def writePricing(csv, resort, date, stayPrice, ticketPrice, bookingURL): length = len(resort) i = 0 while i < length: fields = (resort[i], date, stayPrice[i], ticketPrice[i], bookingURL[i]) csv.writerow(fields) i = i + 1
def writeWeather(csv, resort, updateDate, snowDepth, status): length = len(resort) i = 0 while i < length: fields = (resort[i], updateDate[i], snowDepth[i], status[i]) csv.writerow(fields) i = i + 1
def create_exchange_file(self, cr, uid, id, context=None): if isinstance(id,list): id = id[0] output_file = TemporaryFile('w+b') fieldnames = ['id', 'name','referential_id:id', 'type','do_not_update', 'mapping_template_id:id', 'encoding', 'format', 'search_filter','delimiter', 'folder_path', 'archive_folder_path', 'filename', 'action_before_all', 'action_after_all', 'action_before_each', 'action_after_each', 'check_if_import', 'pre_processing'] csv = FileCsvWriter(output_file, fieldnames, encoding="utf-8", writeheader=True, delimiter=',', quotechar='"') current_file = self.browse(cr, uid, id, context=context) row = { 'id': current_file.get_absolute_id(context=context), 'name': current_file.name, 'referential_id:id':current_file.referential_id.get_absolute_id(context=context), 'type': current_file.type, 'do_not_update': str(current_file.do_not_update), 'mapping_template_id:id': current_file.mapping_id.get_absolute_id(context=context), 'encoding': current_file.encoding, 'format': current_file.format, 'search_filter': current_file.search_filter or '', # 'lang' 'delimiter': current_file.delimiter, 'folder_path': current_file.folder_path or '', 'archive_folder_path': current_file.archive_folder_path or '', 'filename': current_file.filename, 'action_before_all': current_file.action_before_all or '', 'action_after_all': current_file.action_after_all or '', 'action_before_each': current_file.action_before_each or '', 'action_after_each': current_file.action_after_each or '', 'check_if_import': current_file.check_if_import or '', 'pre_processing': current_file.pre_processing or '', } csv.writerow(row) return self.pool.get('pop.up.file').open_output_file(cr, uid, 'file.exchange.csv', output_file, 'File Exchange Export', context=context)
def writeOutput(rows, ofile): """ Function that will write the output file for Cybersource """ csv = open_csv(ofile, "w", config.get('OrderGroove', 'outputColumnNames').split(',')) csv.writeheader() for k in rows.keys(): csv.writerow(rows[k])
def writeFlight(csv, city, resort, date, trip): length = len(resort) i = 0 while i < length: fields = (city, resort[i], date, trip[i][0], trip[i][1]) csv.writerow(fields) i = i + 1
def volcar_info(pdp, csv): producto = pdp.productoVenta and pdp.productoVenta nombre_producto = producto and producto.descripcion or "" prod_estandar_parte = pdp.prodestandar prod_estandar_producto = producto and producto.prodestandar or "" fecha = utils.str_fecha(pdp.fecha) #horaini = utils.str_hora_corta(pdp.horainicio) #horafin = utils.str_hora_corta(pdp.horafin) horaini = utils.str_fechahora(pdp.fechahorainicio) horafin = utils.str_fechahora(pdp.fechahorafin) produccion_m2 = pdp.get_produccion()[0] produccion_kg = sum([a.peso_sin for a in pdp.articulos]) productividad = pdp.calcular_productividad() rendimiento = pdp.calcular_rendimiento() observaciones = pdp.observaciones observaciones_paradas = "; ".join( [parada.observaciones for parada in pdp.incidencias]) tiempo_produccion, tiempo_paradas = calcular_tiempo_trabajado(pdp) csv.writerow((nombre_producto, prod_estandar_parte, prod_estandar_producto, fecha, horaini, horafin, produccion_m2, produccion_kg, productividad, rendimiento, observaciones, observaciones_paradas, tiempo_produccion, tiempo_paradas))
def ecrit(liste, a, b, com, csv): if liste[a] == 0: fileLog.write(" =>%s\n" % (com)) lstLine = [] for i in range(len(liste[b])): lstLine.append(liste[b][i]) csv.writerow(lstLine)
def compute_and_log_miou(current_frame, current_timestamp, csv, deadline=210): """ Computes the mIOU for the given frame relative to the previous frames and logs it to the given csv file. Args: current_frame: The frame to compute the mIOU for. current_timestamp: The timestamp associated with the frame. csv: The csv file to write the results to. """ SAVED_FRAMES.append((current_timestamp, current_frame)) # Remove data older than the deadline that we don't need anymore. while (current_timestamp - SAVED_FRAMES[0][0]) * 1000 > deadline: SAVED_FRAMES.popleft() # Go over each of the saved frames, compute the difference in the # timestamp, and the mIOU and log both of them. for old_timestamp, old_frame in SAVED_FRAMES: (mean_iou, class_iou) = \ current_frame.compute_semantic_iou_using_masks(old_frame) time_diff = current_timestamp - old_timestamp # Format of the CSV file: (latency_in_ms, class, mean IOU) csv.writerow([time_diff * 1000, "Scene", mean_iou]) # Insert the results for the person. person_key = 4 if person_key in class_iou: csv.writerow([time_diff * 1000, "Person", class_iou[person_key]])
def spracuj_vyjazd(url, csv): ret = { 'Podtyp': '', 'Nahlasenie': '', 'Lokalizacia': '', 'Uhasenie': '', 'Sprava': '' } r = requests.get('http://www.firebrno.cz/modules/incidents/' + str(url)) soup = BeautifulSoup(r.text, "html.parser") incident = soup.find('div', 'inc-detail') ret['Nahlasenie'] = re.findall('[0-9]+:[0-9]+', (incident.p).get_text())[0] for tag in incident('p'): i = tag.get_text().find(":") part = [(tag.get_text())[:i], (tag.get_text())[i + 1:]] if 'Podtyp' in part[0]: ret['Podtyp'] = part[1] elif 'Popis' in part[0]: ret['Sprava'] = part[1] casi = re.findall('[0-9]+:[0-9]+', part[1]) if (len(casi)) == 1: ret['Lokalizacia'] = casi[0] ret['Uhasenie'] = casi[0] elif (len(casi)) == 2: ret['Lokalizacia'] = casi[0] ret['Uhasenie'] = casi[1] csv.writerow(ret)
