示例#1
0
def generateStatModel(pathShapes, pathToTiles, pathToStats, pathToCmdStats,
                      pathWd, pathConf):
    AllCmd = []
    modTiles = GM.getModel(pathShapes)
    cfg = Config(pathConf)
    Stack_ind = fu.getFeatStackName(pathConf)
    classifier = Config(file(pathConf)).argTrain.classifier

    for mod, Tiles in modTiles:
        allpath = ""
        for tile in Tiles:
            pathToFeat = pathToTiles + "/" + tile + "/Final/" + Stack_ind
            allpath = allpath + " " + pathToFeat + " "
        # hpc case
        #if pathWd != None:
        #    pathToStats = "$TMPDIR"
        if classifier == "svm":
            cmd = "otbcli_ComputeImagesStatistics -il " + allpath + " -out " + pathToStats + "/Model_" + str(
                mod) + ".xml"
        else:
            cmd = "echo 'random forest does not need stats'"

        AllCmd.append(cmd)

    fu.writeCmds(pathToCmdStats + "/stats.txt", AllCmd)

    return AllCmd
示例#2
0
def outStats(config, tile, sample, workingDirectory):
    Testpath = Config(file(config)).chain.outputPath
    Nruns = int(Config(file(config)).chain.runs)
    featuresPath = Config(file(config)).chain.featuresPath
    stackName = fu.getFeatStackName(config)
    statsName = ["ValidNOK", "ValidOK", "AppNOK", "AppOK"]

    """
    1 valid NOK
    2 valid OK
    3 app NOK
    4 app OK
    """

    confStep = 1
    confMin = 1
    confMax = 100

    cloudAllTile = Testpath + "/final/PixelsValidity.tif"
    src_ds = gdal.Open(cloudAllTile)
    if src_ds is None:
        print 'Unable to open %s' % cloudAllTile
        sys.exit(1)

    srcband = src_ds.GetRasterBand(1).ReadAsArray()
    maxView = np.amax(srcband)
    Cloud = raster2array(Testpath + "/final/TMP/" + tile + "_Cloud_StatsOK.tif")
    for seed in range(Nruns):
        Classif = raster2array(Testpath + "/final/TMP/" + tile + "_seed_" + str(seed) + ".tif")
        confidence = raster2array(Testpath + "/final/TMP/" + tile + "_GlobalConfidence_seed_" + str(seed) + ".tif")
        difference = raster2array(Testpath + "/final/TMP/" + tile + "_seed_" + str(seed) + "_CompRef.tif")
        diffHisto = getDiffHisto(confMin, confMax, confStep, confidence, difference)

        statsTile = Testpath + "/final/TMP/" + tile + "_stats_seed_" + str(seed) + ".cfg"
        stats = open(statsTile, "a")
        stats.write("AllDiffStats:'" + ",".join(statsName) + "'\n")
        stats.close()
        for i in range(len(statsName)):
            hist, bin_edges = histo(diffHisto[i + 1], bins=np.arange(confMin, confMax + 1, confStep))
            hist_str = " ".join([str(currentVal) for currentVal in hist])
            bin_edges_str = " ".join([str(currentVal) for currentVal in bin_edges])
            genStatsDiff(statsTile, statsName[i], hist_str, bin_edges_str)

        histNView, binsNview = histo(Cloud, bins=np.arange(0, maxView + 1, 1))
        hist_str = " ".join([str(currentVal) for currentVal in histNView])
        bin_edges_str = " ".join([str(currentVal) for currentVal in binsNview])
        genStatsDiff(statsTile, "TileValidity", hist_str, bin_edges_str)
示例#3
0
def generateSamples_classifMix(folderSample, workingDirectory, trainShape,
                               pathWd, featuresPath, samplesOptions,
                               annualCrop, AllClass, dataField, pathConf,
                               configPrevClassif):
    currentTile, bindingPy = trainShape.split("/")[-1].split("_")[0], Config(
        file(pathConf)).GlobChain.bindingPython
    targetResolution, validityThreshold = Config(
        file(pathConf)).chain.spatialResolution, Config(
            file(pathConf)).argTrain.validityThreshold
    previousClassifPath, projOut = Config(
        file(configPrevClassif)).chain.outputPath, Config(
            file(configPrevClassif)).GlobChain.proj
    projOut = int(projOut.split(":")[-1])
    stack = "/Final/" + fu.getFeatStackName(pathConf)
    userFeatPath = Config(file(pathConf)).chain.userFeatPath
    if userFeatPath == "None": userFeatPath = None

    featImg = featuresPath + "/" + currentTile + "/" + stack
    if bindingPy == "True":
        featImg = fu.FileSearch_AND(featuresPath + "/" + currentTile + "/tmp/",
                                    True, "ST_MASK")[0]

    nameNonAnnual = trainShape.split("/")[-1].replace(".shp", "_NonAnnu.shp")
    nonAnnualShape = workingDirectory + "/" + nameNonAnnual

    nameAnnual = trainShape.split("/")[-1].replace(".shp", "_Annu.shp")
    AnnualShape = workingDirectory + "/" + nameAnnual

    nonAnnualCropFind = filterShpByClass(dataField, nonAnnualShape, AllClass,
                                         trainShape)
    annualCropFind = filterShpByClass(dataField, AnnualShape, annualCrop,
                                      trainShape)

    gdalDriver = "SQLite"
    SampleSel_NA = workingDirectory + "/" + nameNonAnnual.replace(
        ".shp", "_SampleSel_NA.sqlite")
    stats_NA = workingDirectory + "/" + nameNonAnnual.replace(
        ".shp", "_STATS.xml")
    if nonAnnualCropFind:
        cmd = "otbcli_PolygonClassStatistics -in " + featImg + " -vec " + nonAnnualShape + " -field " + dataField + " -out " + stats_NA
        print cmd
        os.system(cmd)
        verifPolyStats(stats_NA)
        cmd = "otbcli_SampleSelection -in " + featImg + " -vec " + nonAnnualShape + " -field " + dataField + " -instats " + stats_NA + " -out " + SampleSel_NA + " " + samplesOptions
        print cmd
        os.system(cmd)
        allCoord = getPointsCoordInShape(SampleSel_NA, gdalDriver)

