示例#1
0
    def simulate(self, qm0, spin=10.0, t1=1.5, dt=0.01):
        # reset
        self.system.q[:] = 0.0
        self.system.qd[:] = 0.0

        # initial conditions
        self.system.q[self.blade.istrain] = qm0  # initial modal amplitudes
        self.system.prescribe(self.bearing.istrain, vel=spin,
                              acc=0.0)  #acc=spin/t1)

        # setup integrator
        self.integ = Integrator(self.system, ('pos', 'vel'))
        self.integ.add_output(dynamics.LoadOutput(self.bearing.iprox))
        self.integ.add_output(dynamics.LoadOutput(self.blade.iprox))
        self.integ.add_output(dynamics.LoadOutput(self.blade.iprox,
                                                  local=True))
        self.integ.add_output(
            dynamics.CustomOutput(lambda s: self.blade.station_positions()[-1],
                                  label="Tip pos"))
        self.integ.add_output(
            dynamics.CustomOutput(lambda s: self.blade.quad_stress,
                                  label="Quad stress"))

        # simulate
        self.t, self.y = self.integ.integrate(t1, dt)
        return self.t, self.y
示例#2
0
    def simulate(self, xpivot=0.0, vprec=0.0, t1=10, dt=0.05):
        # reset
        self.system.q[:] = 0.0
        self.system.qd[:] = 0.0

        # initial conditions
        self.system.q[self.pivot.istrain][0] = xpivot  # initial elevation
        self.system.qd[self.bearing.istrain][0] = vprec  # initial azimuth spd
        self.system.qd[
            self.axis.istrain][0] = self.spin  # initial rotation speed

        self.integ = Integrator(self.system, ('pos', 'vel'))
        self.integ.add_output(dynamics.LoadOutput(self.axis.iprox))
        self.integ.add_output(dynamics.LoadOutput(self.pivot.iprox))
        self.integ.add_output(dynamics.LoadOutput(self.bearing.iprox))
        #integ.add_output(dynamics.CustomOutput(
        #    lambda s: np.dot(self.axis.mass_vv, self.system.qdd[el.iprox+el.idist]) + \
        #              np.dot(el.mass_ve, self.system.qdd[el.istrain])))

        # simulate
        if t1 > 0:
            self.t, self.y = self.integ.integrate(t1, dt)
            for i, lab in enumerate(self.integ.labels()):
                print "%2d  %s" % (i, lab)
            return self.t, self.y
示例#3
0
    def simulate(self, xpivot=0.0, spin=10.0, t1=1.5, dt=0.01):
        # reset
        self.system.q[:] = 0.0
        self.system.qd[:] = 0.0

        # initial conditions
        self.system.q[self.pivot.istrain][0] = xpivot  # initial elevation
        self.system.qd[self.axis.istrain][0] = spin  # initial rotation speed

        # setup integrator
        #self.integ = Integrator(self.system, ('pos','vel','acc'))
        self.integ = Integrator(self.system, ())
        for istrain in (self.pivot.istrain, self.axis.istrain):
            self.integ.add_output(dynamics.StrainOutput(istrain, deriv=0))
            self.integ.add_output(dynamics.StrainOutput(istrain, deriv=1))
            self.integ.add_output(dynamics.StrainOutput(istrain, deriv=2))
        self.integ.add_output(dynamics.LoadOutput(self.pivot.idist[0]))
        self.integ.add_output(
            dynamics.LoadOutput(self.pivot.idist[0], local=True))
        self.integ.add_output(dynamics.LoadOutput(self.body.iprox))
        self.integ.add_output(dynamics.LoadOutput(self.endbody.iprox))
        self.integ.add_output(dynamics.CustomOutput(self.applied_torque, "Q2"))
        self.integ.add_output(
            dynamics.CustomOutput(self.thetadotdot, "thetadotdot"))
        self.integ.add_output(dynamics.CustomOutput(self.gyro_torque, "Q1"))