def csvWrite(filename, bookmarks, header): import csv csvfile = open(filename, "wb") csv = csv.writer(csvfile, delimiter=";") csv.writerow(header) for bookmark in bookmarks: csv.writerow(values(bookmark, header)) csvfile.close()
def save_csv_entry(csv, article, status): title = article['ti'][0] if 'ti' in article else '' source = article['fo'][0] if 'fo' in article else '' authors = ', '.join(article['au']) if 'au' in article else '' colection = ', '.join(article['in']) if 'in' in article else '' csv.writerow( [article['id'], title.encode('utf-8'), authors.encode('utf-8'), source.encode('utf-8'), colection, status] )
def create_numbers(): numbers = np.arange(1, 200001).reshape(2000, 100) import csv with open('file.csv', 'w') as csv_file: csv = csv.writer(csv_file) for num in numbers: csv.writerow(num)
def process_user(csv, user): cell = user.getLastProfile().contact_user.phone_cell if cell and not re.match(r"\d{3}-\d{3}-\d{4}", cell): raise ValueError("Cell for %s not formatted properly!" % user.name()) csv.writerow([ user.name(), user.email, cell])
def writeResort(csv, resort, price, difficulty, startSeason, endSeason, image, rating, city, state): length = len(resort) i = 0 while i < length: # fields = (resort[i],location[i][0], location[i][1], startSeason[i], endSeason[i], image[i], rating[i], difficulty[i]) fields = (resort[i],city[i], state[i], startSeason[i], endSeason[i], image[i], rating[i], difficulty[i]) csv.writerow(fields) i = i + 1
def _writeGroupI(self, csv, elementModels): group = "I" for element in elementModels: csvRow = [group, element.elementNumber] for node in element.getIncidences(): csvRow.append(node) csv.writerow(self._csvPad(csvRow))
def writePrints(pole, closest, poles, csv, wallCsv): if int(pole[-1]) >= 2: # walls and lines are in wkt format wkt = pole[1] startx = float(wkt[wkt.find('(')+1:wkt.find(' ')]) starty = float(wkt[wkt.find(' ')+1:wkt.find(',')]) endx = float(wkt[wkt.find(',')+1:wkt.rfind(' ')]) endy = float(wkt[wkt.rfind(' ')+1:wkt.find(')')]) if startx > endx: # switch tmpx = startx tmpy = starty startx = endx starty = endy endx = tmpx endy = tmpy else: x = float(pole[1]) y = float(pole[2]) for other in poles: if int(other[-1]) >= 2: # walls and lines are in wkt format wkt = other[1] oStartx = float(wkt[wkt.find('(')+1:wkt.find(' ')]) oStarty = float(wkt[wkt.find(' ')+1:wkt.find(',')]) oEndx = float(wkt[wkt.find(',')+1:wkt.rfind(' ')]) oEndy = float(wkt[wkt.rfind(' ')+1:wkt.find(')')]) oX = 0 oY = 0 if oStartx > oEndx: # switch tmpx = oStartx tmpy = oStarty oStartx = endx oStarty = endy endx = tmpx endy = tmpy else: oX= float(other[1]) oY= float(other[2]) if int(pole[-1]) < 2: if int(other[-1]) >= 2: (angle, distance) = calcLineDistAngle([(oStartx, oStarty), (oEndx, oEndy)], (x, y)) else: direction = (oX - x, oY - y) if direction[0] == 0 and direction[1] == 0: continue angle = math.acos(direction[1]/math.sqrt(direction[0]**2 + direction[1]**2)) if direction[0] < 0: angle *= -1 distance = dist(pole, other) csv.writerow([pole[0], x, y, 0.0, other[0], distance, angle, pole[-1]]) else: if int(other[-1]) >= 2: distance = calcLineAngle([(startx, starty), (endx, endy)], [(oStartx, oStarty), (oEndx, oEndy)]) #if where fingerprinting two walls against each other, we use their respective angle as dist angle = calcLineAngle([(startx, starty), (endx, endy)], [(startx, starty), (startx, starty+100.0)]) else: (angle, distance) = calcLineDistAngle([(startx, starty), (endx, endy)], (oX, oY)) angle -= math.pi if angle < -math.pi: angle += 2*math.pi wallCsv.writerow([pole[0], startx, starty, endx, endy, other[0], distance, angle, oX, oY, pole[-1]])
def _writeGroupD(self, csv, simulation): group = "D" csvRow = [group] # order in simulation KOD array is the same as # whats expected by GS2 for kod in GS2KOD: csvRow.append(simulation.getOutputModifier(kod)) csv.writerow(self._csvPad(csvRow))
def log_data(csv, position, time, acc, speed, distance, cd, battery, energy): csv.writerow({ "nodeId": position, "time": time, "acceleration": acc, "speed": speed, "distance": distance, "cd": cd, "battery": battery, "energy": energy })
def vis_detections_video(im, class_name, dets, csv_file, csv, frame_id, encoder, tracker, thresh=0.6): """Draw detected bounding boxes.""" detections = [] scores = [] h, w, _ = im.shape thick = int((h + w) // 300) inds = np.where(dets[:, -1] >= thresh)[0] if len(inds) == 0: return im for i in inds: scores.append(dets[i, -1]) for i in inds: bbox = dets[i, :4] boxResults = process_box(bbox, scores, h, w, thresh) if boxResults is None: continue left, right, top, bot, mess, max_indx, confidence = boxResults detections.append(np.array([left, top, right, bot]).astype(np.float64)) detections = np.array(detections) trackers = tracker.update(detections) for track in trackers: bbox = [int(track[0]), int(track[1]), int(track[2]), int(track[3])] id_num = str(int(track[4])) csv.writerow([ frame_id, id_num, int(bbox[0]), int(bbox[1]), int(bbox[2]) - int(bbox[0]), int(bbox[3]) - int(bbox[1]) ]) csv_file.flush() cv2.rectangle(im, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])), (0, 255, 255), thick // 3) if ((bbox[2] - bbox[0]) * (bbox[3] - bbox[1]) > 30000): cv2.putText(im, "teacher" + id_num, (int(bbox[0]), int(bbox[1]) - 12), 0, 1e-3 * h, (0, 255, 255), thick // 6) else: cv2.putText(im, id_num, (int(bbox[0]), int(bbox[1]) - 12), 0, 1e-3 * h, (255, 255, 255), thick // 6) # cv2.rectangle(im,(bbox[0],bbox[1]),(bbox[2],bbox[3]),(0,0,255),2) # cv2.rectangle(im,(int(bbox[0]),int(bbox[1])-10),(int(bbox[0]+200),int(bbox[1])+10),(10,10,10),-1) # cv2.putText(im, id_num,(int(bbox[0]),int(bbox[1]-2)),cv2.FONT_HERSHEY_SIMPLEX,.45,(255,255,255))#,cv2.CV_AA) return im
def parse_page(self, response): print("parsing URL") print(response.url) csv_file = 'github_stars.csv' list_github_starts = response.css( 'div.d-inline-block > h3 > a::text').extract() if (len(list_github_starts) < 0): for s in list_github_starts: with open(csv_file, 'a+') as f: fwriter = csv.writer(f) csv.writerow(s)