    else:
        allCoord = [0]

    nameAnnual = trainShape.split("/")[-1].replace(".shp", "_Annu.sqlite")
    annualShape = workingDirectory + "/" + nameAnnual
    validityRaster = fu.FileSearch_AND(previousClassifPath + "/final/TMP",
                                       True, currentTile, "Cloud.tif")[0]
    classificationRaster = fu.FileSearch_AND(
        previousClassifPath + "/final/TMP", True,
        currentTile + "_seed_0.tif")[0]
    maskFolder = previousClassifPath + "/classif/MASK"

    if annualCropFind:
        genAS.genAnnualShapePoints(allCoord, gdalDriver, workingDirectory,
                                   targetResolution, annualCrop, dataField,
                                   currentTile, validityThreshold,
                                   validityRaster, classificationRaster,
                                   maskFolder, trainShape, annualShape)

    MergeName = trainShape.split("/")[-1].replace(".shp", "_selectionMerge")
    sampleSelection = workingDirectory + "/" + MergeName + ".sqlite"

    if nonAnnualCropFind and annualCropFind:
        createSamplePoint(SampleSel_NA, annualShape, dataField,
                          sampleSelection, projOut)
    elif nonAnnualCropFind and not annualCropFind:
        shutil.copy(SampleSel_NA, sampleSelection)
    elif not nonAnnualCropFind and annualCropFind:
        shutil.copy(annualShape, sampleSelection)

    samples = workingDirectory + "/" + trainShape.split("/")[-1].replace(
        ".shp", "_Samples.sqlite")
    if bindingPy == "False":
        folderSample + "/" + trainShape.split("/")[-1].replace(
            ".shp", "_Samples.sqlite")
        if not os.path.exists(
                folderSample + "/" +
                trainShape.split("/")[-1].replace(".shp", "_Samples.sqlite")):
            cmd = "otbcli_SampleExtraction -in " + featImg + " -vec " + sampleSelection + " -field " + dataField + " -out " + samples
            print cmd
            os.system(cmd)
    else:
        AllRefl = sorted(
            fu.FileSearch_AND(featuresPath + "/" + currentTile + "/tmp/", True,
                              "REFL.tif"))
        AllMask = sorted(
            fu.FileSearch_AND(featuresPath + "/" + currentTile + "/tmp/", True,
                              "MASK.tif"))
        datesInterp = sorted(
            fu.FileSearch_AND(featuresPath + "/" + currentTile + "/tmp/", True,
                              "DatesInterp"))
        realDates = sorted(
            fu.FileSearch_AND(featuresPath + "/" + currentTile + "/tmp/", True,
                              "imagesDate"))

        print AllRefl
        print AllMask
        print datesInterp
        print realDates
        # gapFill + feat
        features = []
        concatSensors = otb.Registry.CreateApplication("ConcatenateImages")
        for refl, mask, datesInterp, realDates in zip(AllRefl, AllMask,
                                                      datesInterp, realDates):
            gapFill = otb.Registry.CreateApplication(
                "ImageTimeSeriesGapFilling")
            nbDate = fu.getNbDateInTile(realDates)
            nbReflBands = fu.getRasterNbands(refl)
            comp = int(nbReflBands) / int(nbDate)
            print datesInterp
            if not isinstance(comp, int):
                raise Exception("unvalid component by date (not integer) : " +
                                comp)
            gapFill.SetParameterString("in", refl)
            gapFill.SetParameterString("mask", mask)
            gapFill.SetParameterString("comp", str(comp))
            gapFill.SetParameterString("it", "linear")
            gapFill.SetParameterString("id", realDates)
            gapFill.SetParameterString("od", datesInterp)
            gapFill.Execute()
            concatSensors.AddImageToParameterInputImageList(
                "il", gapFill.GetParameterOutputImage("out"))
            features.append(gapFill)

            # sensors Concatenation + sampleExtraction
        sampleExtr = otb.Registry.CreateApplication("SampleExtraction")
        sampleExtr.SetParameterString("ram", "128")
        sampleExtr.SetParameterString("vec", sampleSelection)
        sampleExtr.SetParameterString("field", dataField)
        sampleExtr.SetParameterString("out", samples)
        # if len(AllRefl) > 1:
        #    concatSensors.Execute()
        #    sampleExtr.SetParameterInputImage("in",concatSensors.GetParameterOutputImage("out"))
        # else:
        #    sampleExtr.SetParameterInputImage("in",features[0].GetParameterOutputImage("out"))
        # sampleExtr.ExecuteAndWriteOutput()

        if len(AllRefl) > 1:
            concatSensors.Execute()
            allFeatures = concatSensors.GetParameterOutputImage("out")
        else:
            allFeatures = features[0].GetParameterOutputImage("out")

        if userFeatPath:
            print "Add user features"
            userFeat_arbo = Config(file(pathConf)).userFeat.arbo
            userFeat_pattern = (Config(
                file(pathConf)).userFeat.patterns).split(",")
            concatFeatures = otb.Registry.CreateApplication(
                "ConcatenateImages")
            userFeatures = fu.getUserFeatInTile(userFeatPath, currentTile,
                                                userFeat_arbo,
                                                userFeat_pattern)
            concatFeatures.SetParameterStringList("il", userFeatures)
            concatFeatures.Execute()

            concatAllFeatures = otb.Registry.CreateApplication(
                "ConcatenateImages")
            concatAllFeatures.AddImageToParameterInputImageList(
                "il", allFeatures)
            concatAllFeatures.AddImageToParameterInputImageList(
                "il", concatFeatures.GetParameterOutputImage("out"))
            concatAllFeatures.Execute()

            allFeatures = concatAllFeatures.GetParameterOutputImage("out")

