def test_empty_inputs(): train_data_frame = TEST_DF_1.copy() with pytest.raises(RuntimeError): TabularData.from_data_frame( numerical_fields=None, categorical_fields=None, target_fields="label", train_data_frame=train_data_frame, num_workers=0, batch_size=1, )
def test_categorical_target(tmpdir): train_data_frame = TEST_DF_1.copy() val_data_frame = TEST_DF_2.copy() test_data_frame = TEST_DF_2.copy() for df in [train_data_frame, val_data_frame, test_data_frame]: # change int label to string df["label"] = df["label"].astype(str) dm = TabularData.from_data_frame( categorical_fields=["category"], numerical_fields=["scalar_b", "scalar_b"], target_fields="label", train_data_frame=train_data_frame, val_data_frame=val_data_frame, test_data_frame=test_data_frame, num_workers=0, batch_size=1, ) for dl in [dm.train_dataloader(), dm.val_dataloader(), dm.test_dataloader()]: data = next(iter(dl)) (cat, num) = data[DefaultDataKeys.INPUT] target = data[DefaultDataKeys.TARGET] assert cat.shape == (1, 1) assert num.shape == (1, 2) assert target.shape == (1, )
def test_classification(tmpdir): train_data_frame = TEST_DF_1.copy() val_data_frame = TEST_DF_1.copy() test_data_frame = TEST_DF_1.copy() data = TabularData.from_data_frame( categorical_fields=["category"], numerical_fields=["scalar_a", "scalar_b"], target_fields="label", train_data_frame=train_data_frame, val_data_frame=val_data_frame, test_data_frame=test_data_frame, num_workers=0, batch_size=2, ) model = TabularClassifier(num_features=3, num_classes=2, embedding_sizes=data.emb_sizes) trainer = pl.Trainer(fast_dev_run=True, default_root_dir=tmpdir) trainer.fit(model, data)
def test_tabular_data(tmpdir): train_data_frame = TEST_DF_1.copy() val_data_frame = TEST_DF_2.copy() test_data_frame = TEST_DF_2.copy() dm = TabularData.from_data_frame( categorical_cols=["category"], numerical_cols=["scalar_b", "scalar_b"], target_col="label", train_data_frame=train_data_frame, val_data_frame=val_data_frame, test_data_frame=test_data_frame, num_workers=0, batch_size=1, ) for dl in [dm.train_dataloader(), dm.val_dataloader(), dm.test_dataloader()]: data = next(iter(dl)) (cat, num) = data[DefaultDataKeys.INPUT] target = data[DefaultDataKeys.TARGET] assert cat.shape == (1, 1) assert num.shape == (1, 2) assert target.shape == (1, )