def main(): with open('nsa.txt','r') as schools: for school in schools: # Remove extraneous chars school = school.strip() # Check to see if school supports SSL if checkConnectivity(school) == False: log.write(school + " doesn't support SSL, skipping\n") # Looks like we do, so start the test else: # Start the test and sleep for 10 seconds to check for mismatch or cached result params = buildParams({'d':school}) # Make sure the first time a school is tested that the clear cache link is used test = runTest(clear, params) sleep(10) test = runTest(url, params) mismatch = isCertificateMismatch(test) # Is there a mismatch? if mismatch == True: # There is, so restart the test, wait 90 seconds, and get the results again params = buildParams({'d':school, 'ignoreMismatch':'on'}) test = runTest(clear, params) sleep(90) test = runTest(url, params) rating = getRating(test) scores = getScores(test) try: csv.writerow([school, 'Y', rating, scores['Certificate'], scores['Protocol Support'], scores['Key Exchange'], scores['Cipher Strength']]) except: csv.writerow([school, 'unknown error']) elif mismatch == False: # Is there a cached page present or did the test kick off? rating = getRating(test) if rating != '': csv.writerow([school, 'N', rating]) else: # Start another test, wait 90 seconds, and check again test = runTest(url, params) sleep(90) test = runTest(url, params) rating = getRating(test) scores = getScores(test) try: csv.writerow([school, 'N', rating, scores['Certificate'], scores['Protocol Support'], scores['Key Exchange'], scores['Cipher Strength']]) except: csv.writerow([school, 'unknown error']) log.close()
def _writeGroupF(self, csv, ssModels): group = "F-1" csvRow = [group] for node in ssModels: csvRow.append(node.nodeID) csvRow.append(node.FQ) if len(csvRow) == 9: csv.writerow(self._csvPad(csvRow)) csvRow = [group] if len(csvRow) > 1: csv.writerow(self._csvPad(csvRow)) group = "F-2" csvRow = [group] for node in ssModels: csvRow.append(node.nodeID) csvRow.append(node.CFQ) if len(csvRow) == 9: csv.writerow(self._csvPad(csvRow)) csvRow = [group] if len(csvRow) > 1: csv.writerow(self._csvPad(csvRow))
def _writeGroupH(self, csv, nodeModels): group = "H-1" csvRow = [group, 0.0] csv.writerow(self._csvPad(csvRow)) # we will support the other case for group H-2 later group = "H-2" csvRow = [group, 9999.0] csv.writerow(self._csvPad(csvRow)) group = "H-3" csvRow = [group] for node in nodeModels: csvRow.append(node.I) csvRow.append(node.PHII) # gorup + 4 pairs if len(csvRow) == 9: csv.writerow(self._csvPad(csvRow)) csvRow = [group] if len(csvRow) > 1: csv.writerow(self._csvPad(csvRow))
def getdata(driver, csv): #get time table classtimetable = driver.find_elements_by_xpath( "//table[@class='unitList']/tbody/tr") #classtimetable = driver.find_element_by_class_name("unitList") #print(classtimetable.text) for i in classtimetable: #print(i.text) #for j in i.find_elements_by_tag_name("td"): # print(j.text) comp_list = [j.text for j in i.find_elements_by_tag_name("td")] print(comp_list) print(comp_list, file=sys.stderr) csv.writerow(comp_list)
def _writeGroupQ(self, csv, materials): # sub group Q-1 group = "Q-1" csvRow = [group] for mat in materials: csvRow.append(mat.getInterpolationPointCount()) # allows 20 values in this group if len(csvRow) == 21: csv.writerow(csvRow) csvRow = [group] # make sure the last row actually has meaningful data if len(csvRow) > 1: csv.writerow(self._csvPad(csvRow)) groups = ["Q-2", "Q-3", "Q-4"] for mat in materials: matData = [ mat.pressureHead, mat.moistureContent, mat.hydraulicConductivity ] for i in range(3): csvRow = [groups[i]] for elem in matData[i]: csvRow.append(elem) # these groups contains at most 8 data points plus the group if len(csvRow) == 9: csv.writerow(self._csvPad(csvRow)) csvRow = [groups[i]] if len(csvRow) > 1: csv.writerow(self._csvPad(csvRow))
def _writeGroupL(self, csv, nodeModels): group = "L" csvRow = [group] for node in nodeModels: if node.boundary.getData() == "Constant Concentration (Dirichlet)": csvRow.append(node.I) if len(csvRow) == 21: csv.writerow(self._csvPad(csvRow)) csvRow = [group] if len(csvRow) > 1: csv.writerow(self._csvPad(csvRow))
def _writeGroupC(self, csv, model): group = "C" csvRow1 = [ group, model.AFMOBX, model.AFMOBY, model.APOR, model.AELONG, model.AETRANS, model.APHII, model.ACONCI, model.XFACT ] csvRow2 = [ group, model.YFACT, model.ATETA, model.AAL, model.AKD, model.ALAM, model.ARHO ] csv.writerow(self._csvPad(csvRow1)) csv.writerow(self._csvPad(csvRow2))
def outputWithoutKey(path, results): """ Output values into a reasonable text file. If the values are simple, they are printed directly. If they are complex tuples/lists, they are printed as csv. """ f = open(path, 'w') w = csv.writer(f) for k, v in results: l = [] unwrap(l, v) if len(l) == 1: print >>f, v else: csv.writerow(l)
def outputWithoutKey(path, results): """ Output values into a reasonable text file. If the values are simple, they are printed directly. If they are complex tuples/lists, they are printed as csv. """ f = open(path, 'w') w = csv.writer(f) for k, v in results: l = [] unwrap(l, v) if len(l) == 1: print >> f, v else: csv.writerow(l)
def main(trainingData, testData, csv): nbSamples = getFileLength(testData) # methods = ["Guess", "Random", "K-Means"] methods = ["Guess"] for m in methods: print "\n#", m for i in range(4): print ".", res = executeCmd(trainingData, testData, method=m) if res[2] is not None: print res[2] nbDiff = diffFile(testData, outputFile) accuracy = (float(nbDiff) / nbSamples) * 100 row = [m, accuracy, res[0]] csv.writerow(row)
