivars.iv, ivars.ip, ivars.ix, ivars.nvar, ivars.naux, gamma, q, ldy) V_l = ai.ArrayIndexer(d=_V_l, grid=myg) V_r = ai.ArrayIndexer(d=_V_r, grid=myg) tm_states.end() # transform interface states back into conserved variables U_yl = comp.prim_to_cons(V_l, gamma, ivars, myg) U_yr = comp.prim_to_cons(V_r, gamma, ivars, myg) # ========================================================================= # apply source terms # ========================================================================= grav = rp.get_param("compressible.grav") ymom_src = my_aux.get_var("ymom_src") ymom_src.v()[:, :] = dens.v() * grav my_aux.fill_BC("ymom_src") E_src = my_aux.get_var("E_src") E_src.v()[:, :] = ymom.v() * grav my_aux.fill_BC("E_src") # ymom_xl[i,j] += 0.5*dt*dens[i-1,j]*grav U_xl.v(buf=1, n=ivars.iymom)[:, :] += 0.5 * dt * ymom_src.ip(-1, buf=1) U_xl.v(buf=1, n=ivars.iener)[:, :] += 0.5 * dt * E_src.ip(-1, buf=1) # ymom_xr[i,j] += 0.5*dt*dens[i,j]*grav U_xr.v(buf=1, n=ivars.iymom)[:, :] += 0.5 * dt * ymom_src.v(buf=1) U_xr.v(buf=1, n=ivars.iener)[:, :] += 0.5 * dt * E_src.v(buf=1) # ymom_yl[i,j] += 0.5*dt*dens[i,j-1]*grav U_yl.v(buf=1, n=ivars.iymom)[:, :] += 0.5 * dt * ymom_src.jp(-1, buf=1) U_yl.v(buf=1, n=ivars.iener)[:, :] += 0.5 * dt * E_src.jp(-1, buf=1) # ymom_yr[i,j] += 0.5*dt*dens[i,j]*grav U_yr.v(buf=1, n=ivars.iymom)[:, :] += 0.5 * dt * ymom_src.v(buf=1) U_yr.v(buf=1, n=ivars.iener)[:, :] += 0.5 * dt * E_src.v(buf=1) # ========================================================================= # compute transverse fluxes # ========================================================================= tm_riem = tc.timer("riemann") tm_riem.begin() riemann = rp.get_param("compressible.riemann") if riemann == "HLLC": riemannFunc = ifc.riemann_hllc elif riemann == "CGF": riemannFunc = ifc.riemann_cgf else: msg.fail("ERROR: Riemann solver undefined") _fx = riemannFunc(1, myg.qx, myg.qy, myg.ng, ivars.nvar, ivars.idens, ivars.ixmom, ivars.iymom, ivars.iener, ivars.irhox, ivars.naux, solid.xl, solid.xr, gamma, U_xl, U_xr) _fy = riemannFunc(2, myg.qx, myg.qy, myg.ng, ivars.nvar, ivars.idens, ivars.ixmom, ivars.iymom, ivars.iener, ivars.irhox, ivars.naux, solid.yl, solid.yr, gamma, U_yl, U_yr) F_x = ai.ArrayIndexer(d=_fx, grid=myg) F_y = ai.ArrayIndexer(d=_fy, grid=myg) tm_riem.end() # ========================================================================= # construct the interface values of U now # ========================================================================= """ finally, we can construct the state perpendicular to the interface by adding the central difference part to the trasverse flux difference. The states that we represent by indices i,j are shown below (1,2,3,4): j+3/2--+----------+----------+----------+ | | | | | | | | j+1 -+ | | | | | | | | | | | 1: U_xl[i,j,:] = U j+1/2--+----------XXXXXXXXXXXX----------+ i-1/2,j,L | X X | | X X | j -+ 1 X 2 X | 2: U_xr[i,j,:] = U | X X | i-1/2,j,R | X 4 X | j-1/2--+----------XXXXXXXXXXXX----------+ | | 3 | | 3: U_yl[i,j,:] = U | | | | i,j-1/2,L j-1 -+ | | | | | | | | | | | 4: U_yr[i,j,:] = U j-3/2--+----------+----------+----------+ i,j-1/2,R | | | | | | | i-1 i i+1 i-3/2 i-1/2 i+1/2 i+3/2 remember that the fluxes are stored on the left edge, so F_x[i,j,:] = F_x i-1/2, j F_y[i,j,:] = F_y i, j-1/2 """ tm_transverse = tc.timer("transverse flux addition") tm_transverse.begin() dtdx = dt / myg.dx dtdy = dt / myg.dy b = (2, 1) for n in range(ivars.nvar): # U_xl[i,j,:] = U_xl[i,j,:] - 0.5*dt/dy * (F_y[i-1,j+1,:] - F_y[i-1,j,:]) U_xl.v(buf=b, n=n)[:, :] += \ - 0.5*dtdy*(F_y.ip_jp(-1, 1, buf=b, n=n) - F_y.ip(-1, buf=b, n=n)) # U_xr[i,j,:] = U_xr[i,j,:] - 0.5*dt/dy * (F_y[i,j+1,:] - F_y[i,j,:]) U_xr.v(buf=b, n=n)[:, :] += \ - 0.5*dtdy*(F_y.jp(1, buf=b, n=n) - F_y.v(buf=b, n=n)) # U_yl[i,j,:] = U_yl[i,j,:] - 0.5*dt/dx * (F_x[i+1,j-1,:] - F_x[i,j-1,:]) U_yl.v(buf=b, n=n)[:, :] += \ - 0.5*dtdx*(F_x.ip_jp(1, -1, buf=b, n=n) - F_x.jp(-1, buf=b, n=n)) # U_yr[i,j,:] = U_yr[i,j,:] - 0.5*dt/dx * (F_x[i+1,j,:] - F_x[i,j,:]) U_yr.v(buf=b, n=n)[:, :] += \ - 0.5*dtdx*(F_x.ip(1, buf=b, n=n) - F_x.v(buf=b, n=n)) tm_transverse.end() # ========================================================================= # construct the fluxes normal to the interfaces # ========================================================================= # up until now, F_x and F_y stored the transverse fluxes, now we # overwrite with the fluxes normal to the interfaces tm_riem.begin() _fx = riemannFunc(1, myg.qx, myg.qy, myg.ng, ivars.nvar, ivars.idens, ivars.ixmom, ivars.iymom, ivars.iener, ivars.irhox, ivars.naux, solid.xl, solid.xr, gamma, U_xl, U_xr) _fy = riemannFunc(2, myg.qx, myg.qy, myg.ng, ivars.nvar, ivars.idens, ivars.ixmom, ivars.iymom, ivars.iener, ivars.irhox, ivars.naux, solid.yl, solid.yr, gamma, U_yl, U_yr) F_x = ai.ArrayIndexer(d=_fx, grid=myg) F_y = ai.ArrayIndexer(d=_fy, grid=myg) tm_riem.end() # ========================================================================= # apply artificial viscosity # ========================================================================= cvisc = rp.get_param("compressible.cvisc") _ax, _ay = ifc.artificial_viscosity(myg.qx, myg.qy, myg.ng, myg.dx, myg.dy, cvisc, q.v(n=ivars.iu, buf=myg.ng), q.v(n=ivars.iv, buf=myg.ng)) avisco_x = ai.ArrayIndexer(d=_ax, grid=myg) avisco_y = ai.ArrayIndexer(d=_ay, grid=myg) b = (2, 1) for n in range(ivars.nvar): # F_x = F_x + avisco_x * (U(i-1,j) - U(i,j)) var = my_data.get_var_by_index(n) F_x.v(buf=b, n=n)[:, :] += \ avisco_x.v(buf=b)*(var.ip(-1, buf=b) - var.v(buf=b)) # F_y = F_y + avisco_y * (U(i,j-1) - U(i,j)) F_y.v(buf=b, n=n)[:, :] += \ avisco_y.v(buf=b)*(var.jp(-1, buf=b) - var.v(buf=b)) tm_flux.end() return F_x, F_y