def watershed_demo(image): blurred = cv.pyrMeanShiftFiltering(image, 10, 100) gray = cv.cvtColor(blurred, cv.COLOR_BGR2GRAY) ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU) cv.imshow("binary", binary) kernel = cv.getStructuringElement(cv.MORPH_RECT, (3, 3)) mb = cv.morphologyEx(binary, cv.MORPH_OPEN, kernel, iterations=2) sure_bg = cv.dilate(binary, kernel, iterations=3) cv.imshow("mor", sure_bg) dist = cv.distanceTransform(mb, cv.DIST_L2, 3) dist_output = cv.normalize(dist, 0, 1.0, cv.NORM_MINMAX) cv.imshow("dist", dist_output * 50) ret, surface = cv.threshold(dist, dist.max() * 0.6, 255, cv.THRESH_BINARY) cv.imshow("interface", surface) surface_fg = np.uint8(surface) unknow = cv.subtract(sure_bg, surface_fg) ret, markers = cv.connectedComponents(surface_fg) print(ret) markers += 1 markers[unknow == 255] = 0 markers = cv.watershed(image, markers=markers) image[markers == -1] = [0, 0, 255] cv.imshow("result", image)
def s2(img): #segmentacionWarershed img = img gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU) # Eliminación del ruido kernel = np.ones((3, 3), np.uint8) opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=2) # Encuentra el área del fondo sure_bg = cv2.dilate(opening, kernel, iterations=3) # Encuentra el área del primer dist_transform = cv2.distanceTransform(opening, cv2.DIST_L2, 5) ret, sure_fg = cv2.threshold(dist_transform, 0.7 * dist_transform.max(), 255, 0) # Encuentra la región desconocida (bordes) sure_fg = np.uint8(sure_fg) unknown = cv2.subtract(sure_bg, sure_fg) # Etiquetado ret, markers = cv2.connectedComponents(sure_fg) # Adiciona 1 a todas las etiquetas para asegurra que el fondo sea 1 en lugar de cero markers = markers + 1 # Ahora se marca la región desconocida con ceros markers[unknown == 255] = 0 markers = cv2.watershed(img, markers) img[markers == -1] = [255, 0, 0] return img
def _evaluate_pose(dist, frame, msp, mtx, rotation_vec, translation_vec): image_edges = _extract_edges_image(_convert_grayscale(frame)) model_plot = np.zeros_like(image_edges) utils.plot_dxf_model( msp, model_plot, dist, mtx, rotation_vec, translation_vec, colour=(255, ), thickness=1, ) distance_transform = cv2.distanceTransform(src=~image_edges, distanceType=cv2.DIST_L2, maskSize=3) distance_transform = _normalise_img(distance_transform) model_plot = _normalise_img(model_plot) # The distance transform says 'how far is this pixel from an edge', and we want small # distances for the model plot pixels, so we need (1 - distance_transform) # We multiply the matrices element-wise, so we only add the distance_loss for the # model edge pixels. And we divide by the number of edge pixels, to get a mean. edge_to_plot_distance_loss = (model_plot * distance_transform).sum() / model_plot.sum() return edge_to_plot_distance_loss, distance_transform, model_plot, image_edges
def update_image(gray: np.ndarray, dist: np.ndarray, coords: Tuple[int, int], radius: int) -> None: """ Delete a circle from gray and updates the dist array accordingly. gray and dist will be modified inplace. :param gray: ndarray containing the binary image :param dist: ndarray containing the result of the distance transformation on gray :param coords: coordinates of the center of the circle that will be removed from gray :param radius: radius of that circle :return: None """ x, y = (int(z) for z in coords) r = int(radius) x_low = max(0, x - 4 * r) x_high = min(dist.shape[0], x + 4 * r) y_low = max(0, y - 4 * r) y_high = min(dist.shape[1], y + 4 * r) slice_segment = (slice(x_low, x_high), slice(y_low, y_high)) cv2.circle(gray, (y, x), r, 0, -1) sub_gray = gray[slice_segment].copy() sub_dist_old = dist[slice_segment] sub_dist_new = cv2.distanceTransform(sub_gray, cv2.DIST_L2, cv2.DIST_MASK_PRECISE) dist[slice_segment] = np.minimum(sub_dist_new, sub_dist_old)