        # simulate
        if t1 > 0:
            self.t, self.y = self.integ.integrate(t1, dt)
    def __init__(self, mode_source_file, root_length=0):
        # Modal element using data from Bladed model
        print "Loading modes from '%s'..." % mode_source_file
        self.modes = ModalRepresentation.from_Bladed(mode_source_file)

        Ry = rotmat_y(-pi / 2)
        Rhb1 = rotmat_x(0 * 2 * pi / 3)
        Rhb2 = rotmat_x(1 * 2 * pi / 3)
        Rhb3 = rotmat_x(2 * 2 * pi / 3)

        self.bearing = Hinge('bearing', [1, 0, 0])
        root1 = RigidConnection('root1', root_length * np.dot(Rhb1, [0, 0, 1]),
                                dot(Rhb1, Ry))
        root2 = RigidConnection('root2', root_length * np.dot(Rhb2, [0, 0, 1]),
                                dot(Rhb2, Ry))
        root3 = RigidConnection('root3', root_length * np.dot(Rhb3, [0, 0, 1]),
                                dot(Rhb3, Ry))
        self.blade1 = ModalElement('blade1', self.modes)
        self.blade2 = ModalElement('blade2', self.modes)
        self.blade3 = ModalElement('blade3', self.modes)

        self.bearing.add_leaf(root1)
        self.bearing.add_leaf(root2)
        self.bearing.add_leaf(root3)
        root1.add_leaf(self.blade1)
        root2.add_leaf(self.blade2)
        root3.add_leaf(self.blade3)
        self.system = System(self.bearing)

        # Prescribed DOF accelerations - constant rotor speed
        self.system.prescribe(self.bearing.istrain, vel=0.0, acc=0.0)

        # setup integrator
        self.integ = Integrator(self.system, ('pos', 'vel'))
        self.integ.add_output(dynamics.LoadOutput(self.bearing.iprox))
        for b in (self.blade1, self.blade2, self.blade3):
            self.integ.add_output(dynamics.LoadOutput(b.iprox, local=True))
        for b in (self.blade1, self.blade2, self.blade3):
            self.integ.add_output(
                dynamics.CustomOutput(lambda s: b.station_positions()[-1],
                                      label="{} tip defl".format(b)))
        for b in (self.blade1, self.blade2, self.blade3):
            self.integ.add_output(
                dynamics.CustomOutput(lambda s: dot(b.Rp,
                                                    b.station_positions()[-1]),
                                      label="{} tip pos".format(b)))
示例#5
0
    def __init__(self, mode_source_file, root_length=0, wind_table=None):
        # Modal element using data from Bladed model
        print "Loading modes from '%s'..." % mode_source_file
        self.blade = Blade(mode_source_file)
        self.modes = self.blade.modal_rep()
        
        if wind_table is not None:
            loading = BladeLoading(self.blade, wind_table, None)
        else:
            loading = None

        Ry = rotmat_y(-pi/2)
        Rhb1 = rotmat_x(0 * 2*pi/3)
        Rhb2 = rotmat_x(1 * 2*pi/3)
        Rhb3 = rotmat_x(2 * 2*pi/3)

        self.bearing = Hinge('bearing', [1,0,0])
        root1 = RigidConnection('root1', root_length*np.dot(Rhb1,[0,0,1]), dot(Rhb1,Ry))
        root2 = RigidConnection('root2', root_length*np.dot(Rhb2,[0,0,1]), dot(Rhb2,Ry))
        root3 = RigidConnection('root3', root_length*np.dot(Rhb3,[0,0,1]), dot(Rhb3,Ry))
        self.blade1 = ModalElement('blade1', self.modes, loading)
        self.blade2 = ModalElement('blade2', self.modes)
        self.blade3 = ModalElement('blade3', self.modes)
        
        self.bearing.add_leaf(root1)
        self.bearing.add_leaf(root2)
        self.bearing.add_leaf(root3)
        root1.add_leaf(self.blade1)
        root2.add_leaf(self.blade2)
        root3.add_leaf(self.blade3)
        self.system = System(self.bearing)