def main(trainingData, testData, csv): nbSamples = getFileLength(testData) # methods = ["Guess", "Random", "K-Means"] methods = ["Guess"] for m in methods: print "\n#", m for i in range(4): print".", res = executeCmd(trainingData, testData, method=m) if res[2] is not None: print res[2] nbDiff = diffFile(testData, outputFile) accuracy = (float(nbDiff) / nbSamples)*100 row = [m, accuracy, res[0]] csv.writerow(row)
def main(trainingData, testData, runs, csv): # Write csv header csv.writerow(["method", "errorRate", "time"]) nbSamples = getFileLength(testData) methods = ["random"] for m in methods: print "\n#", m for i in range(runs): print".", res = executeCmd(trainingData, testData, method=m) if res[2] is not None: print res[2] nbDiff = diffFile(testData, outputFile) errorRate = (float(nbDiff) / nbSamples)*100 row = [m, errorRate, res[0]] csv.writerow(row)
def main(trainingData, testData, runs, csv): # Write csv header csv.writerow(["method", "errorRate", "time"]) nbSamples = getFileLength(testData) methods = ["random"] for m in methods: print "\n#", m for i in range(runs): print ".", res = executeCmd(trainingData, testData, method=m) if res[2] is not None: print res[2] nbDiff = diffFile(testData, outputFile) errorRate = (float(nbDiff) / nbSamples) * 100 row = [m, errorRate, res[0]] csv.writerow(row)
def entries_view(self, request, form_id): """ Displays the form entries in a HTML table with option to export as CSV file. """ if request.POST.get("back"): change_url = admin_url(RegistrationPage, "change", form_id) return HttpResponseRedirect(change_url) form = get_object_or_404(RegistrationPage, id=form_id) entries_form = EntriesForm(form, request, request.POST or None) #delete_entries_perm = "%s.delete_formentry" % FormEntry._meta.app_label #can_delete_entries = request.user.has_perm(delete_entries_perm) submitted = entries_form.is_valid() if submitted: if request.POST.get("export"): response = HttpResponse(content_type="text/csv") timestamp = slugify(datetime.now().ctime()) fname = "%s-%s.csv" % (form.slug, timestamp) header = "attachment; filename=%s" % fname response["Content-Disposition"] = header queue = StringIO() delimiter = settings.FORMS_CSV_DELIMITER try: csv = writer(queue, delimiter=delimiter) writerow = csv.writerow except TypeError: queue = BytesIO() delimiter = bytes(delimiter, encoding="utf-8") csv = writer(queue, delimiter=delimiter) writerow = lambda row: csv.writerow([ c.encode("utf-8") if hasattr(c, "encode") else c for c in row ]) writerow(entries_form.columns()) for row in entries_form.rows(csv=True): writerow(row) data = queue.getvalue() response.write(data) return response elif request.POST.get("delete"): selected = request.POST.getlist("selected") if selected: entries = CompanyProfile.objects.filter(id__in=selected) count = entries.count() if count > 0: entries.delete() message = ungettext("1 entry deleted", "%(count)s entries deleted", count) info(request, message % {"count": count}) template = "admin/forms/entries.html" context = { "title": _("View Entries"), "entries_form": entries_form, "opts": self.model._meta, "original": form, "can_delete_entries": True, "submitted": submitted } return render_to_response(template, context, RequestContext(request))
def statsExtractor(pageId, page, boostTemplates, csv): "Export raw stats" boost = 1 for key, value in boostTemplates.iteritems(): if key in page['template']: boost *= value csv.writerow([page['title'].replace("\"", "\"\""), pageId, page['incoming_links'], len(page['external_link']), page['text_bytes'], len(page['heading']), len(page['redirect']), len(page['outgoing_link']), page.get('popularity_score', 0), boost])
def create_file_default_fields(self, cr, uid, id, context=None): if isinstance(id,list): id = id[0] output_file = TemporaryFile('w+b') fieldnames = ['id', 'import_default_field:id', 'import_default_value', 'file_id:id', 'mapping_template_id:id', 'type'] csv = FileCsvWriter(output_file, fieldnames, encoding="utf-8", writeheader=True, delimiter=',', quotechar='"') current_file = self.browse(cr, uid, id, context=context) for field in current_file.import_default_fields: row = { 'id': field.get_absolute_id(context=context), 'import_default_field:id': field.import_default_field.get_external_id(context=context)[field.import_default_field.id], 'import_default_value': field.import_default_value, 'file_id:id': current_file.get_absolute_id(context=context), 'mapping_template_id:id': field.mapping_id.get_absolute_id(context=context), 'type': field.type, } csv.writerow(row) return self.pool.get('pop.up.file').open_output_file(cr, uid, 'file.default.import.values.csv', output_file, 'File Exchange Fields Export', context=context)
def dump_info(vms, csv): """Dump information about VMs of a certain hypervisor into a CSV file""" for vm in vms: ips = vm['interfaces'] if len(ips) > 0: ip = ips[0].get('ipv4_address', ips[0]['mac']) else: ip = 'missing' hn = execute('hostname') # uptime in h uptime_period = 60 * 60.0 name = vm['name'] mem = vm['memory'] / 1024.0 disk = vm['diskspace']['/'] / 1024.0 vcpus = vm['vcpu'] uptime = vm['uptime'] if vm['uptime'] else 0 uptime /= uptime_period print name, mem, disk, vcpus, uptime, ip, hn csv.writerow([name, mem, disk, vcpus, uptime, ip, hn])
def writeResort(csv, resort, price, difficulty, startSeason, endSeason, image, imageMap, imageMapXL, rating, city, state): length = len(resort) i = 0 while i < length: # fields = (resort[i],location[i][0], location[i][1], startSeason[i], endSeason[i], image[i], rating[i], difficulty[i]) # Check size of image file and if below a threshold, use imageMap imageFileName = 'images/Ski resort ' + resort[i] + '.jpg' imageStat = os.stat(imageFileName) if imageStat.st_size > 12000: fields = (resort[i], city[i], state[i], startSeason[i], endSeason[i], image[i], imageMapXL[i], rating[i], difficulty[i]) else: fields = (resort[i], city[i], state[i], startSeason[i], endSeason[i], imageMap[i], imageMapXL[i], rating[i], difficulty[i]) csv.writerow(fields) i = i + 1