def distance_transform_weight(x): if x.max() == 0: return np.ones(x.shape) * 2 else: smooth = 0.0000001 x = 1 - x xD = x * 255 xD = xD.astype(np.uint8) dt = cv2.distanceTransform(xD, cv2.DIST_L2, 3) dt = (dt / 255) dt = dt**2 dt = (dt + smooth / dt.max() + smooth) dt[x.astype(np.int)] = 0 return dt
def watershed(self, _img=None): # # 灰度和二值转换 _img = self.img if _img is None else _img _gray = cv2.cvtColor(_img, cv2.COLOR_BGR2GRAY) _, _binary = cv2.threshold(_gray, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU) # # 形态学操作 # # # 形态学操作卷积核 _kernel = np.ones((3, 3), np.uint8) # # # 开运算去噪(去掉椒盐噪声的影响) _opening = cv2.morphologyEx(_binary, cv2.MORPH_OPEN, _kernel, iterations=2) # # # 如果能画出背景和前景, 分割算法会很好 # # # 考虑到数据量的原因, 使用程序 机械的找出 # # # 找出一定是背景的部分 膨胀操作: 扩大图形区的面积 _sure_bg = cv2.dilate(_opening, _kernel, iterations=3) # cv_show(_sure_bg) # # 距离变换函数: 对原始图像进行计算 之后二值处理, 获取前景 # # 该函数的第一个参数只能是单通道的二值的图像, 第二个参数是距离方法 # # 计算图像上255点与最近的0点之间的距离 DIST_L2应是欧氏距离, 会输出小数 # # DIST_L1应是哈密顿距离, 不会有小数 _dist_transform = cv2.distanceTransform(_opening, cv2.DIST_L1, 5) # cv_show(_dist_transform) # # 距离变换之后做一二值变换, 得到大概率是图像前景的点 _, _sure_fg = cv2.threshold(_dist_transform, 0.5 * _dist_transform.max(), 255, cv2.THRESH_BINARY) # # 转换类型, 否则会很危险 _sure_fg = np.uint8(_sure_fg) # cv_show(_sure_fg) # # 绘制unknown区 交给算法, 自下而上的洪泛算法 _unknown = cv2.subtract(_sure_bg, _sure_fg) # cv_show(_unknown) _, _markers = cv2.connectedComponents(_sure_fg) _markers = _markers + 1 _markers[_unknown == 255] = 0 _img1 = _img.copy() _markers = cv2.watershed(_img1, _markers) # # 圈出来 之后可以根据结果将一部分的值变为黑色 def random_color(a: int): return np.random.randint(0, 255, (a, 3)) _markers_label = np.unique(_markers) _colors = random_color(_markers_label.size) for _mark, _color in zip(_markers_label, _colors): _img1[_markers == _mark] = _color # # 展示 cv_show(_img1)
def watershedAlgorithm(image): img = cv.imread(image) gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) ret, thresh = cv.threshold(gray, 0, 255, cv.THRESH_BINARY_INV + cv.THRESH_OTSU) # noise removal kernel = np.ones((5, 5), np.uint8) opening = cv.morphologyEx(thresh, cv.MORPH_OPEN, kernel, iterations=2) # sure background area sure_bg = cv.dilate(opening, kernel, iterations=3) # Finding sure foreground area dist_transform = cv.distanceTransform(opening, cv.DIST_L2, 5) ret, sure_fg = cv.threshold(dist_transform, 0.7 * dist_transform.max(), 255, 0) # Finding unknown region sure_fg = np.uint8(sure_fg) unknown = cv.subtract(sure_bg, sure_fg) # Marker labelling ret, markers = cv.connectedComponents(sure_fg) # Add one to all labels so that sure background is not 0, but 1 markers = markers + 1 # Now, mark the region of unknown with zero markers[unknown == 255] = 0 markers = cv.watershed(img, markers) img[markers == -1] = [255, 0, 0] return img