        # Prescribed DOF accelerations - constant rotor speed
        self.system.prescribe(self.bearing, vel=0.0, acc=0.0)
        
        # setup integrator
        self.integ = Integrator(self.system, ('pos','vel'))
        self.integ.add_output(dynamics.LoadOutput(self.bearing.iprox))
        self.integ.add_output(dynamics.LoadOutput(self.blade1.iprox, local=True))
        self.integ.add_output(self.blade1.output_deflections())
        self.integ.add_output(self.blade1.output_positions())
# Blade loading
wind_table = np.array([
    [0, 1, 2,  10], # time
    [0, 0, 0,  0 ], # x
    [0, 0, 20, 20], # y
    [0, 0, 0,  0 ], # z
])
loading = BladeLoading(modes.x, wind_table, None)

# Modal element
el = ModalElement('el', modes, loading)
system = System(el)
el0 = ModalElement('el0', modes0, loading)
system0 = System(el0)

integ = Integrator(system)
integ0 = Integrator(system0)
integ.add_output(el.output_positions(stations=[16,32]))
integ0.add_output(el0.output_positions(stations=[16,32]))

#def simulate(system, t1=2.0, dt=0.005):

# Load Bladed data for comparison
import pybladed.data
brun = pybladed.data.BladedRun(path_damped)
bladed_defl = np.c_[
    brun.get('blade 1 x-deflection;2'),
    brun.get('blade 1 x-deflection;4'),
]
brun0 = pybladed.data.BladedRun(path_undamped)
bladed_defl0 = np.c_[
示例#7
0
thrust_force = [0, 0, 10e3, 10e3]
thrust = np.c_[thrust_force, np.zeros((4, 2))].T
loadfunc = scipy.interpolate.interp1d(thrust_time, thrust)

# Modal element
base = RigidConnection('base', rotation=rotmat_y(-np.pi / 2))
el = ModalElement('el', modes, distal=True, damping_freqs=[8.269, 10.248])
rna = RigidBody('rna',
                24000,
                np.diag([6400003, 6400003, 4266667]),
                nodal_load=loadfunc)
base.add_leaf(el)
el.add_leaf(rna)
system = System(base)

integ = Integrator(system)
integ.add_output(el.output_deflections())
integ.add_output(el.output_rotations())
integ.add_output(dynamics.LoadOutput(rna.iprox))

linsys = LinearisedSystem(system)


def ani_xy(s, t, y):
    return dynvis.anim(s, t, y, (0, 1), (-5, 45), (-5, 5), velocities=False)


def ani_xz(s, t, y):
    return dynvis.anim(s, t, y, (0, 2), (-5, 45), (-5, 5), velocities=False)

示例#8
0
# Prescribe rotation speed
system.prescribe(bearing.istrain, 0.0)
system.qd[bearing.istrain] = rotorspeed

# Prescribed yaw angle
acc_period = 0.1
yaw_time1 = 3.0
yaw_time2 = 6.0
dvyaw = 10 * np.pi / 180
system.prescribe(yaw.istrain,
    acc=lambda t: (t>=yaw_time1 and t<(yaw_time1+acc_period)) and  dvyaw/acc_period or 0 +\
                  (t>yaw_time2 and t<=(yaw_time2+acc_period)) and -dvyaw/acc_period or 0)
system.find_equilibrium()

integ = Integrator(system, ())
integ.add_position_output(yaw.istrain, 'yaw position')
integ.add_velocity_output(yaw.istrain, 'yaw velocity')
integ.add_acceleration_output(yaw.istrain, 'yaw acceleration')
integ.add_acceleration_output(el.imult)
integ.add_force_output(bearing.idist, "root load")
integ.add_custom_output(lambda s: el.station_positions()[-1], 'tip pos')
integ.add_custom_output(lambda s: el.modes.X(el.xstrain)[-1, 1:3], 'tip defl')
integ.add_custom_output(lambda s: el.quad_forces, 'quad_forces')
integ.add_custom_output(lambda s: el.quad_stress, 'quad_stress')

