def main(test=0, CSVFileName='DataSet.csv', csvFile=None): if csvFile: CSVFileName = csvFile.name filename = CSVFileName data = ImportCSVdata( ) #call the Import_CSV module and using its method Input_data import the data set from the CSV file to the tool Data = data.Input_data(filename) ProcTime = Data.get( 'ProcessingTimes', []) #get from the returned Python dictionary the three data sets MTTF = Data.get('MTTF', []) MTTR = Data.get('MTTR', []) CI = ConfidenceIntervals() #create a Intervals object DM = DataManipulation() if test: return DM.round(CI.ConfidIntervals( ProcTime, 0.95)), CI.ConfidIntervals(MTTR, 0.95), DM.ceiling( CI.ConfidIntervals(MTTF, 0.90)) #print the confidence intervals of the data sets applying either 90% or 95% probability print DM.round(CI.ConfidIntervals(ProcTime, 0.95)) print DM.ceiling(CI.ConfidIntervals(MTTF, 0.90)) print CI.ConfidIntervals(MTTR, 0.95)
def main(test=0, CSVFileName='DataSet.csv', csvFile=None): if csvFile: CSVFileName = csvFile.name filename = CSVFileName data=ImportCSVdata() #call the Import_CSV module and using its method Input_data import the data set from the CSV file to the tool Data = data.Input_data(filename) ProcTime = Data.get('ProcessingTimes',[]) #get from the returned Python dictionary the three data sets MTTF = Data.get('MTTF',[]) MTTR = Data.get('MTTR',[]) CI=ConfidenceIntervals() #create a Intervals object DM=DataManipulation() if test: return DM.round(CI.ConfidIntervals(ProcTime, 0.95)), CI.ConfidIntervals(MTTR, 0.95), DM.ceiling(CI.ConfidIntervals(MTTF, 0.90)) #print the confidence intervals of the data sets applying either 90% or 95% probability print DM.round(CI.ConfidIntervals(ProcTime, 0.95)) print DM.ceiling(CI.ConfidIntervals(MTTF, 0.90)) print CI.ConfidIntervals(MTTR, 0.95)
P3_Scrap= B.ReplaceWithZero(P3_Scrap) P4_Scrap= B.ReplaceWithZero(P4_Scrap) P5_Scrap= B.ReplaceWithZero(P5_Scrap) P6_Scrap= B.ReplaceWithZero(P6_Scrap) P7_Scrap= B.ReplaceWithZero(P7_Scrap) P8_Scrap= B.ReplaceWithZero(P8_Scrap) P9_Scrap= B.ReplaceWithZero(P9_Scrap) P10_Scrap= B.ReplaceWithZero(P10_Scrap) P11_Scrap= B.ReplaceWithZero(P11_Scrap) # #Call the BasicSatatisticalMeasures object C=StatisticalMeasures() #Create a list with values the calculated mean value of scrap quantity on the different stations in the line listScrap=[C.mean(P1_Scrap),C.mean(P2_Scrap),C.mean(P3_Scrap),C.mean(P4_Scrap),C.mean(P5_Scrap),C.mean(P6_Scrap),C.mean(P7_Scrap),C.mean(P8_Scrap),C.mean(P9_Scrap),C.mean(P10_Scrap), C.mean(P11_Scrap)] D= DataManipulation() listScrap=D.round(listScrap) #Round the mean values of the list so as to get integers dictScrap={} dictScrap['P1']= listScrap[0] dictScrap['P2']= listScrap[1] dictScrap['P3']= listScrap[2] dictScrap['P4']= listScrap[3] dictScrap['P5']= listScrap[4] dictScrap['P6']= listScrap[5] dictScrap['P7']= listScrap[6] dictScrap['P8']= listScrap[7] dictScrap['P9']= listScrap[8] dictScrap['P10']= listScrap[9] dictScrap['P11']= listScrap[10]