        sampleExtr.SetParameterInputImage("in", allFeatures)
        sampleExtr.ExecuteAndWriteOutput()
    if pathWd:
        shutil.copy(
            samples, folderSample + "/" +
            trainShape.split("/")[-1].replace(".shp", "_Samples.sqlite"))
    os.remove(SampleSel_NA)
    os.remove(sampleSelection)
    os.remove(stats_NA)
示例#4
0
def generateSamples_cropMix(folderSample, workingDirectory, trainShape, pathWd,
                            featuresPath, samplesOptions, prevFeatures,
                            annualCrop, AllClass, dataField, pathConf):
    currentTile = trainShape.split("/")[-1].split("_")[0]
    bindingPy = Config(file(pathConf)).GlobChain.bindingPython
    samplesClassifMix = Config(file(pathConf)).argTrain.samplesClassifMix

    userFeatPath = Config(file(pathConf)).chain.userFeatPath
    if userFeatPath == "None": userFeatPath = None

    stack = "/Final/" + fu.getFeatStackName(pathConf)
    NA_img = featuresPath + "/" + currentTile + "/" + stack
    A_img = prevFeatures + "/" + currentTile + "/" + stack
    if bindingPy == "True":
        NA_img = fu.FileSearch_AND(featuresPath + "/" + currentTile + "/tmp/",
                                   True, "ST_MASK")[0]
        A_img = fu.FileSearch_AND(prevFeatures + "/" + currentTile + "/tmp/",
                                  True, "ST_MASK")[0]
    # Step 1 : filter trainShape in order to keep non-annual class
    nameNonAnnual = trainShape.split("/")[-1].replace(".shp", "_NonAnnu.shp")
    nonAnnualShape = workingDirectory + "/" + nameNonAnnual
    filterShpByClass(dataField, nonAnnualShape, AllClass, trainShape)

    # Step 2 : filter trainShape in order to keep annual class
    nameAnnual = trainShape.split("/")[-1].replace(".shp", "_Annu.shp")
    annualShape = workingDirectory + "/" + nameAnnual
    annualCropFind = filterShpByClass(dataField, annualShape, annualCrop,
                                      trainShape)

    # Step 3 : nonAnnual stats
    stats_NA = workingDirectory + "/" + nameNonAnnual.replace(
        ".shp", "_STATS.xml")
    cmd = "otbcli_PolygonClassStatistics -in " + NA_img + " -vec " + nonAnnualShape + " -field " + dataField + " -out " + stats_NA
    print cmd
    os.system(cmd)

    verifPolyStats(stats_NA)

    # Step 4 : Annual stats
    stats_A = workingDirectory + "/" + nameAnnual.replace(".shp", "_STATS.xml")
    cmd = "otbcli_PolygonClassStatistics -in " + A_img + " -vec " + annualShape + " -field " + dataField + " -out " + stats_A
    if annualCropFind:
        print cmd
        os.system(cmd)
        verifPolyStats(stats_A)

    # Step 5 : Sample Selection NonAnnual
    SampleSel_NA = workingDirectory + "/" + nameNonAnnual.replace(
        ".shp", "_SampleSel_NA.sqlite")
    cmd = "otbcli_SampleSelection -in " + NA_img + " -vec " + nonAnnualShape + " -field " + dataField + " -instats " + stats_NA + " -out " + SampleSel_NA + " " + samplesOptions
    print cmd
    os.system(cmd)

    # Step 6 : Sample Selection Annual
    SampleSel_A = workingDirectory + "/" + nameAnnual.replace(
        ".shp", "_SampleSel_A.sqlite")
    cmd = "otbcli_SampleSelection -in " + A_img + " -vec " + annualShape + " -field " + dataField + " -instats " + stats_A + " -out " + SampleSel_A + " " + samplesOptions
    if annualCropFind:
        print cmd
        os.system(cmd)
    SampleExtr_NA = workingDirectory + "/" + nameNonAnnual.replace(
        ".shp", "_SampleExtr_NA.sqlite")
    SampleExtr_A = workingDirectory + "/" + nameAnnual.replace(
        ".shp", "_SampleExtr_A.sqlite")
    if bindingPy == "False":
        # Step 7 : Sample extraction NonAnnual
        cmd = "otbcli_SampleExtraction -in " + NA_img + " -vec " + SampleSel_NA + " -field " + dataField + " -out " + SampleExtr_NA
        print cmd
        os.system(cmd)

        # Step 8 : Sample extraction Annual
        cmd = "otbcli_SampleExtraction -in " + A_img + " -vec " + SampleSel_A + " -field " + dataField + " -out " + SampleExtr_A
        if annualCropFind:
            print cmd
            os.system(cmd)
    else:
        # Step 7 : Sample extraction NonAnnual
        concatSensors = otb.Registry.CreateApplication("ConcatenateImages")
        AllRefl = sorted(
            fu.FileSearch_AND(featuresPath + "/" + currentTile + "/tmp/", True,
                              "REFL.tif"))
        AllMask = sorted(
            fu.FileSearch_AND(featuresPath + "/" + currentTile + "/tmp/", True,
                              "MASK.tif"))
        datesInterp = sorted(
            fu.FileSearch_AND(featuresPath + "/" + currentTile + "/tmp/", True,
                              "DatesInterp"))
        realDates = sorted(
            fu.FileSearch_AND(featuresPath + "/" + currentTile + "/tmp/", True,
                              "imagesDate"))
        features = []
        for refl, mask, datesInterp, realDates in zip(AllRefl, AllMask,
                                                      datesInterp, realDates):
            gapFill = otb.Registry.CreateApplication(
                "ImageTimeSeriesGapFilling")
            nbDate = fu.getNbDateInTile(realDates)
            nbReflBands = fu.getRasterNbands(refl)
            comp = int(nbReflBands) / int(nbDate)
            if not isinstance(comp, int):
                raise Exception("unvalid component by date (not integer) : " +
                                comp)
            gapFill.SetParameterString("in", refl)
            gapFill.SetParameterString("mask", mask)
            gapFill.SetParameterString("comp", str(comp))
            gapFill.SetParameterString("it", "linear")
            gapFill.SetParameterString("id", realDates)
            gapFill.SetParameterString("od", datesInterp)
            # gapFill.SetParameterString("ram","1024")
            gapFill.Execute()
            concatSensors.AddImageToParameterInputImageList(
                "il", gapFill.GetParameterOutputImage("out"))
            features.append(gapFill)