def output_collections(coll_json, csv, rest_url, comm_name, comm_id, verbose, inc_items): collection_id = 0 if verbose: print("Collections:") for collection in coll_json: collection_id += 1 if verbose: print("\t{}".format(collection['name'])) item_list_url = rest_url + '/collections/' + collection[ 'uuid'] + '/items' resp = requests.get(item_list_url) if resp.status_code != 200: print("Status {}: unable to get item list for '{}'".format( resp.status_code, collection['name'])) continue if verbose: print(" Items ({}):".format(collection['numberItems'])) if not inc_items: csv.writerow([ comm_id, comm_name, collection_id, collection['name'] + '(' + collection['uuid'] + ')', collection['numberItems'], ]) else: i = 0 for item in resp.json(): i += 1 if verbose: print("\t\t{}".format(item['name'])) csv.writerow([ comm_id, comm_name, collection_id, collection['name'] + '(' + collection['uuid'] + ')', collection['numberItems'], i, item['name'], jscholarship + item['handle'], item['uuid'] ])
def modify_row(csv, row, i): woman = 0 aux = [] for item in row: if(item == 'Woman'): woman = 1 item = 0 if(item == 'Man'): item = 1 if(item == '?'): if(woman == 1): item = 1 else: item = 0 item = [item] aux = np.append(aux, item, 1) aux.shape csv.writerow(aux)
def statsExtractor(pageId, page, boostTemplates, csv): "Export raw stats" boost = 1 for key, value in boostTemplates.iteritems(): if key in page["template"]: boost *= value csv.writerow( [ page["title"].replace('"', '""'), pageId, page["incoming_links"], len(page["external_link"]), page["text_bytes"], len(page["heading"]), len(page["redirect"]), len(page["outgoing_link"]), page.get("popularity_score", 0), boost, ] )
def entries_view(self, request, form_id): """ Displays the form entries in a HTML table with option to export as CSV file. """ if request.POST.get("back"): change_url = admin_url(RegistrationPage, "change", form_id) return HttpResponseRedirect(change_url) form = get_object_or_404(RegistrationPage, id=form_id) entries_form = EntriesForm(form, request, request.POST or None) #delete_entries_perm = "%s.delete_formentry" % FormEntry._meta.app_label #can_delete_entries = request.user.has_perm(delete_entries_perm) submitted = entries_form.is_valid() if submitted: if request.POST.get("export"): response = HttpResponse(content_type="text/csv") timestamp = slugify(datetime.now().ctime()) fname = "%s-%s.csv" % (form.slug, timestamp) header = "attachment; filename=%s" % fname response["Content-Disposition"] = header queue = StringIO() delimiter = settings.FORMS_CSV_DELIMITER try: csv = writer(queue, delimiter=delimiter) writerow = csv.writerow except TypeError: queue = BytesIO() delimiter = bytes(delimiter, encoding="utf-8") csv = writer(queue, delimiter=delimiter) writerow = lambda row: csv.writerow([c.encode("utf-8") if hasattr(c, "encode") else c for c in row]) writerow(entries_form.columns()) for row in entries_form.rows(csv=True): writerow(row) data = queue.getvalue() response.write(data) return response elif request.POST.get("delete"): selected = request.POST.getlist("selected") if selected: entries = CompanyProfile.objects.filter(id__in=selected) count = entries.count() if count > 0: entries.delete() message = ungettext("1 entry deleted", "%(count)s entries deleted", count) info(request, message % {"count": count}) template = "admin/forms/entries.html" context = {"title": _("View Entries"), "entries_form": entries_form, "opts": self.model._meta, "original": form, "can_delete_entries": True, "submitted": submitted} return render_to_response(template, context, RequestContext(request))
def create_file_fields(self, cr, uid, id, context=None): if isinstance(id,list): id = id[0] output_file = TemporaryFile('w+b') fieldnames = ['id', 'is_required', 'name', 'custom_name', 'sequence', 'mappinglines_template_id:id', 'file_id:id', 'default_value', 'advanced_default_value', 'merge_key'] csv = FileCsvWriter(output_file, fieldnames, encoding="utf-8", writeheader=True, delimiter=',', quotechar='"') current_file = self.browse(cr, uid, id, context=context) for field in current_file.field_ids: row = { 'file_id:id': field.file_id.get_absolute_id(context=context), 'name': field.name, 'id': field.get_absolute_id(context=context), 'sequence': str(field.sequence), 'mappinglines_template_id:id': field.mapping_line_id and field.mapping_line_id.get_absolute_id(context=context) or '', 'custom_name': field.custom_name or '', 'default_value': field.default_value or '', 'is_required': str(field.is_required), 'advanced_default_value': field.advanced_default_value or '', 'merge_key': str(field.merge_key), } csv.writerow(row) return self.pool.get('pop.up.file').open_output_file(cr, uid, 'file.fields.csv', output_file, 'File Exchange Fields Export', context=context)
def setupDevice(lp, incid, csv): numsensors = 0 rv = [] deviceid = incid.increment() description = prompt("Enter device description, eg room, location etc.") if lp.status["battery"] > 0: print "WARNING: Battery may be low! Currently rated at level %s" % lp.status["battery"] lp.doCommand(0) lp.doCommand(6, 3) # Turn sound off - hope for battery boost lp.doCommand(6, 5, deviceid) # Set ID rv.append(deviceid) for sensor in (1, 2, 3, 4): lp.doCommand(1, sensor, 1) sensortype = lp.getSensorStatus(sensor) if sensortype not in (10, 34): lp.doCommand(1, sensor, 0) rv.append(0) else: sensorname = lp.doCommand(116, sensor) print "Found channel %s, detected type %s as a %s" % (sensor, sensortype, sensorname) rv.append(sensortype) numsensors += 1 if numsensors: samples = 12287 / numsensors sampletime = (4 * 24 * 60 * 60) / samples # sampletime = 5 lp.doCommand(3, sampletime, samples, 0, 0, 0, 0, 0, 0, 0, 0) rv.append(samples) rv.append(sampletime) rv.append(description) rv.append(time.time()) csv.writerow(rv) else: print "No sensors found!"
