def graph_implementation(arg_objs, size, data=None): """Reduces the atom to an affine expression and list of constraints. Parameters ---------- arg_objs : list LinExpr for each argument. size : tuple The size of the resulting expression. data : Additional data required by the atom. Returns ------- tuple (LinOp for objective, list of constraints) """ x = arg_objs[0] t = lu.create_var(size) # log(1 + exp(x)) <= t <=> exp(-t) + exp(x - t) <= 1 obj0, constr0 = exp.graph_implementation([lu.neg_expr(t)], size) obj1, constr1 = exp.graph_implementation([lu.sub_expr(x, t)], size) lhs = lu.sum_expr([obj0, obj1]) ones = lu.create_const(np.mat(np.ones(size)), size) constr = constr0 + constr1 + [lu.create_leq(lhs, ones)] return (t, constr)
def graph_implementation(arg_objs, size, data=None): """Reduces the atom to an affine expression and list of constraints. Parameters ---------- arg_objs : list LinExpr for each argument. size : tuple The size of the resulting expression. data : Additional data required by the atom. Returns ------- tuple (LinOp for objective, list of constraints) """ x = arg_objs[0] axis = data[0] t = lu.create_var(size) # sum(exp(x - t)) <= 1 if axis is None: prom_t = lu.promote(t, x.size) expr = lu.sub_expr(x, prom_t) obj, constraints = exp.graph_implementation([expr], x.size) obj = lu.sum_entries(obj) elif axis == 0: prom_size = (x.size[0], 1) ones = lu.create_const(np.ones(prom_size), prom_size) prom_t = lu.mul_expr(ones, t, x.size) expr = lu.sub_expr(x, prom_t) obj, constraints = exp.graph_implementation([expr], x.size) const_size = (1, x.size[0]) ones = lu.create_const(np.ones(const_size), const_size) obj = lu.mul_expr(ones, obj, size) else: # axis == 1 prom_size = (1, x.size[1]) ones = lu.create_const(np.ones(prom_size), prom_size) prom_t = lu.rmul_expr(t, ones, x.size) expr = lu.sub_expr(x, prom_t) obj, constraints = exp.graph_implementation([expr], x.size) const_size = (x.size[1], 1) ones = lu.create_const(np.ones(const_size), const_size) obj = lu.rmul_expr(obj, ones, size) ones = lu.create_const(np.ones(size), size) constraints += [lu.create_leq(obj, ones)] return (t, constraints)
def graph_implementation(arg_objs, size, data=None): """Reduces the atom to an affine expression and list of constraints. Parameters ---------- arg_objs : list LinExpr for each argument. size : tuple The size of the resulting expression. data : Additional data required by the atom. Returns ------- tuple (LinOp for objective, list of constraints) """ x = arg_objs[0] t = lu.create_var((1, 1)) # sum(exp(x - t)) prom_t = lu.promote(t, x.size) expr = lu.sub_expr(x, prom_t) obj, constraints = exp.graph_implementation([expr], x.size) obj, constr = sum_entries.graph_implementation([obj], (1, 1)) # obj <= 1 one = lu.create_const(1, (1, 1)) constraints += constr + [lu.create_leq(obj, one)] return (t, constraints)
def graph_implementation(arg_objs, size, data=None): """Reduces the atom to an affine expression and list of constraints. Parameters ---------- arg_objs : list LinExpr for each argument. size : tuple The size of the resulting expression. data : Additional data required by the atom. Returns ------- tuple (LinOp for objective, list of constraints) """ x = arg_objs[0] t = lu.create_var(size) # log(1 + exp(x)) <= t <=> exp(-t) + exp(x - t) <= 1 ''' obj0, constr0 = exp.graph_implementation([lu.neg_expr(t)], size) obj1, constr1 = exp.graph_implementation([lu.sub_expr(x, t)], size) lhs = lu.sum_expr([obj0, obj1]) ones = lu.create_const(np.mat(np.ones(size)), size) constr = constr0 + constr1 + [lu.create_leq(lhs, ones)] ''' s = data[0] if isinstance(s, Parameter): s = lu.create_param(s, (1, 1)) else: # M is constant. s = lu.create_const(s, (1, 1)) #Wrong sign? obj0, constr0 = exp.graph_implementation([lu.neg_expr(t)], size) obj1, constr1 = exp.graph_implementation([lu.sub_expr(s, lu.sum_expr([t, x]))], size) obj2, constr2 = exp.graph_implementation([lu.sub_expr(lu.neg_expr(s), lu.sum_expr([t, x]))], size) obj3, constr3 = exp.graph_implementation([lu.sub_expr(lu.neg_expr(t), lu.mul_expr(2, x, size))], size) lhs = lu.sum_expr([obj0, obj1, obj2, obj3]) ones = lu.create_const(np.mat(np.ones(size)), size) constr = constr0 + constr1 + constr2 + constr3 + [lu.create_leq(lhs, ones)] return (t, constr)
def graph_implementation(arg_objs,size,data=None): x = arg_objs[0] beta,x0 = data[0],data[1] beta_val,x0_val = beta.value,x0.value if isinstance(beta,Parameter): beta = lu.create_param(beta,(1,1)) else: beta = lu.create_const(beta.value,(1,1)) if isinstance(x0,Parameter): x0 = lu.create_param(x0,(1,1)) else: x0 = lu.create_const(x0.value,(1,1)) xi,psi = lu.create_var(size),lu.create_var(size) one = lu.create_const(1,(1,1)) one_over_beta = lu.create_const(1/beta_val,(1,1)) k = np.exp(-beta_val*x0_val) k = lu.create_const(k,(1,1)) # 1/beta * (1 - exp(-beta*(xi+x0))) xi_plus_x0 = lu.sum_expr([xi,x0]) minus_beta_times_xi_plus_x0 = lu.neg_expr(lu.mul_expr(beta,xi_plus_x0,size)) exp_xi,constr_exp = exp.graph_implementation([minus_beta_times_xi_plus_x0],size) minus_exp_minus_etc = lu.neg_expr(exp_xi) left_branch = lu.mul_expr(one_over_beta, lu.sum_expr([one,minus_exp_minus_etc]),size) # psi*exp(-beta*r0) right_branch = lu.mul_expr(k,psi,size) obj = lu.sum_expr([left_branch,right_branch]) #x-x0 == xi + psi, xi >= 0, psi <= 0 zero = lu.create_const(0,size) constraints = constr_exp prom_x0 = lu.promote(x0, size) constraints.append(lu.create_eq(x,lu.sum_expr([prom_x0,xi,psi]))) constraints.append(lu.create_geq(xi,zero)) constraints.append(lu.create_leq(psi,zero)) return (obj, constraints)