        sampleExtr = otb.Registry.CreateApplication("SampleExtraction")
        sampleExtr.SetParameterString("ram", "128")
        sampleExtr.SetParameterString("vec", SampleSel_NA)
        sampleExtr.SetParameterString("field", dataField)
        sampleExtr.SetParameterString("out", SampleExtr_NA)
        # if len(AllRefl) > 1:
        #    concatSensors.Execute()
        #    sampleExtr.SetParameterInputImage("in",concatSensors.GetParameterOutputImage("out"))
        # else:
        #    sampleExtr.SetParameterInputImage("in",features[0].GetParameterOutputImage("out"))
        # sampleExtr.ExecuteAndWriteOutput()
        if len(AllRefl) > 1:
            concatSensors.Execute()
            allFeatures = concatSensors.GetParameterOutputImage("out")
        else:
            allFeatures = features[0].GetParameterOutputImage("out")

        if userFeatPath:
            print "Add user features"
            userFeat_arbo = Config(file(pathConf)).userFeat.arbo
            userFeat_pattern = (Config(
                file(pathConf)).userFeat.patterns).split(",")
            concatFeatures = otb.Registry.CreateApplication(
                "ConcatenateImages")
            userFeatures = fu.getUserFeatInTile(userFeatPath, currentTile,
                                                userFeat_arbo,
                                                userFeat_pattern)
            concatFeatures.SetParameterStringList("il", userFeatures)
            concatFeatures.Execute()

            concatAllFeatures = otb.Registry.CreateApplication(
                "ConcatenateImages")
            concatAllFeatures.AddImageToParameterInputImageList(
                "il", allFeatures)
            concatAllFeatures.AddImageToParameterInputImageList(
                "il", concatFeatures.GetParameterOutputImage("out"))
            concatAllFeatures.Execute()

            allFeatures = concatAllFeatures.GetParameterOutputImage("out")

        sampleExtr.SetParameterInputImage("in", allFeatures)
        sampleExtr.ExecuteAndWriteOutput()

        # Step 8 : Sample extraction Annual
        concatSensors = otb.Registry.CreateApplication("ConcatenateImages")
        AllRefl = sorted(
            fu.FileSearch_AND(prevFeatures + "/" + currentTile + "/tmp/", True,
                              "REFL.tif"))
        AllMask = sorted(
            fu.FileSearch_AND(prevFeatures + "/" + currentTile + "/tmp/", True,
                              "MASK.tif"))
        datesInterp = sorted(
            fu.FileSearch_AND(prevFeatures + "/" + currentTile + "/tmp/", True,
                              "DatesInterp"))
        realDates = sorted(
            fu.FileSearch_AND(prevFeatures + "/" + currentTile + "/tmp/", True,
                              "imagesDate"))
        features = []
        for refl, mask, datesInterp, realDates in zip(AllRefl, AllMask,
                                                      datesInterp, realDates):
            gapFill = otb.Registry.CreateApplication(
                "ImageTimeSeriesGapFilling")
            nbDate = fu.getNbDateInTile(realDates)
            nbReflBands = fu.getRasterNbands(refl)
            comp = int(nbReflBands) / int(nbDate)
            if not isinstance(comp, int):
                raise Exception("unvalid component by date (not integer) : " +
                                comp)
            gapFill.SetParameterString("in", refl)
            gapFill.SetParameterString("mask", mask)
            gapFill.SetParameterString("comp", str(comp))
            gapFill.SetParameterString("it", "linear")
            gapFill.SetParameterString("id", realDates)
            gapFill.SetParameterString("od", datesInterp)
            # gapFill.SetParameterString("ram","1024")
            gapFill.Execute()
            concatSensors.AddImageToParameterInputImageList(
                "il", gapFill.GetParameterOutputImage("out"))
            features.append(gapFill)

        sampleExtr = otb.Registry.CreateApplication("SampleExtraction")
        sampleExtr.SetParameterString("ram", "128")
        sampleExtr.SetParameterString("vec", SampleSel_A)
        sampleExtr.SetParameterString("field", dataField)
        sampleExtr.SetParameterString("out", SampleExtr_A)

        if len(AllRefl) > 1:
            concatSensors.Execute()
            allFeatures = concatSensors.GetParameterOutputImage("out")
        else:
            allFeatures = features[0].GetParameterOutputImage("out")

        if userFeatPath:
            print "Add user features"
            userFeat_arbo = Config(file(pathConf)).userFeat.arbo
            userFeat_pattern = (Config(
                file(pathConf)).userFeat.patterns).split(",")
            concatFeatures = otb.Registry.CreateApplication(
                "ConcatenateImages")
            userFeatures = fu.getUserFeatInTile(userFeatPath, currentTile,
                                                userFeat_arbo,
                                                userFeat_pattern)
            concatFeatures.SetParameterStringList("il", userFeatures)
            concatFeatures.Execute()

            concatAllFeatures = otb.Registry.CreateApplication(
                "ConcatenateImages")
            concatAllFeatures.AddImageToParameterInputImageList(
                "il", allFeatures)
            concatAllFeatures.AddImageToParameterInputImageList(
                "il", concatFeatures.GetParameterOutputImage("out"))
            concatAllFeatures.Execute()

            allFeatures = concatAllFeatures.GetParameterOutputImage("out")

        sampleExtr.SetParameterInputImage("in", allFeatures)
        if annualCropFind: sampleExtr.ExecuteAndWriteOutput()