def export_to_csv(self): """ Export data to CSV. """ #response = HttpResponse(mimetype="text/csv") response = self._get_initial_response(mimetype="text/csv") response['Content-Disposition'] = \ 'attachment; filename=db_store_export_data.csv' data_headers = self._get_data_headers() data_keys = data_headers.keys() data_values = data_headers.values() queue = StringIO() try: csv_obj = csv.writer( queue, delimiter=CSV_DELIMITER, quotechar=CSV_QUOTECHAR ) writerow = csv_obj.writerow except TypeError: queue = BytesIO() delimiter = bytes(CSV_DELIMITER, encoding="utf-8") quotechar = bytes(CSV_QUOTECHAR, encoding="utf-8") csv_obj = csv.writer( queue, delimiter=delimiter, quotechar=quotechar ) writerow = lambda row: csv.writerow( [safe_text(cell) for cell in row] ) data_values = [safe_text(value) for value in data_values] writerow(data_values) for obj in self.queryset: data = json.loads(obj.saved_data) row_data = [] for cell, key in enumerate(data_keys): row_data.append(data.get(key, '')) writerow(row_data) data = queue.getvalue() response.write(data) return response
def malc0deCsv(): """Build current http://malc0de.com/database/ CSV file. This is the IRS UNIX support position pre-interview programming assignment for candidate David L. Craig. This is his first ever Python project, although he looked at Python 3 on April 4, 2012 to help his oldest son debug a problem, and scanned the Linux Mint live installer for debugging an install much further back in time. There is surely a more elegant solution than this. The development included about 12 hours absorbing the Python 2.7.3 tutorial, another 11 obtaining and learning bs4, and another 2 for using csv; all while trying to squeeze in previously planned happy holidays with the family. Project requirements: Hints === import csv, datetime, requests, time from bs4 import BeautifulSoup Requirements ==== * Utilize Python 2.7.3 * Source URL => http://malc0de.com/database/ * Scrape the following values from the page Date, File Name{If there is a file name in the URL},IP Address, ASN, ASN Name,MD5 hash * Note IP Addresses need to be written in the following format to the CSV file -> 10{.}10{.}10{.}10 * Write the product to a CSV file with file format Discovery Date,File Name,IP Address,ASN,ASN Name,MD5 * CSV file format needs to be as follows "Malecode-Culled-Product-" + the_current_date_time + '.csv' * Post your code and output product to www.github.com and email back URL links to the code and the CSV output product to this email. """ #----------------------------------------------------------------------- import csv, datetime, urllib2, sys, re from bs4 import BeautifulSoup from datetime import datetime, date, time the_current_date_time = datetime.utcnow().strftime("%Y_%m_%d-%H_%M_%S_UT") of = "Malecode-Culled-Product-" + the_current_date_time + '.csv' print "Creating file", of # The current column headers (Domain is assumed to be File Name) hl = ['<th>Date</th>' , '<th>Domain</th>' , '<th>IP</th>' , '<th>CC</th>' , '<th>ASN</th>' , '<th>Autonomous System Name</th>' , '<th>Click Md5 for VirusTotal Report</th>'] ch = ('Discovery Date', # CSV headers tuple 'File Name', 'IP Address', 'ASN', 'ASN Name', 'MD5') nr = 0 # accumulate number of data records processed with open(of,'' 'w') as f: try: csv = csv.writer(f) except IOError as e: print "I/O error({0}): {1}".format(e.errno, e.strerror) raise except: print "Unexpected error:", sys.exc_info()[0] raise csv.writerow(ch) for pg in range(1, 99999): # for each page (break on empty table) murl = 'http://malc0de.com/database/?&page=' + str(pg) try: malhtml = BeautifulSoup(urllib2.urlopen(murl), "lxml") except IOError as e: print "I/O error({0}): {1}".format(e.errno, e.strerror) raise except: print "Unexpected error:", sys.exc_info()[0] raise if pg == 1: # first page only, verify the column headers hc = malhtml.table.tr.contents if len(hc) != 7: print 'Table does not contain seven columns--aborting' sys.exit() for hx in range(6): if str(hc[hx]) != hl[hx]: print 'Column', hx + 1, 'has an unexpected heading', print '(' + str(hc[hx]) + ')--aborting' sys.exit() td = malhtml.table.find_all("td") # Extract all td entries in the page for dx in range(0, len(td), 7): # For every row of seven td entries: # print 'dx:', str(dx) rdt = BeautifulSoup(str(td[dx + 0])) vdt = rdt.td.string.encode('utf-8') # print 'vdt:', str(vdt) rfn = BeautifulSoup(str(td[dx + 1])) # strip '<td> ' and '</td>' (some rfn.td values don't string (?) ) # vfn = rfn.td.prettify()[5:-6] try: vfn = rfn.td.string.encode('utf-8') except: vfn = rfn.td.string # print 'vfn:', str(vfn) rip = BeautifulSoup(str(td[dx + 2])) vip = re.sub('[.]', '{.}', rip.td.a.string, count=3) # print 'vip:', str(vip) rcc = BeautifulSoup(str(td[dx + 3])) vcc = rcc.td.a.string.encode('utf-8') # print 'vcc:', str(vcc) rnu = BeautifulSoup(str(td[dx + 4])) vnu = rnu.td.a.string.encode('utf-8') # print 'vnu:', str(vnu) rna = BeautifulSoup(str(td[dx + 5])) try: vna = rna.td.string.encode('utf-8') except: vna = rna.td.string # print 'vna:', str(vna) rmd = BeautifulSoup(str(td[dx + 6])) vmd = rmd.td.a.string.encode('utf-8') # print 'vmd:', str(vmd) # print '-' * 50 csv.writerow((vdt, vfn, vip, vcc, vnu, vna, vmd)) print 'Data rows for page', str(pg) + ':', len(td) / 7 nr = nr + len(td) / 7 if len(td) == 0: break f.closed print 'Total data rows:', str(nr)
