def test_empty_inputs(): train_df = TEST_DF_1.copy() with pytest.raises(RuntimeError): TabularData.from_df(train_df, numerical_cols=None, categorical_cols=None, target_col="label", num_workers=0, batch_size=1)
def test_categorical_target(tmpdir): train_df = TEST_DF_1.copy() val_df = TEST_DF_2.copy() test_df = TEST_DF_2.copy() for df in [train_df, val_df, test_df]: # change int label to string df["label"] = df["label"].astype(str) dm = TabularData.from_df( train_df, categorical_cols=["category"], numerical_cols=["scalar_b", "scalar_b"], target_col="label", val_df=val_df, test_df=test_df, num_workers=0, batch_size=1, ) for dl in [ dm.train_dataloader(), dm.val_dataloader(), dm.test_dataloader() ]: (cat, num), target = next(iter(dl)) assert cat.shape == (1, 1) assert num.shape == (1, 2) assert target.shape == (1, )
def test_classification(tmpdir): train_df = TEST_DF_1.copy() val_df = TEST_DF_1.copy() test_df = TEST_DF_1.copy() data = TabularData.from_df( train_df, categorical_cols=["category"], numerical_cols=["scalar_a", "scalar_b"], target_col="label", val_df=val_df, test_df=test_df, num_workers=0, batch_size=2, ) model = TabularClassifier(num_features=3, num_classes=2, embedding_sizes=data.emb_sizes) trainer = pl.Trainer(fast_dev_run=True, default_root_dir=tmpdir) trainer.fit(model, data)
def test_from_df(tmpdir): train_df = TEST_DF_1.copy() valid_df = TEST_DF_2.copy() test_df = TEST_DF_2.copy() dm = TabularData.from_df(train_df, categorical_input=["category"], numerical_input=["scalar_b", "scalar_b"], target="label", valid_df=valid_df, test_df=test_df, num_workers=0, batch_size=1) for dl in [ dm.train_dataloader(), dm.val_dataloader(), dm.test_dataloader() ]: (cat, num), target = next(iter(dl)) assert cat.shape == (1, 1) assert num.shape == (1, 2) assert target.shape == (1, )