    # Step 9 : Merge
    MergeName = trainShape.split("/")[-1].replace(".shp", "_Samples")
    listToMerge = [SampleExtr_NA]
    if annualCropFind:
        # listToMerge = [SampleExtr_A,SampleExtr_NA]
        listToMerge = [SampleExtr_NA, SampleExtr_A]
    fu.mergeSQLite(MergeName, workingDirectory, listToMerge)
    samples = workingDirectory + "/" + trainShape.split("/")[-1].replace(
        ".shp", "_Samples.sqlite")

    os.remove(stats_NA)
    os.remove(SampleSel_NA)
    os.remove(SampleExtr_NA)
    fu.removeShape(nonAnnualShape.replace(".shp", ""),
                   [".prj", ".shp", ".dbf", ".shx"])

    if annualCropFind:
        os.remove(stats_A)
        os.remove(SampleSel_A)
        os.remove(SampleExtr_A)
        fu.removeShape(annualShape.replace(".shp", ""),
                       [".prj", ".shp", ".dbf", ".shx"])

    if pathWd:
        shutil.copy(
            samples, folderSample + "/" +
            trainShape.split("/")[-1].replace(".shp", "_Samples.sqlite"))
示例#5
0
def generateSamples_simple(folderSample, workingDirectory, trainShape, pathWd,
                           featuresPath, samplesOptions, pathConf, dataField):
    bindingPython = Config(file(pathConf)).GlobChain.bindingPython
    dataField = Config(file(pathConf)).chain.dataField
    outputPath = Config(file(pathConf)).chain.outputPath
    userFeatPath = Config(file(pathConf)).chain.userFeatPath
    if userFeatPath == "None": userFeatPath = None

    tmpFolder = outputPath + "/TMPFOLDER"
    if not os.path.exists(tmpFolder): os.mkdir(tmpFolder)
    # Sensors
    S2 = Sensors.Sentinel_2("", Opath(tmpFolder), pathConf, "")
    L8 = Sensors.Landsat8("", Opath(tmpFolder), pathConf, "")
    L5 = Sensors.Landsat5("", Opath(tmpFolder), pathConf, "")
    # shutil.rmtree(tmpFolder, ignore_errors=True)
    SensorsList = [S2, L8, L5]
    stats = workingDirectory + "/" + trainShape.split("/")[-1].replace(
        ".shp", "_stats.xml")
    tile = trainShape.split("/")[-1].split("_")[0]
    stack = fu.getFeatStackName(pathConf)
    feat = featuresPath + "/" + tile + "/Final/" + stack
    if bindingPython == "True":
        feat = fu.FileSearch_AND(featuresPath + "/" + tile + "/tmp/", True,
                                 "ST_MASK")[0]

    os.environ["ITK_GLOBAL_DEFAULT_NUMBER_OF_THREADS"] = "1"
    cmd = "otbcli_PolygonClassStatistics -in " + feat + " -vec " + trainShape + " -out " + stats + " -field " + dataField
    print cmd
    os.system(cmd)
    verifPolyStats(stats)
    sampleSelection = workingDirectory + "/" + trainShape.split(
        "/")[-1].replace(".shp", "_SampleSel.sqlite")
    cmd = "otbcli_SampleSelection -out " + sampleSelection + " " + samplesOptions + " -field " + dataField + " -in " + feat + " -vec " + trainShape + " -instats " + stats
    print cmd
    os.system(cmd)

    # if pathWd:shutil.copy(sampleSelection,folderSample)

    os.environ["ITK_GLOBAL_DEFAULT_NUMBER_OF_THREADS"] = "5"

    samples = workingDirectory + "/" + trainShape.split("/")[-1].replace(
        ".shp", "_Samples.sqlite")

    if bindingPython == "True":
        sampleExtr = otb.Registry.CreateApplication("SampleExtraction")
        sampleExtr.SetParameterString("vec", sampleSelection)
        sampleExtr.SetParameterString("field", dataField)
        sampleExtr.SetParameterString("out", samples)

        AllRefl = sorted(
            fu.FileSearch_AND(featuresPath + "/" + tile + "/tmp/", True,
                              "REFL.tif"))
        AllMask = sorted(
            fu.FileSearch_AND(featuresPath + "/" + tile + "/tmp/", True,
                              "MASK.tif"))
        datesInterp = sorted(
            fu.FileSearch_AND(featuresPath + "/" + tile + "/tmp/", True,
                              "DatesInterp"))
        realDates = sorted(
            fu.FileSearch_AND(featuresPath + "/" + tile + "/tmp/", True,
                              "imagesDate"))

        print AllRefl
        print AllMask
        print datesInterp
        print realDates
        # gapFill + feat
        features = []
        concatSensors = otb.Registry.CreateApplication("ConcatenateImages")
        for refl, mask, datesInterp, realDates in zip(AllRefl, AllMask,
                                                      datesInterp, realDates):
            gapFill = otb.Registry.CreateApplication(
                "ImageTimeSeriesGapFilling")
            nbDate = fu.getNbDateInTile(realDates)
            nbReflBands = fu.getRasterNbands(refl)
            comp = int(nbReflBands) / int(nbDate)
            print datesInterp
            if not isinstance(comp, int):
                raise Exception("unvalid component by date (not integer) : " +
                                comp)
            gapFill.SetParameterString("in", refl)
            gapFill.SetParameterString("mask", mask)
            gapFill.SetParameterString("comp", str(comp))
            gapFill.SetParameterString("it", "linear")
            gapFill.SetParameterString("id", realDates)
            gapFill.SetParameterString("od", datesInterp)
            gapFill.Execute()

            # gapFill.SetParameterString("out","/ptmp/vincenta/tmp/TestGapFill.tif")
            # gapFill.ExecuteAndWriteOutput()
            # pause = raw_input("Pause1")

            # featExtr = otb.Registry.CreateApplication("iota2FeatureExtraction")
            # featExtr.SetParameterInputImage("in",gapFill.GetParameterOutputImage("out"))
            # featExtr.SetParameterString("comp",str(comp))
            # for currentSensor in SensorsList:
            #    if currentSensor.name in refl:
            #		red = str(currentSensor.bands["BANDS"]["red"])
            #		nir = str(currentSensor.bands["BANDS"]["NIR"])
            #		swir = str(currentSensor.bands["BANDS"]["SWIR"])
            # featExtr.SetParameterString("red",red)
            # featExtr.SetParameterString("nir",nir)
            # featExtr.SetParameterString("swir",swir)
            # featExtr.SetParameterString("ram","256")
            # featExtr.Execute()
            # features.append(featExtr)
            concatSensors.AddImageToParameterInputImageList(
                "il", gapFill.GetParameterOutputImage("out"))
            features.append(gapFill)