sys.stdout.flush() end_time = time.time() return [seed, rate, corrupt, loss, 'failure', e.output, (end_time - start_time)] end_time = time.time() print "COMPLETE: cnet %d with s=%d, r=%s, c=%d, l=%d" % (i, seed, rate, corrupt, loss) sys.stdout.flush() csvline = [seed, rate, corrupt, loss, 'success', res, (end_time - start_time)] for line in res.split('\n')[1:16]: r = resreg.search(line) csvline.append(r.groups()[1]) return csvline with open('out.csv', 'wb') as csvf: csv = csv.writer(csvf) csv.writerow(headers) csvf.flush() pool = multiprocessing.Pool(PROCESSES) products = itertools.product(seeds, rates, corruptions, losses) for result in pool.imap_unordered(compute, enumerate(products)): csv.writerow(result) csvf.flush() pool.terminate()
#!/usr/bin/env python import os import sys import csv import sqlite3 base_dir = os.path.dirname(os.path.realpath(__file__)) db_path = os.path.join(base_dir, 'db/lightspeed.db') if len(sys.argv) == 2: db_path = os.path.realpath(sys.argv[1]) try: conn = sqlite3.connect(db_path) c = conn.cursor() fieldnames = ['ID', 'Ping (ms)', 'Download (Mbit/s)', 'Upload (Mbit/s)', 'Timestamp', 'Duration (s)', 'Error'] csv = csv.writer(sys.stdout, delimiter=';', quoting=csv.QUOTE_MINIMAL) result = c.execute('SELECT * FROM measurements') csv.writerow(fieldnames) csv.writerows(result) except sqlite3.Error as e: print('Error:', e.args[0]) finally: if conn: conn.close()
def action_export(self, cr, uid, ids, context=None): def rss(element=None): if element is not None: return ET.tostring(element, 'utf-8') return ET.Element('rss', version='2.0') def rss_channel(rss): rss_channel = ET.SubElement(rss, 'channel') title = ET.SubElement(rss_channel, 'title') title.text = 'title' link = ET.SubElement(rss_channel, 'link') link.text = 'link' description = ET.SubElement(rss_channel, 'description') description.text = 'description' return rss_channel def rss_channel_item(channel, item): channel_item = ET.SubElement(channel, 'item') title = ET.SubElement(channel_item, 'title') title.text = item.name link = ET.SubElement(channel_item, 'link') if item.ebay_user_id.sandbox: link.text = "http://cgi.sandbox.ebay.com/ws/eBayISAPI.dll?ViewItem&item=%s" % item.item_id else: link.text = "http://cgi.ebay.com/ws/eBayISAPI.dll?ViewItem&item=%s" % item.item_id description = ET.SubElement(channel_item, 'description') description.text = 'description' item_id = ET.SubElement(channel_item, 'itemID') item_id.text = item.item_id currency = ET.SubElement(channel_item, 'currency') currency.text = item.currency price = ET.SubElement(channel_item, 'price') price.text = str(item.start_price) return channel_item if context is None: context = {} ebay_item_obj = self.pool.get('ebay.item') this = self.browse(cr, uid, ids)[0] user = this.ebay_user_id domain = [('ebay_user_id', '=', user.id)] fp = cStringIO.StringIO() csv = UnicodeWriter(fp) csv.writerow(['sku', 'rss']) for id in ebay_item_obj.search(cr, uid, domain, context=context): item = ebay_item_obj.browse(cr, uid, id, context=context) id_occupy = [item.id] item_rss = rss() channel = rss_channel(item_rss) ebay_items = [] for category in item.ebay_item_category_id: ebay_items.extend(category.ebay_item_ids) for itm in ebay_items: if itm.id not in id_occupy and itm.state == 'Active' \ and itm.listing_type == 'FixedPriceItem' \ and itm.ebay_user_id.id == user.id: id_occupy.append(itm.id) rss_channel_item(channel, itm) # 4 x 3 table if len(id_occupy) == 12 + 1: break if len(id_occupy) > 1: csv.writerow([str(item.id), rss(item_rss)]) gz_data = cStringIO.StringIO() gz = gzip.GzipFile(filename='dandelion-rss', mode='wb', fileobj=gz_data) gz.write(fp.getvalue()) gz.close() out = base64.encodestring(gz_data.getvalue()) gz_data.close() fp.close() this.name = "dandelion-rss-%s.gz" % (datetime.now().strftime('%Y%m%d-%H%M%S')) self.write(cr, uid, this.id, {'state': 'download', 'data': out, 'name': this.name}, context=context) return { 'name': "Export Inventory RSS", 'type': 'ir.actions.act_window', 'res_model': 'ebay.item.rss', 'view_mode': 'form', 'view_type': 'form', 'res_id': this.id, 'views': [(False, 'form')], 'target': 'new', }
if __name__ == "__main__": n_skies=file_len('../Data/Test_haloCounts.csv')-1 # Test set only, doesnt train position_halo=np.zeros([n_skies,2,3],float) #Set up the array in which I will #assign my estimated positions nhalo=np.loadtxt('../Data/Test_haloCounts.csv',\ usecols=(1,),delimiter=',',skiprows=1) #Load in the number #of halos for each sky c = c.writer(open("../Data/Random_Benchmark_test.csv", "wb")) #Now write the array to a csv file c.writerow([str('SkyId'),str('pred_x1'),str( 'pred_y1'),str( 'pred_x2'),str( 'pred_y2'),str( 'pred_x3'),str(' pred_y3')]) for k in xrange(n_skies): for n in xrange(int(nhalo[k])): position_halo[k,0,n]=rd.random()*4200. position_halo[k,1,n]=rd.random()*4200. halostr=['Sky'+str(k+1)] #Create a string that will write to the file #and give the first element the sky_id for n in xrange(3): halostr.append(position_halo[k,0,n]) #Assign each of the #halo x and y positions to the string halostr.append(position_halo[k,1,n]) c.writerow(halostr) #Write the string to a csv #file with the sky_id and the estimated positions
post = False texts.append(text) if line.find("<h4 class='small'>") != -1: date_found = True elif date_found: create_date(line) date_found = False #here we create a csv file with the output of sentiment analysis import csv import subprocess import json c = open("C:/Users/Nicolette/djangogirls/django101/social/static/social/data-all.csv", "wb") csv = csv.writer(c) csv.writerow(["Hashtag", "Positive", "Negative", "Neutral", "Day", "Month", "Year"]) #extract hashtags and texts counter = 0 for text in texts: hashtags = [] message = "" for word in text.split(): if word[0] == "*" or word[0] == "#": str = word.lower() if str.endswith(",") or str.endswith("!") or str.endswith("."): str = str[:-1] hashtags.append(str) else: message += word + " "
