示例#1
0
 def test_it_should_rotate_from_other_transform(self):
     transform = Transform.from_parameters(0, 0, 0, 1, 0.707, 3.1)
     rotation = Transform.from_parameters(0, 0, 0, -1, -0.707, -3.1)
     transform.rotate(transform=rotation)
     truth = np.array([[0.39, 0.5479, 0.74, 0.],
                       [0.9196, -0.2729, -0.2826, 0.],
                       [0.0471, 0.7908, -0.6103, 0.],
                       [0., 0., 0., 1.]])
     np.testing.assert_almost_equal(transform.matrix, truth, 4)
示例#2
0
 def test_it_should_translate_from_other_transform(self):
     transform = Transform.from_parameters(10, 1, 2.2, 1, 0.707, 3.1)
     translation = Transform.from_parameters(10, -1, 2.2, 0, 0, 0)
     transform.translate(transform=translation)
     truth = np.array([[-0.7597, -0.0316, 0.6496, 20],
                       [-0.5236, -0.5626, -0.6398, 0],
                       [0.3856, -0.8262, 0.4108, 4.4],
                       [0, 0, 0, 1]])
     np.testing.assert_almost_equal(transform.matrix, truth, 4)
示例#3
0
    def estimate_current_pose(self, previous_pose, current_rgb, current_depth, debug=False):
        render_rgb, render_depth = self.renderer.render(previous_pose.transpose())
        # todo implement this part on gpu...
        rgbA, depthA = normalize_scale(render_rgb, render_depth, previous_pose.inverse(), self.camera, self.image_size,
                                       self.object_width)
        rgbB, depthB = normalize_scale(current_rgb, current_depth, previous_pose.inverse(), self.camera, self.image_size,
                                       self.object_width)

        depthA = normalize_depth(depthA, previous_pose)
        depthB = normalize_depth(depthB, previous_pose)

        if debug:
            show_frames(rgbA, depthA, rgbB, depthB)
        rgbA, depthA = normalize_channels(rgbA, depthA, self.mean[:4], self.std[:4])
        rgbB, depthB = normalize_channels(rgbB, depthB, self.mean[4:], self.std[4:])
        self.input_buffer[0, 0:3, :, :] = rgbA
        self.input_buffer[0, 3, :, :] = depthA
        self.input_buffer[0, 4:7, :, :] = rgbB
        self.input_buffer[0, 7, :, :] = depthB
        self.prior_buffer[0] = np.array(previous_pose.to_parameters(isQuaternion=True))
        prediction = self.tracker_model.test([self.input_buffer, self.prior_buffer]).asNumpyTensor()
        prediction = unnormalize_label(prediction, self.translation_range, self.rotation_range)
        if debug:
            print("Prediction : {}".format(prediction))
        prediction = Transform.from_parameters(*prediction[0], is_degree=True)
        current_pose = combine_view_transform(previous_pose, prediction)
        self.debug_rgb = render_rgb
        return current_pose
示例#4
0
 def test_it_should_init_from_parameters(self):
     transform = Transform.from_parameters(10, 1, 2.2, 1, 0.707, 3.1)
     truth = np.array([[-0.7597, -0.0316, 0.6496, 10],
                       [-0.5236, -0.5626, -0.6398, 1],
                       [0.3856, -0.8262, 0.4108, 2.2],
                       [0, 0, 0, 1]])
     np.testing.assert_almost_equal(transform.matrix, truth, 4)
示例#5
0
 def __next__(self):
     rgb, depth = self.sensor.get_frame()
     rgb = cv2.resize(rgb,
                      (self.sensor.camera.width, self.sensor.camera.height))
     depth = cv2.resize(
         depth, (self.sensor.camera.width, self.sensor.camera.height))
     frame = Frame(rgb, depth, self.count)
     self.count += 1
     pose = None
     if self.do_compute:
         pose = self.detector.detect(rgb.copy())
     if pose is None:
         pose = Transform.from_parameters(0, 0, -1, 0, 0, 0)
     return frame, pose
示例#6
0
    def load(self):
        """
        Load a viewpoints.json to dataset's structure
        Todo: datastructure should be more similar to json structure...
        :return: return false if the dataset is empty.
        """
        # Load viewpoints file and camera file
        try:
            with open(os.path.join(self.path, "viewpoints.json")) as data_file:
                data = json.load(data_file)
            self.camera = Camera.load_from_json(self.path)
        except FileNotFoundError:
            return False
        self.metadata = data["metaData"]
        self.set_save_type(self.metadata["save_type"])
        count = 0
        # todo this is not clean!
        while True:
            try:
                id = str(count)
                pose = Transform.from_parameters(
                    *[float(data[id]["vector"][str(x)]) for x in range(6)])
                self.add_pose(None, None, pose)
                if "pairs" in data[id]:
                    for i in range(int(data[id]["pairs"])):
                        pair_id = "{}n{}".format(id, i)
                        pair_pose = Transform.from_parameters(*[
                            float(data[pair_id]["vector"][str(x)])
                            for x in range(6)
                        ])
                        self.add_pair(None, None, pair_pose, count)
                count += 1

            except KeyError:
                break
        return True
示例#7
0
    def detect(self, img):
        self.likelihood = self.detector.detect_mat(img)
        detection = None
        if self.likelihood > 0.1:
            # get board and draw it
            board = self.detector.getDetectedBoard()