            # sensors Concatenation + sampleExtraction
        sampleExtr = otb.Registry.CreateApplication("SampleExtraction")
        sampleExtr.SetParameterString("ram", "1024")
        sampleExtr.SetParameterString("vec", sampleSelection)
        sampleExtr.SetParameterString("field", dataField)
        sampleExtr.SetParameterString("out", samples)

        if len(AllRefl) > 1:
            concatSensors.Execute()
            allFeatures = concatSensors.GetParameterOutputImage("out")
        else:
            allFeatures = features[0].GetParameterOutputImage("out")

        if userFeatPath:
            print "Add user features"
            userFeat_arbo = Config(file(pathConf)).userFeat.arbo
            userFeat_pattern = (Config(
                file(pathConf)).userFeat.patterns).split(",")
            concatFeatures = otb.Registry.CreateApplication(
                "ConcatenateImages")
            userFeatures = fu.getUserFeatInTile(userFeatPath, tile,
                                                userFeat_arbo,
                                                userFeat_pattern)
            concatFeatures.SetParameterStringList("il", userFeatures)
            concatFeatures.Execute()

            concatAllFeatures = otb.Registry.CreateApplication(
                "ConcatenateImages")
            concatAllFeatures.AddImageToParameterInputImageList(
                "il", allFeatures)
            concatAllFeatures.AddImageToParameterInputImageList(
                "il", concatFeatures.GetParameterOutputImage("out"))
            concatAllFeatures.Execute()

            allFeatures = concatAllFeatures.GetParameterOutputImage("out")

        sampleExtr.SetParameterInputImage("in", allFeatures)
        sampleExtr.ExecuteAndWriteOutput()

    # cmd = "otbcli_SampleExtraction -field "+dataField+" -out "+samples+" -vec "+sampleSelection+" -in /ptmp/vincenta/tmp/TestGapFill.tif"
    # print cmd
    # pause = raw_input("Pause")
    # os.system(cmd)
    else:
        cmd = "otbcli_SampleExtraction -field " + dataField + " -out " + samples + " -vec " + sampleSelection + " -in " + feat
        print cmd
        os.system(cmd)
    if pathWd:
        shutil.copy(
            samples, folderSample + "/" +
            trainShape.split("/")[-1].replace(".shp", "_Samples.sqlite"))
    os.remove(sampleSelection)
    os.remove(stats)
示例#6
0
def launchClassification(model, pathConf, stat, pathToRT, pathToImg,
                         pathToRegion, fieldRegion, N, pathToCmdClassif,
                         pathOut, pathWd):
    f = file(pathConf)

    cfg = Config(f)
    classif = cfg.argTrain.classifier
    mode = cfg.chain.mode
    outputPath = cfg.chain.outputPath
    classifMode = cfg.argClassification.classifMode
    regionMode = cfg.chain.mode
    pixType = cfg.argClassification.pixType
    bindingPy = cfg.GlobChain.bindingPython

    Stack_ind = fu.getFeatStackName(pathConf)

    AllCmd = []

    allTiles_s = cfg.chain.listTile
    allTiles = allTiles_s.split(" ")

    maskFiles = pathOut + "/MASK"
    if not os.path.exists(maskFiles):
        os.system("mkdir " + maskFiles)

    shpRName = pathToRegion.split("/")[-1].replace(".shp", "")

    AllModel = fu.FileSearch_AND(model, True, "model", ".txt")
    AllModel = [f for f in AllModel if os.path.splitext(f)[1] == '.txt']

    for path in AllModel:
        model = path.split("/")[-1].split("_")[1]
        tiles = fu.getListTileFromModel(
            model, outputPath + "/config_model/configModel.cfg")
        model_Mask = model
        if re.search('model_.*f.*_', path.split("/")[-1]):
            model_Mask = path.split("/")[-1].split("_")[1].split("f")[0]
        seed = path.split("/")[-1].split("_")[-1].replace(".txt", "")
        tilesToEvaluate = tiles
        if ("fusion" in classifMode
                and regionMode != "outside") or (regionMode == "one_region"):
            tilesToEvaluate = allTiles
            # construction du string de sortie
        for tile in tilesToEvaluate:
            pathToFeat = pathToImg + "/" + tile + "/Final/" + Stack_ind
            if bindingPy == "True":
                pathToFeat = fu.FileSearch_AND(
                    pathToImg + "/" + tile + "/tmp/", True, ".tif")[0]
            maskSHP = pathToRT + "/" + shpRName + "_region_" + model_Mask + "_" + tile + ".shp"
            maskTif = shpRName + "_region_" + model_Mask + "_" + tile + ".tif"

            CmdConfidenceMap = ""
            confidenceMap = ""
            if "fusion" in classifMode:
                if mode != "outside":
                    tmp = pathOut.split("/")
                    if pathOut[-1] == "/":
                        del tmp[-1]
                    tmp[-1] = "envelope"
                    pathToEnvelope = "/".join(tmp)
                    maskSHP = pathToEnvelope + "/" + tile + ".shp"
            confidenceMap = tile + "_model_" + model + "_confidence_seed_" + seed + ".tif"
            CmdConfidenceMap = " -confmap " + pathOut + "/" + confidenceMap

            if not os.path.exists(maskFiles + "/" + maskTif):
                pathToMaskCommun = pathToImg + "/" + tile + "/tmp/MaskCommunSL.shp"
                # cas cluster
                if pathWd != None:
                    pathToMaskCommun = pathToImg + "/" + tile + "/MaskCommunSL.shp"
                    maskFiles = pathWd

                nameOut = fu.ClipVectorData(maskSHP, pathToMaskCommun,
                                            maskFiles,
                                            maskTif.replace(".tif", ""))
                cmdRaster = "otbcli_Rasterization -in " + nameOut + " -mode attribute -mode.attribute.field " + fieldRegion + " -im " + pathToFeat + " -out " + maskFiles + "/" + maskTif
                if "fusion" in classifMode:
                    cmdRaster = "otbcli_Rasterization -in " + nameOut + " -mode binary -mode.binary.foreground 1 -im " + pathToFeat + " -out " + maskFiles + "/" + maskTif
                print cmdRaster
                os.system(cmdRaster)
                if pathWd != None:
                    os.system("cp " + pathWd + "/" + maskTif + " " + pathOut +
                              "/MASK")

            out = pathOut + "/Classif_" + tile + "_model_" + model + "_seed_" + seed + ".tif"