# Load Bladed data for comparison
import pybladed.data
brun = pybladed.data.BladedRun(bladedpath)
bladed_defl = np.c_[brun.get('blade 1 x-deflection;4'),
                    brun.get('blade 1 y-deflection;4'),
print "Loading modes from '%s'..." % bladed_file
towerdef = Tower(bladed_file)
modes = towerdef.modal_rep()

endmass = 100000
endinertia = 100

el1 = ModalElement('el', modes, distal=False)
system1 = System(el1)

el2 = ModalElement('el', modes, distal=True)
body = RigidBody('body', endmass, inertia=endinertia * np.eye(3))
el2.add_leaf(body)
system2 = System(el2)

integ1 = Integrator(system1)
integ1.add_output(el1.output_positions())
integ2 = Integrator(system2, outputs=('pos', 'vel', 'acc'))
integ2.add_output(el2.output_positions())
integ2.add_output(dynamics.NodeOutput(body.iprox))
integ2.add_output(dynamics.NodeOutput(body.iprox, deriv=2))
integ2.add_output(dynamics.LoadOutput(body.iprox))
integ2.add_output(dynamics.StrainOutput(el2.imult))

if False:
    t, y1 = integ1.integrate(20, 0.05)
    t, y2 = integ2.integrate(20, 0.05)


def p():
    fig = plt.figure()
示例#10
0
    def __init__(self, bladed_file, root_length=0, rigid=False):
        # Modal element using data from Bladed model
        print "Loading modes from '%s'..." % bladed_file
        self.blade = Blade(bladed_file)
        self.tower = Tower(bladed_file)
        self.modes = self.blade.modal_rep()

        Ry = rotmat_y(-pi / 2)
        Rhb1 = rotmat_x(0 * 2 * pi / 3)
        Rhb2 = rotmat_x(1 * 2 * pi / 3)
        Rhb3 = rotmat_x(2 * 2 * pi / 3)

        self.base = FreeJoint('base')
        self.towerlink = RigidConnection('tower', [0, 0, self.tower.hubheight])
        self.bearing = Hinge('bearing', [1, 0, 0])
        root1 = RigidConnection('root1', root_length * np.dot(Rhb1, [0, 0, 1]),
                                dot(Rhb1, Ry))
        root2 = RigidConnection('root2', root_length * np.dot(Rhb2, [0, 0, 1]),
                                dot(Rhb2, Ry))
        root3 = RigidConnection('root3', root_length * np.dot(Rhb3, [0, 0, 1]),
                                dot(Rhb3, Ry))
        self.blade1 = ModalElement('blade1', self.modes)
        self.blade2 = ModalElement('blade2', self.modes)
        self.blade3 = ModalElement('blade3', self.modes)

        self.base.add_leaf(self.towerlink)
        self.towerlink.add_leaf(self.bearing)
        self.bearing.add_leaf(root1)
        self.bearing.add_leaf(root2)
        self.bearing.add_leaf(root3)
        root1.add_leaf(self.blade1)
        root2.add_leaf(self.blade2)
        root3.add_leaf(self.blade3)
        self.system = System(self.base)

        # Prescribed DOF accelerations - constant rotor speed
        self.base_motion = None
        self.base_motion_amp = 0
        self.system.prescribe(self.bearing, vel=0)
        self.system.prescribe(self.base, vel=0)
        if rigid:
            for b in (self.blade1, self.blade2, self.blade3):
                self.system.prescribe(b, vel=0)