def watershed(img, img_gray): # mean = np.average(img_gray) # _, thresh1 = cv2.threshold(img_gray,mean,255,cv2.THRESH_BINARY_INV) # _, thresh2 = cv2.threshold(img_gray,200,255,cv2.THRESH_BINARY) # thresh = np.bitwise_or(thresh1, thresh2) _, thresh = cv2.threshold(img_gray,np.average(img_gray)-40,255,cv2.THRESH_BINARY_INV) kernel = np.ones((3,3),np.uint8) opening = cv2.morphologyEx(thresh,cv2.MORPH_OPEN,kernel,iterations=2) sure_bg = cv2.dilate(opening,kernel,iterations=2) dist_transform = cv2.distanceTransform(sure_bg,cv2.DIST_L2,5) _, sure_fg = cv2.threshold(dist_transform,0.5*dist_transform.max(),255,0) sure_fg = np.uint8(sure_fg) unknown = cv2.subtract(sure_fg, sure_bg) ret, markers = cv2.connectedComponents(unknown) markers = markers + 1 markers[unknown == 255] = 0 markers = cv2.watershed(img,markers) return dist_transform
# print('image suavizada', calc_min(histograma)) cv2.waitKey(0) if __name__ == '__main__': img = coin_c gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU) cv2.imshow('Image1', thresh) kernel = np.ones((3, 3), np.uint8) opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=2) sure_bg = cv2.dilate(opening, kernel, iterations=3) cv2.imshow('Image2 - sure_bg', sure_bg) # cv2.imshow('Image2 - opening', opening) dist_transform = cv2.distanceTransform(opening, cv2.DIST_L2, 5) ret, sure_fg = cv2.threshold(dist_transform, 0.7*dist_transform.max(), 255, 0) cv2.imshow('Image3 - sure_fg', sure_fg) cv2.imshow('Image3 - dist_transform', dist_transform) sure_fg = np.uint8(sure_fg) unknown = cv2.subtract(sure_bg, sure_fg) cv2.imshow('Image4', unknown) ret, markers = cv2.connectedComponents(sure_fg) # markers = markers+1 markers[unknown == 255] = 0 markers[markers >= 1] = 255 cv2.imshow('Image5', markers)
ret, thresh1 = cv2.threshold(gray, mean, 255, cv2.THRESH_BINARY_INV) ret, thresh2 = cv2.threshold(gray, 200, 255, cv2.THRESH_BINARY) # thresh = cv2.adaptiveThreshold(gray,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,15,4) thresh = np.bitwise_or(thresh1, thresh2) #Morphology의 opening, closing을 통해서 노이즈나 Hole제거 kernel = np.ones((3, 3), np.uint8) opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=2) # dilate를 통해서 확실한 Backgroud sure_bg = cv2.dilate(opening, kernel, iterations=2) #distance transform을 적용하면 중심으로 부터 Skeleton Image를 얻을 수 있음. # 즉, 중심으로 부터 점점 옅어져 가는 영상. # 그 결과에 thresh를 이용하여 확실한 FG를 파악 dist_transform = cv2.distanceTransform(sure_bg, cv2.DIST_L2, 5) ret, sure_fg = cv2.threshold(dist_transform, 0.5 * dist_transform.max(), 255, 0) sure_fg = np.uint8(sure_fg) # Background에서 Foregrand를 제외한 영역을 Unknow영역으로 파악 unknown = cv2.subtract(sure_bg, sure_fg) # unknown = sure_bg # FG에 Labelling작업 ret, markers = cv2.connectedComponents(sure_fg) markers = markers + 1 markers[unknown == 255] = 0 # watershed를 적용하고 경계 영역에 색지정 markers = cv2.watershed(img, markers)
def convert(files: List[pathlib.Path], min_radius: float, wiggle_radius: float, seeded_radius_factor: float) -> List[nx.Graph]: """ Converts black&white pictures to graphs which nodes cover the foreground (white). The nodes are created in a way that there radii are decreasing until no node with a radius greater or equal to the min_radius is found. :param files: Paths to the images, will be converted in that order :param min_radius: minimum radius for nodes, lower values increase accuracy and runtime :param wiggle_radius: radius in which tracked nodes may move to maximize area :param seeded_radius_factor: allow the min radius of tracked nodes to be smaller by this factor :return: a list with graphs