示例#1
0
def bigram_acc(transitions):
    """
    Compute the bigram overlap (accuracy) for a list of predicted
    Transitions.

    transitions -- A list of discourse.hypergaph.Transition objects.

    returns bigram overlap (accuracy)
    """
    ntrans = len(transitions)
    # Get predicted bigrams.
    pred_bg = set([(s2i(t.sentences[1]), s2i(t.sentences[0], end='end'))
                   for t in recover_order(transitions)])

    # Create gold bigrams.
    gold = set([(i, i+1) for i in range(-1, ntrans - 2)])
    gold.add((ntrans - 2, 'end'))

    # If either sets are empty return None.
    if len(pred_bg) == 0 or len(gold) == 0:
        return None

    nbigrams = len(gold)
    acc = len(pred_bg & gold) / float(nbigrams)
    return acc
示例#2
0
def oso_acc(transitions):

    ntrans = len(transitions)
    # Get predicted bigrams.
    pred = [s2i(t.sentences[0], end=ntrans-1)
               for t in recover_order(transitions)]
    if tuple(pred) == tuple([i for i in range(ntrans)]):
        return 1
    else:
        return 0
示例#3
0
def kendalls_tau(transitions):
    """
    Compute Kendall's tau and pvalue for a list of
    discourse.hypergraph.Transition objects.

    transitions -- A list of discourse.hypergaph.Transition objects.

    returns (kt, pval)
    """
    # Get list sentence indices implied by the transition set.
    indices = [s2i(t.sentences[0]) for t in recover_order(transitions)[:-1]]
    # Get gold indices.
    gold = [i for i in range(len(indices))]
    # Compute Kendall's tau for these two sequences.
    kt, pval = sp.stats.kendalltau(indices, gold)
    return kt, pval
示例#4
0
    print_model_metrics(cutoff_trainY, cutoff_testY)
    

for i, datum in enumerate(izip(testX, gtestY[0:20], ptestY), 1):
    print u'TEST NO: {:3}\n============\n'.format(i)
    testx, gtesty, ptesty = datum
    kt, pval = evaluation.kendalls_tau(ptesty)
    print u'Kendall\'s Tau : {:.3f} (pval {:.3f})'.format(kt, pval)
    print u'Bigram Acc.    : {:.3f}'.format(evaluation.bigram_acc(ptesty))
    print

    print u'GOLD ORDERING\n==================\n'
    print unicode(testx.trans2str(gtesty))
    print 

    for t in hypergraph.recover_order(gtesty):
        
        print u'TRANSITION: {}'.format(unicode(t))
        print u'=' * 79

        idx1 = hypergraph.s2i(t.sents[1])
        sent1 = testx[idx1] if idx1 > -1 else 'START'
        idx2 = hypergraph.s2i(t.sents[0])
        sent2 = testx[idx2] if idx2 is not None else 'END'

        print textwrap.fill(u'({:3}) {}'.format(idx1, unicode(sent1)))
        print u' |\n V'
        print textwrap.fill(u'({:3}) {}\n'.format(idx2, unicode(sent2)))
        evaluation.explain_transition(t, model, testx)
        print 
示例#5
0
def eval_against_baseline(testX, baselineY, newY, baseline_model, new_model,
                          base_feats, new_feats,
                          baseline_pred_trainY=None,
                          new_pred_trainY=None):
    """
    Evaluate differences in two models. Prints out per instance
    analysis of transitions predicted by baseline and new models.

    testX -- A list of corenlp.Document objects to evaluate on.

    baselineY -- A list of lists of discourse.hypergraph.Transition
        objects predicted by the baseline model for the documents
        in testX.

    newY -- A list of lists of discourse.hypergraph.Transition
        objects predicted by the new model for the documents
        in testX.

    baseline_model -- A discourse.perceptron.Perceptron object trained
        on the features in base_feats.

    new_model -- A discourse.perceptron.Perceptron object trained
        on the features in new_feats.

    base_feats -- A dict of feature names to boolean values,
        indicating the features active in the baseline model.

    new_feats -- A dict of feature names to boolean values,
        indicating the features active in the new model.
    """

    # Limit text output to 80 chars and wrap nicely.
    wrapper = textwrap.TextWrapper(subsequent_indent='\t')

    print u'OVERALL STATS FOR TEST DOCUMENTS'

    # Print macro averaged Kendall's Tau and pvalues for baseline
    # and new model.
    bl_avg_kt, bl_avg_pval = avg_kendalls_tau(baselineY)
    new_avg_kt, new_avg_pval = avg_kendalls_tau(newY)
        
    print u'\t     | BASELINE      | NEW'
    print u'{:14} {:.3f} ({:.3f}) | {:.3f} ({:.3f})\n'.format(u'Kendalls Tau',
                                                              bl_avg_kt,
                                                              bl_avg_pval,
                                                              new_avg_kt,
                                                              new_avg_pval)

