class Gyroscope(object):
    def __init__(self, length, radius, mass, spin, endmass):
        self.length = length
        self.radius = radius
        self.mass = mass
        self.spin = spin
        self.endmass = endmass

        Jz = radius**2 / 2
        Jxy = (3*radius**2 + length**2) / 12
        inertia = mass * np.diag([Jxy, Jxy, Jz])

        self.bearing = Hinge('bearing', [0,0,1])
        self.pivot   = Hinge('pivot',   [0,1,0])
        self.axis    = Hinge('axis',    [0,0,1])
        self.body    = RigidBody('body', mass, inertia)
        self.offset  = RigidConnection('offset', [0,0,length/2])
        self.endbody = RigidBody('end', endmass)

        self.bearing.add_leaf(self.pivot)
        self.pivot.add_leaf(self.axis)
        self.axis.add_leaf(self.body)
        self.pivot.add_leaf(self.offset)
        self.offset.add_leaf(self.endbody)
        self.system = System(self.bearing)

        # Prescribed DOF accelerations
        self.system.prescribe(self.axis, acc=0.0) # constant rotational speed

    def simulate(self, xpivot=0.0, vprec=0.0, t1=10, dt=0.05):
        # reset
        self.system.q [:] = 0.0
        self.system.qd[:] = 0.0

        # initial conditions
        self.system.q [self.pivot.istrain][0] = xpivot # initial elevation
        self.system.qd[self.bearing.istrain][0] = vprec # initial azimuth spd
        self.system.qd[self.axis.istrain][0] = self.spin # initial rotation speed

        self.integ = Integrator(self.system, ('pos','vel'))
        self.integ.add_output(dynamics.LoadOutput(self.axis.iprox))
        self.integ.add_output(dynamics.LoadOutput(self.pivot.iprox))
        self.integ.add_output(dynamics.LoadOutput(self.bearing.iprox))
        #integ.add_output(dynamics.CustomOutput(
        #    lambda s: np.dot(self.axis.mass_vv, self.system.qdd[el.iprox+el.idist]) + \
        #              np.dot(el.mass_ve, self.system.qdd[el.istrain])))

        # simulate
        if t1 > 0:
            self.t, self.y = self.integ.integrate(t1, dt)
            for i,lab in enumerate(self.integ.labels()):
                print "%2d  %s" % (i,lab)
            return self.t, self.y

    def ani(self, vs=1):
        l = self.length * 1.1
        return dynvis.anim(self.system, self.t, self.y,
                           (0,vs), (-l,l), (-l,l), velocities=False)
示例#2
0
class Gyroscope(object):
    def __init__(self, length, radius, mass, spin):
        self.length = length
        self.radius = radius
        self.mass = mass
        self.spin = spin

        Jx = radius**2 / 2
        Jyz = (3 * radius**2 + length**2) / 12
        Jyz_0 = Jyz + (length / 2)**2  # parallel axis theorem
        inertia = mass * np.diag([Jx, Jyz_0, Jyz_0])

        self.bearing = Hinge('bearing', [0, 0, 1])
        self.pivot = Hinge('pivot', [0, 1, 0])
        self.axis = Hinge('axis', [1, 0, 0])
        self.body = RigidBody('body', mass, inertia, [length / 2, 0, 0])

        self.bearing.add_leaf(self.pivot)
        self.pivot.add_leaf(self.axis)
        self.axis.add_leaf(self.body)
        self.system = System(self.bearing)

        # Prescribed DOF accelerations
        self.system.prescribe(self.axis, acc=0.0)  # constant rotational speed

    def simulate(self, xpivot=0.0, vprec=0.0, t1=10, dt=0.05):
        # reset
        self.system.q[:] = 0.0
        self.system.qd[:] = 0.0

        # initial conditions
        self.system.q[self.pivot.istrain][0] = xpivot  # initial elevation
        self.system.qd[
            self.bearing.istrain][0] = vprec  # initial elevation spd
        self.system.qd[
            self.axis.istrain][0] = self.spin  # initial rotation speed

        self.integ = Integrator(self.system, ('pos', 'vel'))
        self.integ.add_output(dynamics.LoadOutput(self.axis.iprox))
        self.integ.add_output(dynamics.LoadOutput(self.pivot.iprox))
        self.integ.add_output(dynamics.LoadOutput(self.bearing.iprox))