            # hpc case
            if pathWd != None:
                out = "$TMPDIR/Classif_" + tile + "_model_" + model + "_seed_" + seed + ".tif"
                CmdConfidenceMap = " -confmap $TMPDIR/" + confidenceMap

            appli = "otbcli_ImageClassifier "
            pixType_cmd = pixType
            if bindingPy == "True":
                appli = "python bPy_ImageClassifier.py -conf " + pathConf + " "
                pixType_cmd = " -pixType " + pixType
            cmd = appli + " -in " + pathToFeat + " -model " + path + " -mask " + pathOut + "/MASK/" + maskTif + " -out " + out + " " + pixType_cmd + " -ram 128 " + CmdConfidenceMap

            # Ajout des stats lors de la phase de classification
            if ("svm" in classif):
                cmd = cmd + " -imstat " + stat + "/Model_" + str(
                    model) + ".xml"
            AllCmd.append(cmd)

    fu.writeCmds(pathToCmdClassif + "/class.txt", AllCmd)

    return AllCmd
示例#7
0
    landsat5.setDatesVoulues(datesVoulues)

    list_Sensor.append(landsat5)

if not ("None" in args.ipathS2):
    PreProcessS2(args.config, args.ipathS2, args.opath)  # resample if needed
    Sentinel2 = Sentinel_2(args.ipathS2, opath, fconf, workRes)
    datesVoulues = CreateFichierDatesReg(args.dateB_S2, args.dateE_S2, args.gapS2, opath.opathT, Sentinel2.name)
    Sentinel2.setDatesVoulues(datesVoulues)

    list_Sensor.append(Sentinel2)

imRef = list_Sensor[0].imRef
sensorRef = list_Sensor[0].name

StackName = fu.getFeatStackName(args.config)
Stack = args.opath + "/Final/" + StackName

allTiles = (Config(file(args.config)).chain.listTile).split()
userFeatPath = Config(file(args.config)).chain.userFeatPath
if userFeatPath == "None": userFeatPath = None
if userFeatPath:
    userFeat_arbo = Config(file(args.config)).userFeat.arbo
    userFeat_pattern = (Config(file(args.config)).userFeat.patterns).split(",")
    tile = fu.findCurrentTileInString(Stack, allTiles)
    allUserFeatures = " ".join(fu.getUserFeatInTile(userFeatPath, tile, userFeat_arbo, userFeat_pattern))
if not os.path.exists(Stack):
    # Step 1 Creation des masques de bords
    Step = 1
    if log.dico[Step]:
        for sensor in list_Sensor:
示例#8
0
def launchTraining(pathShapes, pathConf, pathToTiles, dataField, stat, N,
                   pathToCmdTrain, out, pathWd, pathlog):
    """
    OUT : les commandes pour l'app
    """
    cmd_out = []

    f = file(pathConf)
    cfg = Config(f)
    classif = cfg.argTrain.classifier
    options = cfg.argTrain.options
    outputPath = cfg.chain.outputPath
    samplesMode = Config(file(pathConf)).argTrain.shapeMode
    dataField = Config(file(pathConf)).chain.dataField
    binding = Config(file(pathConf)).GlobChain.bindingPython

    posModel = -3  # model's position, if training shape is split by "_"

    Stack_ind = fu.getFeatStackName(pathConf)

    pathToModelConfig = outputPath + "/config_model/configModel.cfg"
    configModel = open(pathToModelConfig, "w")
    configModel.write("AllModel:\n[\n")
    configModel.close()
    for seed in range(N):
        pathAppVal = fu.FileSearch_AND(pathShapes, True, "seed" + str(seed),
                                       ".shp", "learn")
        sort = [(path.split("/")[-1].split("_")[posModel], path)
                for path in pathAppVal]
        sort = fu.sortByFirstElem(sort)
        # get tiles by model
        names = []
        for r, paths in sort:
            tmp = ""
            for i in range(len(paths)):
                if i < len(paths) - 1:
                    tmp = tmp + paths[i].split("/")[-1].split("_")[0] + "_"
                else:
                    tmp = tmp + paths[i].split("/")[-1].split("_")[0]
            names.append(tmp)
        cpt = 0
        for r, paths in sort:
            writeConfigName(r, names[cpt], pathToModelConfig)
            cpt += 1
        if samplesMode == "points":
            pathAppVal = fu.FileSearch_AND(outputPath + "/learningSamples",
                                           True, "seed" + str(seed), ".sqlite",
                                           "learn")
            sort = [(path.split("/")[-1].split("_")[posModel], path)
                    for path in pathAppVal]

        for r, paths in sort:
            print r
            if samplesMode != "points":
                cmd = buildTrainCmd_poly(r, paths, pathToTiles, Stack_ind,
                                         classif, options, dataField, out,
                                         seed, stat, pathlog)
            else:
                if binding == "True" and classif == "svm":
                    outStats = outputPath + "/stats/Model_" + r + ".xml"
                    if os.path.exists(outStats):
                        os.remove(outStats)
                    writeStatsFromSample(paths, outStats)
                cmd = buildTrainCmd_points(r, paths, classif, options,
                                           dataField, out, seed, stat, pathlog)
            cmd_out.append(cmd)

    configModel = open(pathToModelConfig, "a")
    configModel.write("\n]\n")
    configModel.close()

    fu.writeCmds(pathToCmdTrain + "/train.txt", cmd_out)

    return cmd_out
示例#9
0
def ClassificationShaping(pathClassif, pathEnvelope, pathImg, fieldEnv, N,
                          pathOut, pathWd, pathConf, colorpath):
    f = file(pathConf)
    cfg = Config(f)

