def build_mlps(kind, PV,true_out ,path, datasets, name): conf = read_parser(path) learning_rate = float( conf['parm']['learning_rate']) L1_reg = float( conf['parm']['l1_reg']) L2_reg = float( conf['parm']['l2_reg']) n_epochs = int( conf['parm']['n_epochs']) batch_size = int( conf['parm']['batch_size']) pre_run = int( conf['parm']['pre_run']) n_in = int( conf['input_layer']['input_num']) n_hidden = [] h_activation = [] n_out = int( conf['out_layer']['out_num']) for i in xrange(len(conf)): tem = 'hidden_layer_' + str(i) if tem in conf.keys(): n_hidden.append(int(conf[tem]['hidden_num'])) h_activation.append(int(conf[tem]['activation'])) out = test_mlp(pre_run = pre_run, kind = kind, \ PV =PV, \ true_out = true_out, \ name = name, \ learning_rate=learning_rate, \ L1_reg=L1_reg, \ L2_reg=L2_reg, \ n_epochs=n_epochs, \ datasets=datasets, \ batch_size=batch_size, \ n_hidden=n_hidden, \ h_activation = h_activation, \ n_out=n_out) return out
def build_mlps(kind, PV, true_out, path, datasets, name): conf = read_parser(path) learning_rate = float(conf['parm']['learning_rate']) L1_reg = float(conf['parm']['l1_reg']) L2_reg = float(conf['parm']['l2_reg']) n_epochs = int(conf['parm']['n_epochs']) batch_size = int(conf['parm']['batch_size']) pre_run = int(conf['parm']['pre_run']) n_in = int(conf['input_layer']['input_num']) n_hidden = [] h_activation = [] n_out = int(conf['out_layer']['out_num']) for i in xrange(len(conf)): tem = 'hidden_layer_' + str(i) if tem in conf.keys(): n_hidden.append(int(conf[tem]['hidden_num'])) h_activation.append(int(conf[tem]['activation'])) out = test_mlp(pre_run = pre_run, kind = kind, \ PV =PV, \ true_out = true_out, \ name = name, \ learning_rate=learning_rate, \ L1_reg=L1_reg, \ L2_reg=L2_reg, \ n_epochs=n_epochs, \ datasets=datasets, \ batch_size=batch_size, \ n_hidden=n_hidden, \ h_activation = h_activation, \ n_out=n_out) return out
def build_cnn(path): conf = read_parser(path) learning_rate = float(conf['parm']['learning_rate']) n_epochs = int(conf['parm']['n_epochs']) batch_size = int(conf['parm']['batch_size']) input_layer = conf['input_layer'] ConvPool = {} hidden = {} lr_layer = conf['lr_layer'] for i in xrange(len(conf)): tem = 'ConvPool' + str(i) if tem in conf.keys(): ConvPool[tem] = conf[tem] print ConvPool for i in xrange(len(conf)): tem = 'hidden_layer_' + str(i) if tem in conf.keys(): hidden[tem] = conf[tem] print hidden """
def build_cnn(path): conf = read_parser(path) learning_rate = float( conf['parm']['learning_rate']) n_epochs = int( conf['parm']['n_epochs']) batch_size = int( conf['parm']['batch_size']) input_layer = conf['input_layer'] ConvPool = {} hidden = {} lr_layer = conf['lr_layer'] for i in xrange(len(conf)): tem = 'ConvPool' + str(i) if tem in conf.keys(): ConvPool[tem] = conf[tem] print ConvPool for i in xrange(len(conf)): tem = 'hidden_layer_' + str(i) if tem in conf.keys(): hidden[tem] = conf[tem] print hidden """
def build_dbn(kind, PV,true_out ,path, datasets, name): conf = read_parser(path) finetune_lr = float( conf['parm']['finetune_lr']) pretrain_lr = float( conf['parm']['pretrain_lr']) pretraining_epochs = int( conf['parm']['pretraining_epochs']) training_epochs = int( conf['parm']['training_epochs']) batch_size = int( conf['parm']['batch_size']) k = int( conf['parm']['k']) pre_run = int( conf['parm']['pre_run']) input_num = int( conf['input_layer']['input_num']) n_hidden = [] h_activation = [] out_num = int( conf['out_layer']['out_num']) for i in xrange(len(conf)): tem = 'hidden_layer_' + str(i) if tem in conf.keys(): n_hidden.append(int(conf[tem]['hidden_num'])) h_activation.append(int(conf[tem]['activation'])) print n_hidden out = test_DBN(pre_run = pre_run, kind = kind, \ PV =PV, \ true_out = true_out, \ path = path, \ k = k, \ name = name, \ finetune_lr=finetune_lr, \ pretraining_epochs=pretraining_epochs,\ training_epochs=training_epochs, \ pretrain_lr = pretrain_lr, \ datasets=datasets, \ batch_size=batch_size, \ hidden_layers_sizes=n_hidden , \ h_activation = h_activation , \ input_num=input_num, \ out_num=out_num) return out
def build_cnn(kind, PV, true_out, path, datasets, name): conf = read_parser(path) learning_rate = float(conf['parm']['learning_rate']) n_epochs = int(conf['parm']['n_epochs']) batch_size = int(conf['parm']['batch_size']) pre_run = int(conf['parm']['pre_run']) input_layer = conf['input_layer'] ConvPool = {} hidden = {} out_layer = conf['out_layer'] for i in xrange(len(conf)): tem = 'ConvPool' + str(i) if tem in conf.keys(): ConvPool[tem] = conf[tem] for i in xrange(len(conf)): tem = 'hidden_layer_' + str(i) if tem in conf.keys(): hidden[tem] = conf[tem] out = cnn( pre_run = pre_run, kind = kind, \ PV =PV, \ true_out = true_out, \ learning_rate = learning_rate, \ n_epochs = n_epochs, \ datasets =datasets, \ batch_size=batch_size, \ path = path , \ name = name, \ input_layer=input_layer, \ hidden=hidden, \ ConvPool=ConvPool, \ out_layer=out_layer) return out
def build_cnn(kind, PV,true_out ,path, datasets, name): conf = read_parser(path) learning_rate = float( conf['parm']['learning_rate']) n_epochs = int( conf['parm']['n_epochs']) batch_size = int( conf['parm']['batch_size']) pre_run = int( conf['parm']['pre_run']) input_layer = conf['input_layer'] ConvPool = {} hidden = {} out_layer = conf['out_layer'] for i in xrange(len(conf)): tem = 'ConvPool' + str(i) if tem in conf.keys(): ConvPool[tem] = conf[tem] for i in xrange(len(conf)): tem = 'hidden_layer_' + str(i) if tem in conf.keys(): hidden[tem] = conf[tem] out = cnn( pre_run = pre_run, kind = kind, \ PV =PV, \ true_out = true_out, \ learning_rate = learning_rate, \ n_epochs = n_epochs, \ datasets =datasets, \ batch_size=batch_size, \ path = path , \ name = name, \ input_layer=input_layer, \ hidden=hidden, \ ConvPool=ConvPool, \ out_layer=out_layer) return out