        # simulate
        if t1 > 0:
            self.t, self.y = self.integ.integrate(t1, dt)
            for i, lab in enumerate(self.integ.labels()):
                print "%2d  %s" % (i, lab)
            return self.t, self.y

    def ani(self, vs=1):
        l = self.length * 1.1
        return dynvis.anim(self.system,
                           self.t,
                           self.y, (0, vs), (-l, l), (-l, l),
                           velocities=False)
class Gyroscope(object):
    def __init__(self, length, radius, mass, spin):
        self.length = length
        self.radius = radius
        self.mass = mass
        self.spin = spin

        Jx = radius**2 / 2
        Jyz = (3*radius**2 + length**2) / 12
        Jyz_0 = Jyz + (length/2)**2 # parallel axis theorem
        inertia = mass * np.diag([Jx, Jyz_0, Jyz_0])

        self.bearing = Hinge('bearing', [0,0,1])
        self.pivot   = Hinge('pivot',   [0,1,0])
        self.axis    = Hinge('axis',    [1,0,0])
        self.body    = RigidBody('body', mass, inertia, [length/2, 0, 0])

        self.bearing.add_leaf(self.pivot)
        self.pivot.add_leaf(self.axis)
        self.axis.add_leaf(self.body)
        self.system = System(self.bearing)

        # Prescribed DOF accelerations
        self.system.prescribe(self.axis, acc=0.0) # constant rotational speed

    def simulate(self, xpivot=0.0, vprec=0.0, t1=10, dt=0.05):
        # reset
        self.system.q [:] = 0.0
        self.system.qd[:] = 0.0

        # initial conditions
        self.system.q [self.pivot.istrain][0] = xpivot # initial elevation
        self.system.qd[self.bearing.istrain][0] = vprec # initial elevation spd
        self.system.qd[self.axis .istrain][0] = self.spin # initial rotation speed

        self.integ = Integrator(self.system, ('pos','vel'))
        self.integ.add_output(dynamics.LoadOutput(self.axis.iprox))
        self.integ.add_output(dynamics.LoadOutput(self.pivot.iprox))
        self.integ.add_output(dynamics.LoadOutput(self.bearing.iprox))

        # simulate
        if t1 > 0:
            self.t, self.y = self.integ.integrate(t1, dt)
            for i,lab in enumerate(self.integ.labels()):
                print "%2d  %s" % (i,lab)
            return self.t, self.y
        
    def ani(self, vs=1):
        l = self.length * 1.1
        return dynvis.anim(self.system, self.t, self.y,
                           (0,vs), (-l,l), (-l,l), velocities=False)
class Rotor(object):
    def __init__(self, mode_source_file, root_length=0):
        # Modal element using data from Bladed model
        print "Loading modes from '%s'..." % mode_source_file
        self.blade = Blade(mode_source_file)
        self.modes = self.blade.modal_rep()

        Ry = rotmat_y(-pi / 2)
        Rhb1 = rotmat_x(0 * 2 * pi / 3)
        Rhb2 = rotmat_x(1 * 2 * pi / 3)
        Rhb3 = rotmat_x(2 * 2 * pi / 3)

        self.bearing = Hinge('bearing', [1, 0, 0])
        root1 = RigidConnection('root1', root_length * np.dot(Rhb1, [0, 0, 1]),
                                dot(Rhb1, Ry))
        root2 = RigidConnection('root2', root_length * np.dot(Rhb2, [0, 0, 1]),
                                dot(Rhb2, Ry))
        root3 = RigidConnection('root3', root_length * np.dot(Rhb3, [0, 0, 1]),
                                dot(Rhb3, Ry))
        self.blade1 = ModalElement('blade1', self.modes)
        self.blade2 = ModalElement('blade2', self.modes)
        self.blade3 = ModalElement('blade3', self.modes)

        self.bearing.add_leaf(root1)
        self.bearing.add_leaf(root2)
        self.bearing.add_leaf(root3)
        root1.add_leaf(self.blade1)
        root2.add_leaf(self.blade2)
        root3.add_leaf(self.blade3)
        self.system = System(self.bearing)

        # Prescribed DOF accelerations - constant rotor speed
        self.system.prescribe(self.bearing, acc=0.0)

        # setup integrator
        self.integ = Integrator(self.system, ('pos', 'vel'))
        self.integ.add_output(dynamics.LoadOutput(self.bearing.iprox))
        self.integ.add_output(
            dynamics.LoadOutput(self.blade1.iprox, local=True))
        self.integ.add_output(self.blade1.output_deflections())
        self.integ.add_output(self.blade1.output_positions())

    def simulate(self, qm0=None, spin=10.0, t1=1.5, dt=0.01):
        # reset
        self.system.q[:] = 0.0
        self.system.qd[:] = 0.0