in the same order as the input """ graphs = [] seeds = set() for i, image_path in enumerate(files): logging.debug('processing graph {} ({:>4}/{:>4})'.format( image_path, i + 1, len(files))) graph = nx.Graph() graph.name = '{}_{:05}'.format(image_path.stem, i) graph.graph['graph_id'] = i graph.graph['converted_by'] = 'convert_bw.py' graph.graph['converted_date'] = datetime.now() graph.graph[ 'nodes_indexed_by'] = 2 # id of the first found node. 0 and 1 are reserved for background and (yet unlabeled foreground) graph.graph['min_radius'] = min_radius graph.graph['wiggle_radius'] = wiggle_radius graphs.append(graph) gray = cv2.imread(str(image_path), cv2.IMREAD_GRAYSCALE) gray = np.pad( gray, 1, mode='constant' ) # pad one pixel on each side with default constant being zero skeleton = gray.copy() thresh = sif.threshold_mean(skeleton) skeleton = sim.skeletonize(skeleton > thresh).astype( np.int16) # to allow for more nodes, change to larger type # meaning of values in skeleton # 0 -> background # 1 -> skeleton without attached node # >1 -> skeleton pixel attached to node with corresponding id # <0 -> visited skeleton pixel attached to node with corresponding id (just negated) node_ids = itertools.count(2) dist = cv2.distanceTransform(gray, cv2.DIST_L2, cv2.DIST_MASK_PRECISE) fixed_seeds = frozenset(seeds) seeds.clear() for sx, sy, seed_id in sorted(fixed_seeds, key=lambda e: dist[e[0], e[1]], reverse=True): if wiggle_radius > 0.1: mask = circular_mask(sx, sy, wiggle_radius, gray.shape) masked_dist = np.ma.array(dist[mask.slice], mask=np.invert(mask.mask)) max_coordinates = np.unravel_index( masked_dist.argmax(fill_value=0.0), masked_dist.shape) (ax, ay) = mask.mind_offset(max_coordinates) else: (ax, ay) = (sx, sy) radius = dist[ax, ay] if radius < min_radius * seeded_radius_factor: continue mask = circular_mask(ax, ay, radius - 1, gray.shape) if skeleton[mask.slice][mask.mask].any(): node_id = next(node_ids) graph.add_node(node_id, x=int(ay) - 1, y=int(ax) - 1, r=float(radius), convert_seed=seed_id) node_area = np.ma.masked_array(skeleton[mask.slice], mask=np.invert(mask.mask)) node_area[node_area == 1] = node_id seeds.add((ax, ay, node_id)) update_image(gray, dist, (ax, ay), dist[ax, ay]) while True: argmax = np.unravel_index(dist.argmax(), dist.shape) if dist[argmax] < min_radius: break ndx = np.asscalar(argmax[0]) ndy = np.asscalar(argmax[1]) ndr = dist[ argmax] - 1 # reducing the radius prevents pixels associated to multiple nodes mask = circular_mask(ndx, ndy, ndr, gray.shape) if skeleton[mask.slice][mask.mask].any(): node_id = next(node_ids) graph.add_node(node_id, x=int(ndy) - 1, y=int(ndx) - 1, r=int(dist[argmax]), convert_seed=0) node_area = np.ma.masked_array(skeleton[mask.slice], mask=np.invert(mask.mask)) node_area[node_area == 1] = node_id seeds.add((ndx, ndy, node_id)) update_image(gray, dist, argmax, dist[argmax]) logging.debug('{} node(s) found'.format(graph.number_of_nodes())) max_id = graph.number_of_nodes() + 2 assert np.all( skeleton <= max_id ), 'maximal value in skeleton is {}, while max_id={}'.format( skeleton.max(), max_id) for node_id in graph.nodes(data=False): neighbors = explore_neighbors(node_id, skeleton) assert all( id > 1 for id in neighbors), 'Found neighbor with id <= 1 {}'.format( neighbors) graph.add_edges_from( (node_id, int(neighbor)) for neighbor in neighbors) return graphs