    # Print bigram gold sequence overlap (accuracy) for baseline and
    # new model.
    bl_bg_acc = mac_avg_bigram_acc(baselineY)
    new_bg_acc = mac_avg_bigram_acc(newY)
    print u'\t     | BASELINE      | NEW'
    print u'{:12} | {:.3f}         | {:.3f} \n'.format(u'bigram acc',
                                                       bl_bg_acc,
                                                       new_bg_acc)

    if baseline_pred_trainY is not None or new_pred_trainY is not None:
         
        if baseline_pred_trainY is not None:
            bl_avg_kt_train, bl_avg_pval_train = avg_kendalls_tau(
                baseline_pred_trainY)

            bl_bg_acc_train = mac_avg_bigram_acc(baseline_pred_trainY)
        
        else: 
            bl_avg_kt_train = float('nan')
            bl_avg_pval_train = float('nan')
            bl_bg_acc_train = float('nan')

        if new_pred_trainY is not None:
            new_avg_kt_train, new_avg_pval_train = avg_kendalls_tau(
                new_pred_trainY)

            new_bg_acc_train = mac_avg_bigram_acc(new_pred_trainY)

        else: 
            new_avg_kt_train = float('nan')
            new_avg_pval_train = float('nan')
            new_bg_acc_train = float('nan')

        print u'OVERALL STATS FOR TRAINING DOCUMENTS'
        print u'\t     | BASELINE      | NEW'
        print u'{:14} {:.3f} ({:.3f}) | {:.3f} ({:.3f})\n'.format(
            u'Kendalls Tau',
            bl_avg_kt_train,
            bl_avg_pval_train,
            new_avg_kt_train,
            new_avg_pval_train)
        print u'\t     | BASELINE      | NEW'
        print u'{:12} | {:.3f}         | {:.3f} \n'.format(u'bigram acc',
                                                           bl_bg_acc_train,
                                                           new_bg_acc_train)

    # Print stats for individual test instances.
    for test_idx, datum in enumerate(izip(testX, baselineY, newY), 1):
        testx, baseliney, newy = datum
        print u'TEST NO. {:4}\n=============\n'.format(test_idx)

        # Print Kendalls Tau and pvalue for baseline and new model
        # for this test instance.
        bl_kt, bl_pval = kendalls_tau(baseliney)
        new_kt, new_pval = kendalls_tau(newy)
        print u'\t     | BASELINE      | NEW'
        print u'{:14} {:.3f} ({:.3f}) | {:.3f} ({:.3f})\n'.format(u'K. Tau',
                                                                  bl_kt,
                                                                  bl_pval,
                                                                  new_kt,
                                                                  new_pval)

        # Print bigram gold sequence overlap (accuracy) for baseline
        # and new model.
        bl_acc = bigram_acc(baseliney)
        new_acc = bigram_acc(newy)
        print u'\t     | BASELINE      | NEW'
        print u'{:12} | {:.3f}         | {:.3f} \n'.format(u'bigram acc',
                                                           bl_acc,
                                                           new_acc)

        # Print document sentences in correct order.
        print u'GOLD TEXT\n=========\n'
        for i, s in enumerate(testx):
            print wrapper.fill(u'({:3}) {}'.format(i, unicode(s)))
        print u'\n\n'

        # Print document sentences in baseline order.
        print u'BASELINE TEXT\n=========\n'
        indices = [s2i(t.sents[0]) for t in recover_order(baseliney)[:-1]]
        for i in indices:
            print wrapper.fill(u'({}) {}'.format(i, unicode(testx[i])))
        print u'\n\n'

        # Print document sentences in new model order.
        print u'NEW MODEL TEXT\n=========\n'
        indices = [s2i(t.sents[0]) for t in recover_order(newy)[:-1]]
        for i in indices:
            print wrapper.fill(u'({}) {}'.format(i, unicode(testx[i])))
        print u'\n\n'

        # Get predicted transitions in order for both models.
        # NOTE: The predict function of the Perceptron object returns
        # the predicted transitions in no particular order.
        # When in doubt, use recover_order on any predicted output
        # if you want to iterate over it as if you were traversing the
        # graph of sentence transitions.
        baseline_trans = discourse.hypergraph.recover_order(baseliney)
        new_trans = discourse.hypergraph.recover_order(newy)

        # Map tail sentence of a transition to the transition.
        p2t_baseline = _position2transition_map(baseline_trans)
        p2t_new = _position2transition_map(new_trans)

        # For each transition leaving the same sentence, if the models
        # disagree on what the next sentence is, print analysis of
        # the model features.
        for pos, t_bl in p2t_baseline.items():
            if p2t_new[pos].sents[0] != t_bl.sents[0]:
                t_new = p2t_new[pos]

                # Print tail sentence.
                if pos > -1:
                    pos_str = unicode(testx[pos])
                else:
                    pos_str = u'START'
                print u'=' * 80
                print wrapper.fill(u'({:3}) {}'.format(pos, pos_str))
                print (u'-' * 80)
                print u'  |\n  V'

                # Print baseline head sentence
                if s2i(t_bl.sents[0]) is not None:
                    bl_str = unicode(testx[s2i(t_bl.sents[0])])
                else:
                    bl_str = u'END'
                print wrapper.fill(u'(OLD) {}\n'.format(bl_str)) + u'\n'

                # Print baseline model features for the predicted
                # baseline transition.
                explain(t_bl, baseline_model, new_model, testx,
                        base_feats, new_feats)

                # Print new model head sentence.
                if s2i(t_new.sents[0]) is not None:
                    new_str = unicode(testx[s2i(t_new.sents[0])])
                else:
                    new_str = 'END'
                print wrapper.fill(u'(NEW) {}\n'.format(new_str)) + u'\n'

                # Print new model features for the predicted new
                # model transition.
                explain(t_new, baseline_model, new_model, testx,
                        base_feats, new_feats)

                # Print gold head sentence, that is, the sentence the
                # models should have selected.
                if pos + 1 < len(testx):
                    gstr = u'(GLD) {}\n'.format(unicode(testx[pos + 1]))
                    print wrapper.fill(gstr) + u'\n'

                if pos + 1 == s2i(t_bl.sents[0], end=len(testx)):
                    print 'OLD MODEL IS CORRECT\n'
                if pos + 1 == s2i(t_new.sents[0], end=len(testx)):
                    print 'NEW MODEL IS CORRECT\n'
                print