        # initial conditions
        if qm0 is not None:  # initial modal amplitudes
            self.system.q[self.blade1.istrain] = qm0
            self.system.q[self.blade2.istrain] = qm0
            self.system.q[self.blade3.istrain] = qm0
        self.system.qd[self.bearing.istrain][0] = spin

        # simulate
        self.t, self.y = self.integ.integrate(t1, dt)
        for i, lab in enumerate(self.integ.labels()):
            print "%2d  %s" % (i, lab)
        return self.t, self.y

    def lin(self, qm0=None, spin=10.0):
        # reset
        self.system.q[:] = 0.0
        self.system.qd[:] = 0.0

        # initial conditions
        if qm0 is not None:  # initial modal amplitudes
            self.system.q[self.blade1.istrain] = qm0
            self.system.q[self.blade2.istrain] = qm0
            self.system.q[self.blade3.istrain] = qm0
        else:
            qm0 = np.zeros(self.blade1._nstrain * 3)
        self.system.prescribe(self.bearing, vel=spin, acc=0.0)
        self.system.qd[self.bearing.istrain][0] = spin

        linsys = linearisation.LinearisedSystem(self.system, qm0)
        return linsys

    def ani(self, t=None, y=None, planview=True):
        if t is None: t = self.t
        if y is None: y = self.y
        l = 40
        if planview:
            return dynvis.anim(self.system, t, y, (1, 2), (-l, l), (-l, l))
        else:
            return dynvis.anim(self.system, t, y, (0, 1), (-l, l), (-5, 5))
class Rotor(object):
    def __init__(self, mode_source_file, root_length=0):
        # Modal element using data from Bladed model
        print "Loading modes from '%s'..." % mode_source_file
        self.blade = Blade(mode_source_file)
        self.modes = self.blade.modal_rep()

        Ry = rotmat_y(-pi/2)
        Rhb1 = rotmat_x(0 * 2*pi/3)
        Rhb2 = rotmat_x(1 * 2*pi/3)
        Rhb3 = rotmat_x(2 * 2*pi/3)

        self.bearing = Hinge('bearing', [1,0,0])
        root1 = RigidConnection('root1', root_length*np.dot(Rhb1,[0,0,1]), dot(Rhb1,Ry))
        root2 = RigidConnection('root2', root_length*np.dot(Rhb2,[0,0,1]), dot(Rhb2,Ry))
        root3 = RigidConnection('root3', root_length*np.dot(Rhb3,[0,0,1]), dot(Rhb3,Ry))
        self.blade1 = ModalElement('blade1', self.modes)
        self.blade2 = ModalElement('blade2', self.modes)
        self.blade3 = ModalElement('blade3', self.modes)
        
        self.bearing.add_leaf(root1)
        self.bearing.add_leaf(root2)
        self.bearing.add_leaf(root3)
        root1.add_leaf(self.blade1)
        root2.add_leaf(self.blade2)
        root3.add_leaf(self.blade3)
        self.system = System(self.bearing)

        # Prescribed DOF accelerations - constant rotor speed
        self.system.prescribe(self.bearing, acc=0.0)
        
        # setup integrator
        self.integ = Integrator(self.system, ('pos','vel'))
        self.integ.add_output(dynamics.LoadOutput(self.bearing.iprox))
        self.integ.add_output(dynamics.LoadOutput(self.blade1.iprox, local=True))
        self.integ.add_output(self.blade1.output_deflections())
        self.integ.add_output(self.blade1.output_positions())
        
    def simulate(self, qm0=None, spin=10.0, t1=1.5, dt=0.01):
        # reset
        self.system.q [:] = 0.0
        self.system.qd[:] = 0.0

        # initial conditions
        if qm0 is not None:  # initial modal amplitudes
            self.system.q[self.blade1.istrain] = qm0
            self.system.q[self.blade2.istrain] = qm0
            self.system.q[self.blade3.istrain] = qm0
        self.system.qd[self.bearing.istrain][0] = spin
        
        # simulate
        self.t,self.y = self.integ.integrate(t1, dt)
        for i,lab in enumerate(self.integ.labels()):
            print "%2d  %s" % (i,lab)
        return self.t, self.y
    
    def lin(self, qm0=None, spin=10.0):
        # reset
        self.system.q [:] = 0.0
        self.system.qd[:] = 0.0

