示例#1
0
def recog(args):
    """Decode with the given args

    :param Namespace args: The program arguments
    """
    set_deterministic_pytorch(args)
    # read training config
    idim, odim, train_args = get_model_conf(args.model, args.model_conf)

    # load trained model parameters
    logging.info('reading model parameters from ' + args.model)
    model = E2E(idim, odim, train_args)
    torch_load(args.model, model)
    model.recog_args = args

    # read rnnlm
    if args.rnnlm:
        rnnlm_args = get_model_conf(args.rnnlm, args.rnnlm_conf)
        rnnlm = lm_pytorch.ClassifierWithState(
            lm_pytorch.RNNLM(
                len(train_args.char_list), rnnlm_args.layer, rnnlm_args.unit))
        torch_load(args.rnnlm, rnnlm)
        rnnlm.eval()
    else:
        rnnlm = None

    if args.word_rnnlm:
        rnnlm_args = get_model_conf(args.word_rnnlm, args.word_rnnlm_conf)
        word_dict = rnnlm_args.char_list_dict
        char_dict = {x: i for i, x in enumerate(train_args.char_list)}
        word_rnnlm = lm_pytorch.ClassifierWithState(lm_pytorch.RNNLM(
            len(word_dict), rnnlm_args.layer, rnnlm_args.unit))
        torch_load(args.word_rnnlm, word_rnnlm)
        word_rnnlm.eval()

        if rnnlm is not None:
            rnnlm = lm_pytorch.ClassifierWithState(
                extlm_pytorch.MultiLevelLM(word_rnnlm.predictor,
                                           rnnlm.predictor, word_dict, char_dict))
        else:
            rnnlm = lm_pytorch.ClassifierWithState(
                extlm_pytorch.LookAheadWordLM(word_rnnlm.predictor,
                                              word_dict, char_dict))

    # gpu
    if args.ngpu == 1:
        gpu_id = range(args.ngpu)
        logging.info('gpu id: ' + str(gpu_id))
        model.cuda()
        if rnnlm:
            rnnlm.cuda()

    # read json data
    with open(args.recog_json, 'rb') as f:
        js = json.load(f)['utts']
    new_js = {}

    load_inputs_and_targets = LoadInputsAndTargets(
        mode='asr', load_output=False, sort_in_input_length=False,
        preprocess_conf=train_args.preprocess_conf
        if args.preprocess_conf is None else args.preprocess_conf)

    if args.batchsize == 0:
        with torch.no_grad():
            for idx, name in enumerate(js.keys(), 1):
                logging.info('(%d/%d) decoding ' + name, idx, len(js.keys()))
                batch = [(name, js[name])]
                with using_transform_config({'train': True}):
                    feat = load_inputs_and_targets(batch)[0][0]
                nbest_hyps = model.recognize(feat, args, train_args.char_list, rnnlm)
                new_js[name] = add_results_to_json(js[name], nbest_hyps, train_args.char_list)
    else:
        try:
            from itertools import zip_longest as zip_longest
        except Exception:
            from itertools import izip_longest as zip_longest

        def grouper(n, iterable, fillvalue=None):
            kargs = [iter(iterable)] * n
            return zip_longest(*kargs, fillvalue=fillvalue)

        # sort data
        keys = list(js.keys())
        feat_lens = [js[key]['input'][0]['shape'][0] for key in keys]
        sorted_index = sorted(range(len(feat_lens)), key=lambda i: -feat_lens[i])
        keys = [keys[i] for i in sorted_index]

        with torch.no_grad():
            for names in grouper(args.batchsize, keys, None):
                names = [name for name in names if name]
                batch = [(name, js[name]) for name in names]
                with using_transform_config({'train': False}):
                    feats = load_inputs_and_targets(batch)[0]
                nbest_hyps = model.recognize_batch(feats, args, train_args.char_list, rnnlm=rnnlm)
                for i, name in enumerate(names):
                    nbest_hyp = [hyp[i] for hyp in nbest_hyps]
                    new_js[name] = add_results_to_json(js[name], nbest_hyp, train_args.char_list)

    # TODO(watanabe) fix character coding problems when saving it
    with open(args.result_label, 'wb') as f:
        f.write(json.dumps({'utts': new_js}, indent=4, sort_keys=True).encode('utf_8'))
示例#2
0
 def add_arguments(parser):
     """Add arguments."""
     E2EASR.add_arguments(parser)
     E2EASRMIX.encoder_mix_add_arguments(parser)
     return parser
示例#3
0
def train(args):
    """Train with the given args

