示例#1
0
 def test_it_should_convert_to_parameters(self):
     matrix = np.array([[-0.7597, -0.0316, 0.6496, 10],
                       [-0.5236, -0.5626, -0.6398, 1],
                       [0.3856, -0.8262, 0.4108, 2.2],
                       [0, 0, 0, 1]])
     transform = Transform.from_matrix(matrix)
     np.testing.assert_almost_equal(transform.to_parameters(), np.array([10, 1, 2.2, 1, 0.707, 3.1]), 4)
示例#2
0
def icp(A, B, init_pose=None, max_iterations=20, tolerance=0.001):
    '''
    The Iterative Closest Point method
    Input:
        A: Nx3 numpy array of source 3D points
        B: Nx3 numpy array of destination 3D point
        init_pose: 4x4 homogeneous transformation
        max_iterations: exit algorithm after max_iterations
        tolerance: convergence criteria
    Output:
        T: final homogeneous transformation
        distances: Euclidean distances (errors) of the nearest neighbor
    '''

    # make points homogeneous, copy them so as to maintain the originals
    src = np.ones((4, A.shape[0]))
    dst = np.ones((4, B.shape[0]))
    src[0:3, :] = np.copy(A.T)
    dst[0:3, :] = np.copy(B.T)

    # apply the initial pose estimation
    if init_pose is not None:
        src = np.dot(init_pose, src)

    prev_error = 0

    for i in range(max_iterations):
        # find the nearest neighbours between the current source and destination points
        distances, indices = nearest_neighbor(src[0:3, :].T, dst[0:3, :].T)

        # compute the transformation between the current source and nearest destination points
        T, _, _ = best_fit_transform(src[0:3, :].T, dst[0:3, indices].T)

        # update the current source
        src = np.dot(T, src)

        # check error
        mean_error = np.sum(distances) / distances.size
        if abs(prev_error - mean_error) < tolerance:
            break
        prev_error = mean_error

    # calculate final transformation
    T, _, _ = best_fit_transform(A, src[0:3, :].T)

    return Transform.from_matrix(T), distances
示例#3
0
                             window, (camera.width, camera.height))
    vpRender.load_ambiant_occlusion_map(MODELS[0]["ambiant_occlusion_model"])

    cv2.namedWindow('image')
    cv2.createTrackbar('transparency', 'image', 0, 100, trackbar)

    # todo, read from file?
    detection_offset = Transform()
    rgbd_record = False
    save_next_rgbd_pose = False
    lock_offset = False
    if PRELOAD:
        dataset.load()
        offset_path = os.path.join(dataset.path, "offset.npy")
        if os.path.exists(offset_path):
            detection_offset = Transform.from_matrix(np.load(offset_path))
            lock_offset = True

    while True:
        start_time = time.time()
        bgr, depth = sensor.get_frame()
        bgr = cv2.resize(bgr, (int(1920 / ratio), int(1080 / ratio)))
        depth = cv2.resize(depth, (int(1920 / ratio), int(1080 / ratio)))
        screen = bgr.copy()

        if rgbd_record:
            # here we add a dummy pose, we will compute the pose as a post operation
            dataset.add_pose(bgr, depth, Transform())
        else:
            detection = detector.detect(screen)
            # Draw a color rectangle around screen : red no detection, green strong detection
    vpRender = ModelRenderer(MODELS[0]["model_path"], SHADER_PATH, camera,
                             window)
    vpRender.load_ambiant_occlusion_map(MODELS[0]["ambiant_occlusion_model"])

    cv2.namedWindow('image')
    cv2.createTrackbar('transparency', 'image', 0, 100, trackbar)

    # todo, read from file?
    detection_offset = Transform()
    rgbd_record = False
    save_next_rgbd_pose = False
    lock_offset = False
    if PRELOAD:
        dataset.load()
        if dataset.size():
            detection_offset = Transform.from_matrix(
                np.load(os.path.join(dataset.path, "offset.npy")))
            lock_offset = True

    while True:
        start_time = time.time()
        bgr, depth = sensor.get_frame()
        bgr = cv2.resize(bgr, (int(1920 / ratio), int(1080 / ratio)))
        depth = cv2.resize(depth, (int(1920 / ratio), int(1080 / ratio)))
        screen = bgr.copy()

        if rgbd_record:
            # here we add a dummy pose, we will compute the pose as a post operation
            dataset.add_pose(bgr, depth, Transform())
        else:
            screen = bgr.copy()
            detection = detector.detect(screen)