return i + 1 if __name__ == "__main__": n_skies = file_len("../data/Test_haloCounts.csv") - 1 # Test set only, doesnt train position_halo = np.zeros([n_skies, 2, 3], float) # Set up the array in which I will # assign my estimated positions nhalo = np.loadtxt("../data/Test_haloCounts.csv", usecols=(1,), delimiter=",", skiprows=1) # Load in the number # of halos for each sky c = c.writer(open("Random_Benchmark.csv", "wb")) # Now write the array to a csv file c.writerow( [str("SkyId"), str("pred_x1"), str("pred_y1"), str("pred_x2"), str("pred_y2"), str("pred_x3"), str(" pred_y3")] ) for k in xrange(n_skies): for n in xrange(int(nhalo[k])): position_halo[k, 0, n] = rd.random() * 4200.0 position_halo[k, 1, n] = rd.random() * 4200.0 halostr = ["Sky" + str(k + 1)] # Create a string that will write to the file # and give the first element the sky_id for n in xrange(3): halostr.append(position_halo[k, 0, n]) # Assign each of the # halo x and y positions to the string halostr.append(position_halo[k, 1, n]) c.writerow(halostr) # Write the string to a csv # file with the sky_id and the estimated positions
#Wind Dir: # These need to be mapped to a direction. Right now record raw, we'll convert later or in the graphs. winddir = readadc(winddir_adc, SPICLK, SPIMOSI, SPIMISO, SPICS) winddir = direction(winddir) #Wind Speed #interupt: 1 = 180deg, 2 int = 1 full rotation. #Like Rain, this is just recording "hits", windspeed = windspeed_count windspeed_count = 0; #Record to CSV #todo provide current time as first element in data timenow = 0 data = [ timenow, bmpaltitude, bmptempF, bmppressure, bmpsealevelpressure, dhthumidity, dewpoint, heatindex, winddir, windspeed, rain ] print "Data: ", print (data) csv.writerow(data) #Sleep time.sleep(10) #set to whatever except (KeyboardInterrupt, SystemExit): #when you press ctrl+c print "\nKilling Thread..." runner = False print "Almost done." fp.close() GPIO.cleanup() print "Done.\nExiting." exit();
def writeToCsv(self, csv): csv.writerow(["race id: ", self.raceid, self.raceUrl]) csv.writerow(["bingo seed: ", self.board.seed, self.bingoUrl]) csv.writerow(["bingo version: ", self.board.version]) csv.writerow(["date: ", self.date]) csv.writerow(["goal: ", self.goal]) csv.writerow([]) csv.writerow(["goals"]) for goalsRow in self.board.goalsGrid: csv.writerow(goalsRow) csv.writerow([]) csv.writerow(["results"]) for rank, result in enumerate(self.results): csv.writerow([rank + 1] + result.getInfo())
for dif in difs: print dif sired.EstablecerParametro("cae", "61123022925855") sired.EstablecerParametro("fch_venc_cae", "20110320") sired.EstablecerParametro("motivo_obs", "") ok = sired.ActualizarFactura(id_factura) ok = sired.ObtenerFactura(id_factura) assert sired.factura["cae"] == "61123022925855" sys.exit(0) if '--leer' in sys.argv: claves = [clave for clave, pos, leng in VENTAS_TIPO1 if clave not in ('tipo','info_adic')] csv = csv.DictWriter(open("ventas.csv","wb"), claves, extrasaction='ignore') csv.writerow(dict([(k, k) for k in claves])) f = open("VENTAS.txt") for linea in f: if str(linea[0])=='1': datos = leer(linea, VENTAS_TIPO1) csv.writerow(datos) f.close() else: # cargar datos desde planillas CSV separadas o JSON: if entrada['encabezados'].lower().endswith("csv"): facturas = items = leer_planilla(entrada['encabezados'], ";") if 'detalles' in entrada: detalles = leer_planilla(entrada['detalles'], ";") # pre-procesar: for factura in facturas:
print hmtl return parseTableDistritos(hmtl) #number, street, city, countr def geolocate(zona=''): if zona in geocache: gps = geocache.get(zona).split(',') print 'geolocate %s from cache' % zona return "%s,%s" % (gps[0] or '9.9280694', gps[1] or '-84.0907246') g = geocoder.google("%s, Costa Rica" % zona) geocache[zona] = "%s,%s" % (g.lat or '9.9280694', g.lng or '-84.0907246') return geocache[zona] datos = {} datos['asalto'] = query(Key='asalto',Year=_YEAR) datos['roboVeh']= query(Key='roboVeh',Year=_YEAR) datos['robo']= query(Key='robo',Year=_YEAR) datos['hurto']= query(Key='hurto',Year=_YEAR) datos['tachaVeh']= query(Key='tachaVeh',Year=_YEAR) datos['homicidios']= query(Key='homicidios',Year=_YEAR) with open('exports.csv', 'wb') as csvfile: csv = csv.writer(csvfile, delimiter='|', quoting=csv.QUOTE_MINIMAL) for col1 in datos: for k,v in datos[col1].items(): # tipo,zona1,cantidad,ano,gps csv.writerow([col1,k,v,_YEAR,geolocate(zona=k)])
post = True text = "" if post: stripped_line = line.strip().replace("<li class='list-group-item'>", "").replace("</li>", "") text += stripped_line if line.find("</li>") != -1 and post: post = False texts.append(text) #here we create a csv file with the output of sentiment analysis import csv import subprocess import json c = open("C:/Users/Nicolette/djangogirls/django101/social/static/social/data-star.csv", "wb") csv = csv.writer(c) csv.writerow(["Hashtag", "Positive", "Negative", "Neutral", "Day", "Month", "Year"]) #extract hashtags and texts counter = 0 for text in texts: hashtags = [] message = "" for word in text.split(): if word[0] == "*": str = word.lower() if str.endswith(",") or str.endswith("!") or str.endswith("."): str = str[:-1] hashtags.append(str) else: message += word + " "