    :param Namespace args: The program arguments
    """
    set_deterministic_pytorch(args)

    # check cuda availability
    if not torch.cuda.is_available():
        logging.warning('cuda is not available')

    # get input and output dimension info
    with open(args.valid_json, 'rb') as f:
        valid_json = json.load(f)['utts']
    utts = list(valid_json.keys())
    idim = int(valid_json[utts[0]]['input'][0]['shape'][1])
    odim = int(valid_json[utts[0]]['output'][0]['shape'][1])
    logging.info('#input dims : ' + str(idim))
    logging.info('#output dims: ' + str(odim))

    # specify attention, CTC, hybrid mode
    if args.mtlalpha == 1.0:
        mtl_mode = 'ctc'
        logging.info('Pure CTC mode')
    elif args.mtlalpha == 0.0:
        mtl_mode = 'att'
        logging.info('Pure attention mode')
    else:
        mtl_mode = 'mtl'
        logging.info('Multitask learning mode')

    # specify model architecture
    model = E2E(idim, odim, args)
    subsampling_factor = model.subsample[0]

    if args.rnnlm is not None:
        rnnlm_args = get_model_conf(args.rnnlm, args.rnnlm_conf)
        rnnlm = lm_pytorch.ClassifierWithState(
            lm_pytorch.RNNLM(
                len(args.char_list), rnnlm_args.layer, rnnlm_args.unit))
        torch.load(args.rnnlm, rnnlm)
        model.rnnlm = rnnlm

    # write model config
    if not os.path.exists(args.outdir):
        os.makedirs(args.outdir)
    model_conf = args.outdir + '/model.json'
    with open(model_conf, 'wb') as f:
        logging.info('writing a model config file to ' + model_conf)
        f.write(json.dumps((idim, odim, vars(args)), indent=4, sort_keys=True).encode('utf_8'))
    for key in sorted(vars(args).keys()):
        logging.info('ARGS: ' + key + ': ' + str(vars(args)[key]))

    reporter = model.reporter

    # check the use of multi-gpu
    if args.ngpu > 1:
        model = torch.nn.DataParallel(model, device_ids=list(range(args.ngpu)))
        logging.info('batch size is automatically increased (%d -> %d)' % (
            args.batch_size, args.batch_size * args.ngpu))
        args.batch_size *= args.ngpu

    # set torch device
    device = torch.device("cuda" if args.ngpu > 0 else "cpu")
    model = model.to(device)

    # Setup an optimizer
    if args.opt == 'adadelta':
        optimizer = torch.optim.Adadelta(
            model.parameters(), rho=0.95, eps=args.eps,
            weight_decay=args.weight_decay)
    elif args.opt == 'adam':
        optimizer = torch.optim.Adam(model.parameters(),
                                     weight_decay=args.weight_decay)

    # FIXME: TOO DIRTY HACK
    setattr(optimizer, "target", reporter)
    setattr(optimizer, "serialize", lambda s: reporter.serialize(s))

    # Setup a converter
    converter = CustomConverter(subsampling_factor=subsampling_factor,
                                preprocess_conf=args.preprocess_conf)

    # read json data
    with open(args.train_json, 'rb') as f:
        train_json = json.load(f)['utts']
    with open(args.valid_json, 'rb') as f:
        valid_json = json.load(f)['utts']

    # make minibatch list (variable length)
    train = make_batchset(train_json, args.batch_size,
                          args.maxlen_in, args.maxlen_out, args.minibatches,
                          min_batch_size=args.ngpu if args.ngpu > 1 else 1)
    valid = make_batchset(valid_json, args.batch_size,
                          args.maxlen_in, args.maxlen_out, args.minibatches,
                          min_batch_size=args.ngpu if args.ngpu > 1 else 1)
    # hack to make batchsize argument as 1
    # actual bathsize is included in a list
    if args.n_iter_processes > 0:
        train_iter = chainer.iterators.MultiprocessIterator(
            TransformDataset(train, converter.transform),
            batch_size=1, n_processes=args.n_iter_processes, n_prefetch=8, maxtasksperchild=20)
        valid_iter = chainer.iterators.MultiprocessIterator(
            TransformDataset(valid, converter.transform),
            batch_size=1, repeat=False, shuffle=False,
            n_processes=args.n_iter_processes, n_prefetch=8, maxtasksperchild=20)
    else:
        train_iter = chainer.iterators.SerialIterator(
            TransformDataset(train, converter.transform),
            batch_size=1)
        valid_iter = chainer.iterators.SerialIterator(
            TransformDataset(valid, converter.transform),
            batch_size=1, repeat=False, shuffle=False)