        # setup integrator
        self.integ = Integrator(self.system, ('pos', 'vel', 'acc'))
        self.integ.add_output(dynamics.LoadOutput(self.base.iprox))
        self.integ.add_output(dynamics.LoadOutput(self.towerlink.iprox))
        self.integ.add_output(
            dynamics.LoadOutput(self.bearing.iprox, local=True))
        self.integ.add_output(
            dynamics.LoadOutput(self.bearing.idist[0], local=True))
        for b in (self.blade1, self.blade2, self.blade3):
            self.integ.add_output(dynamics.LoadOutput(b.iprox, local=True))
        for b in (self.blade1, self.blade2, self.blade3):
            self.integ.add_output(b.output_deflections())
        for b in (self.blade1, self.blade2, self.blade3):
            self.integ.add_output(b.output_positions())
        for b in (self.blade1, self.blade2, self.blade3):
            self.integ.add_output(
                dynamics.NodeOutput(b.iprox, local=True, deriv=2))
示例#11
0
    def __init__(self, bladed_file, root_length=0):
        # Load modes but use a simple flapped blade
        print "Loading modes from '%s'..." % bladed_file
        self.blade = Blade(bladed_file)
        self.tower = Tower(bladed_file)
        self.modes = self.blade.modal_rep()

        # Calculate equivalent blade properties
        I1 = self.modes.I0[0]
        I2 = self.modes.J0[0, 0]
        print I1, I2
        wflap = self.modes.freqs[0]
        bmass = self.modes.mass
        inertia = self.modes.inertia_tensor(np.zeros(len(self.modes.freqs)))
        Xc = [I1 / bmass, 0, 0]
        kflap = I2 * wflap**2

        Ry = rotmat_y(-pi / 2)
        Rhb1 = rotmat_x(0 * 2 * pi / 3)
        Rhb2 = rotmat_x(1 * 2 * pi / 3)
        Rhb3 = rotmat_x(2 * 2 * pi / 3)

        self.base = FreeJoint('base')
        self.towerlink = RigidConnection('tower', [0, 0, self.tower.hubheight])
        self.bearing = Hinge('bearing', [1, 0, 0])
        root1 = RigidConnection('root1', root_length * np.dot(Rhb1, [0, 0, 1]),
                                dot(Rhb1, Ry))
        root2 = RigidConnection('root2', root_length * np.dot(Rhb2, [0, 0, 1]),
                                dot(Rhb2, Ry))
        root3 = RigidConnection('root3', root_length * np.dot(Rhb3, [0, 0, 1]),
                                dot(Rhb3, Ry))
        self.flap1 = Hinge('flap1', [0, 1, 0])
        self.flap2 = Hinge('flap2', [0, 1, 0])
        self.flap3 = Hinge('flap3', [0, 1, 0])
        self.blade1 = RigidBody('blade1', bmass, inertia, Xc)
        self.blade2 = RigidBody('blade2', bmass, inertia, Xc)
        self.blade3 = RigidBody('blade3', bmass, inertia, Xc)

        self.flap1.stiffness = self.flap2.stiffness = self.flap3.stiffness = kflap

        self.base.add_leaf(self.towerlink)
        self.towerlink.add_leaf(self.bearing)
        self.bearing.add_leaf(root1)
        self.bearing.add_leaf(root2)
        self.bearing.add_leaf(root3)
        root1.add_leaf(self.flap1)
        root2.add_leaf(self.flap2)
        root3.add_leaf(self.flap3)
        self.flap1.add_leaf(self.blade1)
        self.flap2.add_leaf(self.blade2)
        self.flap3.add_leaf(self.blade3)
        self.system = System(self.base)

        # Prescribed DOF accelerations - constant rotor speed
        self.base_motion = None
        self.base_motion_amp = 0
        self.system.prescribe(self.bearing, vel=0)
        self.system.prescribe(self.base, vel=0)

        # setup integrator
        self.integ = Integrator(self.system, ('pos', 'vel', 'acc'))
        self.integ.add_output(dynamics.LoadOutput(self.base.iprox))
        self.integ.add_output(dynamics.LoadOutput(self.towerlink.iprox))
        self.integ.add_output(
            dynamics.LoadOutput(self.bearing.iprox, local=True))
        self.integ.add_output(
            dynamics.LoadOutput(self.bearing.idist[0], local=True))
        for b in (self.blade1, self.blade2, self.blade3):
            self.integ.add_output(dynamics.LoadOutput(b.iprox, local=True))
        for b in (self.blade1, self.blade2, self.blade3):
            self.integ.add_output(
                dynamics.NodeOutput(b.iprox, local=True, deriv=2))