            rvec = board.Rvec.copy()
            tvec = board.Tvec.copy()
            matrix = cv2.Rodrigues(rvec)[0]
            rodrigues = mat2euler(matrix)
            detection = Transform.from_parameters(tvec[0], -tvec[1], -tvec[2],
                                                  rodrigues[0], -rodrigues[1],
                                                  -rodrigues[2])
        return detection
示例#8
0
    metadata["min_radius"] = str(SPHERE_MIN_RADIUS)
    metadata["max_radius"] = str(SPHERE_MAX_RADIUS)
    for i in range(real_dataset.size()):
        frame, pose = real_dataset.data_pose[i]

        rgb_render, depth_render = vpRender.render(pose.transpose())
        rgb, depth = frame.get_rgb_depth(real_dataset.path)
        masked_rgb, masked_depth = mask_real_image(rgb, depth, depth_render)

        for j in range(SAMPLE_QUANTITY):
            rotated_rgb, rotated_depth, rotated_pose = random_z_rotation(
                masked_rgb, masked_depth, pose, real_dataset.camera)
            random_transform = Transform.random(
                (-TRANSLATION_RANGE, TRANSLATION_RANGE),
                (-ROTATION_RANGE, ROTATION_RANGE))
            inverted_random_transform = Transform.from_parameters(
                *(-random_transform.to_parameters()))

            previous_pose = rotated_pose.copy()
            previous_pose = combine_view_transform(previous_pose,
                                                   inverted_random_transform)

            rgbA, depthA = vpRender.render(previous_pose.transpose())
            bb = compute_2Dboundingbox(previous_pose,
                                       real_dataset.camera,
                                       OBJECT_WIDTH,
                                       scale=(1000, -1000, -1000))
            rgbA, depthA = normalize_scale(rgbA, depthA, bb,
                                           real_dataset.camera, IMAGE_SIZE)
            rgbB, depthB = normalize_scale(rotated_rgb, rotated_depth, bb,
                                           real_dataset.camera, IMAGE_SIZE)
示例#9
0
 def test_two_similar_transform_should_be_equal(self):
     transform1 = Transform.from_parameters(1.1, 1.2, 1.3, 1.1, 1.2, 1.3)
     transform2 = Transform.from_parameters(1.10001, 1.2, 1.30001, 1.1, 1.200001, 1.3)
     self.assertEqual(transform1, transform2)
示例#10
0
 def test_two_identity_should_be_equal(self):
     transform1 = Transform()
     transform2 = Transform()
     self.assertEqual(transform1, transform2)
     transform3 = Transform.from_parameters(1, 0, 0, 0, 0, 0)
     self.assertNotEqual(transform1, transform3)
示例#11
0
    def estimate_current_pose(self,
                              previous_pose,
                              current_rgb,
                              current_depth,
                              debug=False,
                              debug_time=False):
        if debug_time:
            start_time = time.time()
        bb = compute_2Dboundingbox(previous_pose,
                                   self.camera,
                                   self.object_width,
                                   scale=(1000, 1000, -1000))
        bb2 = compute_2Dboundingbox(previous_pose,
                                    self.camera,
                                    self.object_width,
                                    scale=(1000, -1000, -1000))
        if debug_time:
            print("Compute BB : {}".format(time.time() - start_time))
            start_time = time.time()
        rgbA, depthA = self.compute_render(previous_pose, bb)
        if debug_time:
            print("Render : {}".format(time.time() - start_time))
            start_time = time.time()
        rgbB, depthB = normalize_scale(current_rgb, current_depth, bb2,
                                       self.camera, self.image_size)
        debug_info = (rgbA, bb2, np.hstack((rgbA, rgbB)))

        rgbA = rgbA.astype(np.float)
        rgbB = rgbB.astype(np.float)
        depthA = depthA.astype(np.float)
        depthB = depthB.astype(np.float)

        depthA = normalize_depth(depthA, previous_pose)
        depthB = normalize_depth(depthB, previous_pose)

        if debug:
            show_frames(rgbA, depthA, rgbB, depthB)
        rgbA, depthA = normalize_channels(rgbA, depthA, self.mean[:4],
                                          self.std[:4])
        rgbB, depthB = normalize_channels(rgbB, depthB, self.mean[4:],
                                          self.std[4:])

        self.input_buffer[0, 0:3, :, :] = rgbA
        self.input_buffer[0, 3, :, :] = depthA
        self.input_buffer[0, 4:7, :, :] = rgbB
        self.input_buffer[0, 7, :, :] = depthB
        self.prior_buffer[0] = np.array(
            previous_pose.to_parameters(isQuaternion=True))
        if debug_time:
            print("Normalize : {}".format(time.time() - start_time))
            start_time = time.time()
        prediction = self.tracker_model.test(
            [self.input_buffer, self.prior_buffer]).asNumpyTensor()
        if debug_time:
            print("Network time : {}".format(time.time() - start_time))
        prediction = unnormalize_label(prediction, self.translation_range,
                                       self.rotation_range)
        if debug:
            print("Prediction : {}".format(prediction))
        prediction = Transform.from_parameters(*prediction[0], is_degree=True)
        current_pose = combine_view_transform(previous_pose, prediction)
        return current_pose, debug_info