    # Set up a trainer
    updater = CustomUpdater(
        model, args.grad_clip, train_iter, optimizer, converter, device, args.ngpu)
    trainer = training.Trainer(
        updater, (args.epochs, 'epoch'), out=args.outdir)

    # Resume from a snapshot
    if args.resume:
        logging.info('resumed from %s' % args.resume)
        torch_resume(args.resume, trainer)

    # Evaluate the model with the test dataset for each epoch
    trainer.extend(CustomEvaluator(model, valid_iter, reporter, converter, device))

    # Save attention weight each epoch
    if args.num_save_attention > 0 and args.mtlalpha != 1.0:
        data = sorted(list(valid_json.items())[:args.num_save_attention],
                      key=lambda x: int(x[1]['input'][0]['shape'][1]), reverse=True)
        if hasattr(model, "module"):
            att_vis_fn = model.module.calculate_all_attentions
        else:
            att_vis_fn = model.calculate_all_attentions
        att_reporter = PlotAttentionReport(
            att_vis_fn, data, args.outdir + "/att_ws",
            converter=converter, device=device)
        trainer.extend(att_reporter, trigger=(1, 'epoch'))
    else:
        att_reporter = None

    # Make a plot for training and validation values
    trainer.extend(extensions.PlotReport(['main/loss', 'validation/main/loss',
                                          'main/loss_ctc', 'validation/main/loss_ctc',
                                          'main/loss_att', 'validation/main/loss_att'],
                                         'epoch', file_name='loss.png'))
    trainer.extend(extensions.PlotReport(['main/acc', 'validation/main/acc'],
                                         'epoch', file_name='acc.png'))

    # Save best models
    trainer.extend(extensions.snapshot_object(model, 'model.loss.best', savefun=torch_save),
                   trigger=training.triggers.MinValueTrigger('validation/main/loss'))
    if mtl_mode is not 'ctc':
        trainer.extend(extensions.snapshot_object(model, 'model.acc.best', savefun=torch_save),
                       trigger=training.triggers.MaxValueTrigger('validation/main/acc'))

    # save snapshot which contains model and optimizer states
    trainer.extend(torch_snapshot(), trigger=(1, 'epoch'))

    # epsilon decay in the optimizer
    if args.opt == 'adadelta':
        if args.criterion == 'acc' and mtl_mode is not 'ctc':
            trainer.extend(restore_snapshot(model, args.outdir + '/model.acc.best', load_fn=torch_load),
                           trigger=CompareValueTrigger(
                               'validation/main/acc',
                               lambda best_value, current_value: best_value > current_value))
            trainer.extend(adadelta_eps_decay(args.eps_decay),
                           trigger=CompareValueTrigger(
                               'validation/main/acc',
                               lambda best_value, current_value: best_value > current_value))
        elif args.criterion == 'loss':
            trainer.extend(restore_snapshot(model, args.outdir + '/model.loss.best', load_fn=torch_load),
                           trigger=CompareValueTrigger(
                               'validation/main/loss',
                               lambda best_value, current_value: best_value < current_value))
            trainer.extend(adadelta_eps_decay(args.eps_decay),
                           trigger=CompareValueTrigger(
                               'validation/main/loss',
                               lambda best_value, current_value: best_value < current_value))

    # Write a log of evaluation statistics for each epoch
    trainer.extend(extensions.LogReport(trigger=(REPORT_INTERVAL, 'iteration')))
    report_keys = ['epoch', 'iteration', 'main/loss', 'main/loss_ctc', 'main/loss_att',
                   'validation/main/loss', 'validation/main/loss_ctc', 'validation/main/loss_att',
                   'main/acc', 'validation/main/acc', 'elapsed_time']
    if args.opt == 'adadelta':
        trainer.extend(extensions.observe_value(
            'eps', lambda trainer: trainer.updater.get_optimizer('main').param_groups[0]["eps"]),
            trigger=(REPORT_INTERVAL, 'iteration'))
        report_keys.append('eps')
    if args.report_cer:
        report_keys.append('validation/main/cer')
    if args.report_wer:
        report_keys.append('validation/main/wer')
    trainer.extend(extensions.PrintReport(
        report_keys), trigger=(REPORT_INTERVAL, 'iteration'))