        # initial conditions
        if qm0 is not None:  # initial modal amplitudes
            self.system.q[self.blade1.istrain] = qm0
            self.system.q[self.blade2.istrain] = qm0
            self.system.q[self.blade3.istrain] = qm0
        else:
            qm0 = np.zeros(self.blade1._nstrain * 3)
        self.system.prescribe(self.bearing, vel=spin, acc=0.0)
        self.system.qd[self.bearing.istrain][0] = spin
        
        linsys = linearisation.LinearisedSystem(self.system, qm0)
        return linsys

    def ani(self, t=None, y=None, planview=True):
        if t is None: t = self.t
        if y is None: y = self.y
        l = 40
        if planview:
            return dynvis.anim(self.system, t, y, (1,2), (-l,l), (-l,l))
        else:
            return dynvis.anim(self.system, t, y, (0,1), (-l,l), (-5,5))
示例#6
0
class Turbine(object):
    def __init__(self, bladed_file, root_length=0, rigid=False):
        # Modal element using data from Bladed model
        print "Loading modes from '%s'..." % bladed_file
        self.blade = Blade(bladed_file)
        self.tower = Tower(bladed_file)
        self.modes = self.blade.modal_rep()
        #self.tmodes = self.tower.modal_rep()

        Ry = rotmat_y(-pi/2)
        Rhb1 = rotmat_x(0 * 2*pi/3)
        Rhb2 = rotmat_x(1 * 2*pi/3)
        Rhb3 = rotmat_x(2 * 2*pi/3)

        self.base = FreeJoint('base')
        self.towerlink = RigidConnection('tower', [0,0,self.tower.hubheight])
        self.bearing = Hinge('bearing', [1,0,0])
        root1 = RigidConnection('root1', root_length*np.dot(Rhb1,[0,0,1]), dot(Rhb1,Ry))
        root2 = RigidConnection('root2', root_length*np.dot(Rhb2,[0,0,1]), dot(Rhb2,Ry))
        root3 = RigidConnection('root3', root_length*np.dot(Rhb3,[0,0,1]), dot(Rhb3,Ry))
        self.blade1 = ModalElement('blade1', self.modes)
        self.blade2 = ModalElement('blade2', self.modes)
        self.blade3 = ModalElement('blade3', self.modes)
        
        self.base.add_leaf(self.towerlink)
        self.towerlink.add_leaf(self.bearing)
        self.bearing.add_leaf(root1)
        self.bearing.add_leaf(root2)
        self.bearing.add_leaf(root3)
        root1.add_leaf(self.blade1)
        root2.add_leaf(self.blade2)
        root3.add_leaf(self.blade3)
        self.system = System(self.base)

        # Prescribed DOF accelerations - constant rotor speed
        self.base_motion = None
        self.base_motion_amp = 0
        self.system.prescribe(self.bearing, vel=0)
        self.system.prescribe(self.base, vel=0)
        if rigid:
            for b in (self.blade1, self.blade2, self.blade3):
                self.system.prescribe(b, vel=0)
        
        # setup integrator
        self.integ = Integrator(self.system, ('pos','vel','acc'))
        self.integ.add_output(dynamics.LoadOutput(self.base.iprox))
        self.integ.add_output(dynamics.LoadOutput(self.towerlink.iprox))
        self.integ.add_output(dynamics.LoadOutput(self.bearing.iprox))
        for b in (self.blade1, self.blade2, self.blade3):
            self.integ.add_output(dynamics.LoadOutput(b.iprox, local=True))
        for b in (self.blade1, self.blade2, self.blade3):
            self.integ.add_output(b.output_deflections())
        for b in (self.blade1, self.blade2, self.blade3):
            self.integ.add_output(b.output_positions())
        for b in (self.blade1, self.blade2, self.blade3):
            self.integ.add_output(dynamics.NodeOutput(b.iprox, local=True, deriv=2))

    @property
    def mass(self):
        """Total mass of turbine"""
        return self.tower.total_mass + self.modes.mass * 3
    