    Stack_ind = fu.getFeatStackName(pathConf)

    if pathWd == None:
        TMP = pathOut + "/TMP"
        if not os.path.exists(pathOut + "/TMP"):
            os.mkdir(TMP)
    else:
        TMP = pathWd
        if not os.path.exists(pathOut + "/TMP"):
            os.mkdir(pathOut + "/TMP")
    classifMode, pathTest, proj = cfg.argClassification.classifMode, cfg.chain.outputPath, \
                                  cfg.GlobChain.proj.split(":")[-1]
    AllTile, mode, pixType = cfg.chain.listTile.split(
        " "), cfg.chain.mode, cfg.argClassification.pixType
    featuresPath, outputStatistics, spatialResolution = cfg.chain.featuresPath, cfg.chain.outputStatistics, cfg.chain.spatialResolution
    allTMPFolder = fu.fileSearchRegEx(pathTest + "/TMPFOLDER*")
    if allTMPFolder:
        for tmpFolder in allTMPFolder:
            shutil.rmtree(tmpFolder)

    genGlobalConfidence(AllTile, pathTest, N, mode, classifMode, pathWd,
                        pathConf)

    if mode == "outside" and classifMode == "fusion":
        old_classif = fu.fileSearchRegEx(
            pathTest + "/classif/Classif_*_model_*f*_seed_*.tif")
        for rm in old_classif:
            print rm
            os.remove(rm)
            # os.system("mv "+rm+" "+pathTest+"/final/TMP/")

    classification = []
    confidence = []
    cloud = []
    for seed in range(N):
        classification.append([])
        confidence.append([])
        cloud.append([])
        sort = []
        if classifMode == "separate" or mode == "outside":
            AllClassifSeed = fu.FileSearch_AND(pathClassif, True, ".tif",
                                               "Classif", "seed_" + str(seed))
            ind = 1
        elif classifMode == "fusion":
            AllClassifSeed = fu.FileSearch_AND(
                pathClassif, True, "_FUSION_NODATA_seed" + str(seed) + ".tif")
            ind = 0
        for tile in AllClassifSeed:
            sort.append((tile.split("/")[-1].split("_")[ind], tile))
        sort = fu.sortByFirstElem(sort)
        for tile, paths in sort:
            exp = ""
            allCl = ""
            allCl_rm = []
            for i in range(len(paths)):
                allCl = allCl + paths[i] + " "
                allCl_rm.append(paths[i])
                if i < len(paths) - 1:
                    exp = exp + "im" + str(i + 1) + "b1 + "
                else:
                    exp = exp + "im" + str(i + 1) + "b1"
            path_Cl_final = TMP + "/" + tile + "_seed_" + str(seed) + ".tif"
            classification[seed].append(path_Cl_final)
            cmd = 'otbcli_BandMath -il ' + allCl + '-out ' + path_Cl_final + ' ' + pixType + ' -exp "' + exp + '"'
            print cmd
            os.system(cmd)

            for currentTileClassif in allCl_rm:
                os.remove(currentTileClassif)

            tileConfidence = pathOut + "/TMP/" + tile + "_GlobalConfidence_seed_" + str(
                seed) + ".tif"
            confidence[seed].append(tileConfidence)

            cloudTile = fu.FileSearch_AND(featuresPath + "/" + tile, True,
                                          "nbView.tif")[0]
            ClassifTile = TMP + "/" + tile + "_seed_" + str(seed) + ".tif"
            cloudTilePriority = pathTest + "/final/TMP/" + tile + "_Cloud.tif"
            cloudTilePriority_tmp = TMP + "/" + tile + "_Cloud.tif"

            cloudTilePriority_StatsOK = pathTest + "/final/TMP/" + tile + "_Cloud_StatsOK.tif"
            cloudTilePriority_tmp_StatsOK = TMP + "/" + tile + "_Cloud_StatsOK.tif"
            cloud[seed].append(cloudTilePriority)
            if not os.path.exists(cloudTilePriority):
                cmd_cloud = 'otbcli_BandMath -il ' + cloudTile + ' ' + ClassifTile + ' -out ' + cloudTilePriority_tmp + ' int16 -exp "im2b1>0?im1b1:0"'
                print cmd_cloud
                os.system(cmd_cloud)
                if outputStatistics == "True":
                    cmd_cloud = 'otbcli_BandMath -il ' + cloudTile + ' ' + ClassifTile + ' -out ' + cloudTilePriority_tmp_StatsOK + ' int16 -exp "im2b1>0?im1b1:-1"'
                    print cmd_cloud
                    os.system(cmd_cloud)
                    if pathWd:
                        shutil.copy(cloudTilePriority_tmp_StatsOK,
                                    cloudTilePriority_StatsOK)
                        os.remove(cloudTilePriority_tmp_StatsOK)

                if pathWd:
                    shutil.copy(cloudTilePriority_tmp, cloudTilePriority)
                    os.remove(cloudTilePriority_tmp)

    if pathWd != None:
        os.system("cp -a " + TMP + "/* " + pathOut + "/TMP")
    for seed in range(N):
        assembleFolder = pathTest + "/final"
        if pathWd: assembleFolder = pathWd
        fu.assembleTile_Merge(
            classification[seed], spatialResolution,
            assembleFolder + "/Classif_Seed_" + str(seed) + ".tif")
        if pathWd:
            shutil.copy(pathWd + "/Classif_Seed_" + str(seed) + ".tif",
                        pathTest + "/final")
        fu.assembleTile_Merge(
            confidence[seed], spatialResolution,
            assembleFolder + "/Confidence_Seed_" + str(seed) + ".tif")
        if pathWd:
            shutil.copy(pathWd + "/Confidence_Seed_" + str(seed) + ".tif",
                        pathTest + "/final")
        color.CreateIndexedColorImage(
            pathTest + "/final/Classif_Seed_" + str(seed) + ".tif", colorpath,
            pixType)

    fu.assembleTile_Merge(cloud[0], spatialResolution,
                          assembleFolder + "/PixelsValidity.tif")
    if pathWd: shutil.copy(pathWd + "/PixelsValidity.tif", pathTest + "/final")