    trainer.extend(extensions.ProgressBar(update_interval=REPORT_INTERVAL))
    set_early_stop(trainer, args)

    if args.tensorboard_dir is not None and args.tensorboard_dir != "":
        writer = SummaryWriter(args.tensorboard_dir)
        trainer.extend(TensorboardLogger(writer, att_reporter))
    # Run the training
    trainer.run()
    check_early_stop(trainer, args.epochs)
示例#4
0
文件: asr_mix.py 项目: actuy/espnet
def train(args):
    """Train with the given args.

    Args:
        args (namespace): The program arguments.

    """
    set_deterministic_pytorch(args)

    # check cuda availability
    if not torch.cuda.is_available():
        logging.warning('cuda is not available')

    # get input and output dimension info
    with open(args.valid_json, 'rb') as f:
        valid_json = json.load(f)['utts']
    utts = list(valid_json.keys())
    idim = int(valid_json[utts[0]]['input'][0]['shape'][-1])
    odim = int(valid_json[utts[0]]['output'][0]['shape'][-1])
    logging.info('#input dims : ' + str(idim))
    logging.info('#output dims: ' + str(odim))

    # specify attention, CTC, hybrid mode
    if args.mtlalpha == 1.0:
        mtl_mode = 'ctc'
        logging.info('Pure CTC mode')
    elif args.mtlalpha == 0.0:
        mtl_mode = 'att'
        logging.info('Pure attention mode')
    else:
        mtl_mode = 'mtl'
        logging.info('Multitask learning mode')

    # specify model architecture
    model = E2E(idim, odim, args)
    subsampling_factor = model.subsample[0]

    if args.rnnlm is not None:
        rnnlm_args = get_model_conf(args.rnnlm, args.rnnlm_conf)
        rnnlm = lm_pytorch.ClassifierWithState(
            lm_pytorch.RNNLM(
                len(args.char_list),
                rnnlm_args.layer,
                rnnlm_args.unit,
                getattr(rnnlm_args, "embed_unit",
                        None),  # for backward compatibility
            ))
        torch.load(args.rnnlm, rnnlm)
        model.rnnlm = rnnlm

    # write model config
    if not os.path.exists(args.outdir):
        os.makedirs(args.outdir)
    model_conf = args.outdir + '/model.json'
    with open(model_conf, 'wb') as f:
        logging.info('writing a model config file to ' + model_conf)
        f.write(
            json.dumps((idim, odim, vars(args)),
                       indent=4,
                       ensure_ascii=False,
                       sort_keys=True).encode('utf_8'))
    for key in sorted(vars(args).keys()):
        logging.info('ARGS: ' + key + ': ' + str(vars(args)[key]))

    reporter = model.reporter

    # check the use of multi-gpu
    if args.ngpu > 1:
        if args.batch_size != 0:
            logging.warning(
                'batch size is automatically increased (%d -> %d)' %
                (args.batch_size, args.batch_size * args.ngpu))
            args.batch_size *= args.ngpu

    # set torch device
    device = torch.device("cuda" if args.ngpu > 0 else "cpu")
    if args.train_dtype in ("float16", "float32", "float64"):
        dtype = getattr(torch, args.train_dtype)
    else:
        dtype = torch.float32
    model = model.to(device=device, dtype=dtype)

    # Setup an optimizer
    if args.opt == 'adadelta':
        optimizer = torch.optim.Adadelta(model.parameters(),
                                         rho=0.95,
                                         eps=args.eps,
                                         weight_decay=args.weight_decay)
    elif args.opt == 'adam':
        optimizer = torch.optim.Adam(model.parameters(),
                                     weight_decay=args.weight_decay)
    elif args.opt == 'noam':  # 自定义更新lr
        from espnet.nets.pytorch_backend.transformer.optimizer import get_std_opt
        optimizer = get_std_opt(model, args.adim,
                                args.transformer_warmup_steps,
                                args.transformer_lr)
    else:
        raise NotImplementedError("unknown optimizer: " + args.opt)