    @property
    def inertia(self):
        """Total rotational inertia of turbine about base"""
        inertia = self.tower.total_inertia
        inertia[(0,1),(0,1)] = self.modes.mass * 3 * self.tower.hubheight
        return inertia
        # XXX neglecting rotor rotational inertia

    def set_base_motion(self, dof, w, amp):
        self.base_motion = dof
        self.base_motion_amp = amp
        self.system.prescribe(self.base, part=dof,
                              vel=lambda t: -w   *amp*np.sin(w*t),
                              acc=lambda t: -w**2*amp*np.cos(w*t))

    def set_initial_conditions(self, qm0=None, az0=None, rotor_speed=None):
        # initial conditions
        if qm0 is not None:  # initial modal amplitudes
            self.system.q[self.blade1.istrain] = qm0
            self.system.q[self.blade2.istrain] = qm0
            self.system.q[self.blade3.istrain] = qm0
        if az0 is not None:
            self.system.q[self.bearing.istrain][0] = az0
        if self.base_motion is not None:
            self.system.q[self.base.istrain][self.base_motion] = self.base_motion_amp
        if rotor_speed is not None:
            self.system.prescribe(self.bearing, vel=rotor_speed)

    def simulate(self, qm0=None, az0=0.0, rotor_speed=10.0, t1=None,
                 dt=0.01, t0=0.0, init=False):
        # reset
        self.system.q [:] = 0.0
        self.system.qd[:] = 0.0
        self.set_initial_conditions(qm0, az0, rotor_speed)
        
        if t1 is None:
            t1 = 4*pi/rotor_speed if (rotor_speed != 0.0) else 2
        
        if init:
            self.system.find_equilibrium()
        
        # simulate
        self.t,self.y = self.integ.integrate(t1, dt, t0)
        for i,lab in enumerate(self.integ.labels()):
            print "%2d  %s" % (i,lab)
        return self.t, self.y
    
    def lin(self, qm0=None, az0=None, rotor_speed=None, init=False):
        # reset
        self.system.q [:] = 0.0
        self.system.qd[:] = 0.0
        self.set_initial_conditions(qm0, az0, rotor_speed)
        
        if init:
            self.system.find_equilibrium()

        linsys = linearisation.LinearisedSystem(self.system)
        return linsys

    def ani(self, vs=(0,1), t=None, y=None):
        if t is None: t = self.t
        if y is None: y = self.y
        limits = [(-10,10), (-42,42), (-5,110)]
        return dynvis.anim(self.system, t, y, vs, limits[vs[0]], limits[vs[1]])
示例#7
0
class Gyroscope(object):
    def __init__(self, length, radius, mass, spin, endmass):
        self.length = length
        self.radius = radius
        self.mass = mass
        self.spin = spin
        self.endmass = endmass

        Jz = radius**2 / 2
        Jxy = (3 * radius**2 + length**2) / 12
        inertia = mass * np.diag([Jxy, Jxy, Jz])

        self.bearing = Hinge('bearing', [0, 0, 1])
        self.pivot = Hinge('pivot', [0, 1, 0])
        self.axis = Hinge('axis', [0, 0, 1])
        self.body = RigidBody('body', mass, inertia)
        self.offset = RigidConnection('offset', [0, 0, length / 2])
        self.endbody = RigidBody('end', endmass)

        self.bearing.add_leaf(self.pivot)
        self.pivot.add_leaf(self.axis)
        self.axis.add_leaf(self.body)
        self.pivot.add_leaf(self.offset)
        self.offset.add_leaf(self.endbody)
        self.system = System(self.bearing)

        # Prescribed DOF accelerations
        self.system.prescribe(self.axis, acc=0.0)  # constant rotational speed

    def simulate(self, xpivot=0.0, vprec=0.0, t1=10, dt=0.05):
        # reset
        self.system.q[:] = 0.0
        self.system.qd[:] = 0.0

        # initial conditions
        self.system.q[self.pivot.istrain][0] = xpivot  # initial elevation
        self.system.qd[self.bearing.istrain][0] = vprec  # initial azimuth spd
        self.system.qd[
            self.axis.istrain][0] = self.spin  # initial rotation speed

        self.integ = Integrator(self.system, ('pos', 'vel'))
        self.integ.add_output(dynamics.LoadOutput(self.axis.iprox))
        self.integ.add_output(dynamics.LoadOutput(self.pivot.iprox))
        self.integ.add_output(dynamics.LoadOutput(self.bearing.iprox))
        #integ.add_output(dynamics.CustomOutput(
        #    lambda s: np.dot(self.axis.mass_vv, self.system.qdd[el.iprox+el.idist]) + \
        #              np.dot(el.mass_ve, self.system.qdd[el.istrain])))

        # simulate
        if t1 > 0:
            self.t, self.y = self.integ.integrate(t1, dt)
            for i, lab in enumerate(self.integ.labels()):
                print "%2d  %s" % (i, lab)
            return self.t, self.y

    def ani(self, vs=1):
        l = self.length * 1.1
        return dynvis.anim(self.system,
                           self.t,
                           self.y, (0, vs), (-l, l), (-l, l),
                           velocities=False)