    # setup apex.amp
    if args.train_dtype in ("O0", "O1", "O2", "O3"):
        try:
            from apex import amp
        except ImportError as e:
            logging.error(
                f"You need to install apex for --train-dtype {args.train_dtype}. "
                "See https://github.com/NVIDIA/apex#linux")
            raise e
        if args.opt == 'noam':
            model, optimizer.optimizer = amp.initialize(
                model, optimizer.optimizer, opt_level=args.train_dtype)
        else:
            model, optimizer = amp.initialize(model,
                                              optimizer,
                                              opt_level=args.train_dtype)
        use_apex = True
    else:
        use_apex = False

    # FIXME: TOO DIRTY HACK
    setattr(optimizer, "target", reporter)
    setattr(optimizer, "serialize", lambda s: reporter.serialize(s))

    # Setup a converter
    converter = CustomConverter(subsampling_factor=subsampling_factor,
                                dtype=dtype)

    # read json data
    with open(args.train_json, 'rb') as f:
        train_json = json.load(f)['utts']
    with open(args.valid_json, 'rb') as f:
        valid_json = json.load(f)['utts']

    use_sortagrad = args.sortagrad == -1 or args.sortagrad > 0
    # make minibatch list (variable length)
    train = make_batchset(train_json,
                          args.batch_size,
                          args.maxlen_in,
                          args.maxlen_out,
                          args.minibatches,
                          min_batch_size=args.ngpu if args.ngpu > 1 else 1,
                          shortest_first=use_sortagrad,
                          count=args.batch_count,
                          batch_bins=args.batch_bins,
                          batch_frames_in=args.batch_frames_in,
                          batch_frames_out=args.batch_frames_out,
                          batch_frames_inout=args.batch_frames_inout,
                          iaxis=0,
                          oaxis=-1)
    valid = make_batchset(valid_json,
                          args.batch_size,
                          args.maxlen_in,
                          args.maxlen_out,
                          args.minibatches,
                          min_batch_size=args.ngpu if args.ngpu > 1 else 1,
                          count=args.batch_count,
                          batch_bins=args.batch_bins,
                          batch_frames_in=args.batch_frames_in,
                          batch_frames_out=args.batch_frames_out,
                          batch_frames_inout=args.batch_frames_inout,
                          iaxis=0,
                          oaxis=-1)

    load_tr = LoadInputsAndTargets(
        mode='asr',
        load_output=True,
        preprocess_conf=args.preprocess_conf,
        preprocess_args={'train': True}  # Switch the mode of preprocessing
    )
    load_cv = LoadInputsAndTargets(
        mode='asr',
        load_output=True,
        preprocess_conf=args.preprocess_conf,
        preprocess_args={'train': False}  # Switch the mode of preprocessing
    )
    # hack to make batchsize argument as 1
    # actual bathsize is included in a list
    # default collate function converts numpy array to pytorch tensor
    # we used an empty collate function instead which returns list
    train_iter = {
        'main':
        ChainerDataLoader(dataset=TransformDataset(
            train, lambda data: converter([load_tr(data)])),
                          batch_size=1,
                          num_workers=args.n_iter_processes,
                          shuffle=True,
                          collate_fn=lambda x: x[0])
    }
    valid_iter = {
        'main':
        ChainerDataLoader(dataset=TransformDataset(
            valid, lambda data: converter([load_cv(data)])),
                          batch_size=1,
                          shuffle=False,
                          collate_fn=lambda x: x[0],
                          num_workers=args.n_iter_processes)
    }

    # Set up a trainer
    updater = CustomUpdater(model,
                            args.grad_clip,
                            train_iter,
                            optimizer,
                            device,
                            args.ngpu,
                            args.grad_noise,
                            args.accum_grad,
                            use_apex=use_apex)
    trainer = training.Trainer(updater, (args.epochs, 'epoch'),
                               out=args.outdir)

    if use_sortagrad:
        trainer.extend(
            ShufflingEnabler([train_iter]),
            trigger=(args.sortagrad if args.sortagrad != -1 else args.epochs,
                     'epoch'))

    # Resume from a snapshot
    if args.resume:
        logging.info('resumed from %s' % args.resume)
        torch_resume(args.resume, trainer)

    # Evaluate the model with the test dataset for each epoch
    trainer.extend(
        CustomEvaluator(model, valid_iter, reporter, device, args.ngpu))

    # Save attention weight each epoch
    if args.num_save_attention > 0 and args.mtlalpha != 1.0:
        data = sorted(list(valid_json.items())[:args.num_save_attention],
                      key=lambda x: int(x[1]['input'][0]['shape'][1]),
                      reverse=True)
        if hasattr(model, "module"):
            att_vis_fn = model.module.calculate_all_attentions
            plot_class = model.module.attention_plot_class
        else:
            att_vis_fn = model.calculate_all_attentions
            plot_class = model.attention_plot_class
        att_reporter = plot_class(att_vis_fn,
                                  data,
                                  args.outdir + "/att_ws",
                                  converter=converter,
                                  transform=load_cv,
                                  device=device)
        trainer.extend(att_reporter, trigger=(1, 'epoch'))
    else:
        att_reporter = None

    # Make a plot for training and validation values
    trainer.extend(
        extensions.PlotReport([
            'main/loss', 'validation/main/loss', 'main/loss_ctc',
            'validation/main/loss_ctc', 'main/loss_att',
            'validation/main/loss_att'
        ],
                              'epoch',
                              file_name='loss.png'))
    trainer.extend(
        extensions.PlotReport(['main/acc', 'validation/main/acc'],
                              'epoch',
                              file_name='acc.png'))
    trainer.extend(
        extensions.PlotReport(['main/cer_ctc', 'validation/main/cer_ctc'],
                              'epoch',
                              file_name='cer.png'))

    # Save best models
    trainer.extend(
        snapshot_object(model, 'model.loss.best'),
        trigger=training.triggers.MinValueTrigger('validation/main/loss'))
    if mtl_mode != 'ctc':
        trainer.extend(
            snapshot_object(model, 'model.acc.best'),
            trigger=training.triggers.MaxValueTrigger('validation/main/acc'))

    # save snapshot which contains model and optimizer states
    trainer.extend(torch_snapshot(), trigger=(1, 'epoch'))

    # epsilon decay in the optimizer
    if args.opt == 'adadelta':
        if args.criterion == 'acc' and mtl_mode != 'ctc':
            trainer.extend(restore_snapshot(model,
                                            args.outdir + '/model.acc.best',
                                            load_fn=torch_load),
                           trigger=CompareValueTrigger(
                               'validation/main/acc', lambda best_value,
                               current_value: best_value > current_value))
            trainer.extend(adadelta_eps_decay(args.eps_decay),
                           trigger=CompareValueTrigger(
                               'validation/main/acc', lambda best_value,
                               current_value: best_value > current_value))
        elif args.criterion == 'loss':
            trainer.extend(restore_snapshot(model,
                                            args.outdir + '/model.loss.best',
                                            load_fn=torch_load),
                           trigger=CompareValueTrigger(
                               'validation/main/loss', lambda best_value,
                               current_value: best_value < current_value))
            trainer.extend(adadelta_eps_decay(args.eps_decay),
                           trigger=CompareValueTrigger(
                               'validation/main/loss', lambda best_value,
                               current_value: best_value < current_value))

    # Write a log of evaluation statistics for each epoch
    trainer.extend(
        extensions.LogReport(trigger=(args.report_interval_iters,
                                      'iteration')))
    report_keys = [
        'epoch', 'iteration', 'main/loss', 'main/loss_ctc', 'main/loss_att',
        'validation/main/loss', 'validation/main/loss_ctc',
        'validation/main/loss_att', 'main/acc', 'validation/main/acc',
        'main/cer_ctc', 'validation/main/cer_ctc', 'elapsed_time'
    ]
    if args.opt == 'adadelta':
        trainer.extend(extensions.observe_value(
            'eps', lambda trainer: trainer.updater.get_optimizer('main').
            param_groups[0]["eps"]),
                       trigger=(args.report_interval_iters, 'iteration'))
        report_keys.append('eps')
    if args.report_cer:
        report_keys.append('validation/main/cer')
    if args.report_wer:
        report_keys.append('validation/main/wer')
    trainer.extend(extensions.PrintReport(report_keys),
                   trigger=(args.report_interval_iters, 'iteration'))

    trainer.extend(
        extensions.ProgressBar(update_interval=args.report_interval_iters))
    set_early_stop(trainer, args)

    if args.tensorboard_dir is not None and args.tensorboard_dir != "":
        trainer.extend(TensorboardLogger(SummaryWriter(args.tensorboard_dir),
                                         att_reporter),
                       trigger=(args.report_interval_iters, "iteration"))
    # Run the training
    trainer.run()
    check_early_stop(trainer, args.epochs)