示例#1
0
    def __init__(self, comm, broadcast_comm, gd, aux_gd, spos_ac):
        self.comm = comm
        self.broadcast_comm = broadcast_comm
        self.gd = gd
        self.aux_gd = aux_gd

        rank_a = gd.get_ranks_from_positions(spos_ac)
        aux_rank_a = aux_gd.get_ranks_from_positions(spos_ac)
        self.partition = AtomPartition(gd.comm, rank_a, name='gd')

        if gd is aux_gd:
            name = 'aux-unextended'
        else:
            name = 'aux-extended'
        self.aux_partition = AtomPartition(aux_gd.comm, aux_rank_a, name=name)

        self.work_partition = AtomPartition(comm,
                                            np.zeros(len(spos_ac)),
                                            name='work').as_even_partition()

        if gd is aux_gd:
            aux_broadcast_comm = gd.comm.new_communicator([gd.comm.rank])
        else:
            aux_broadcast_comm = broadcast_comm

        self.aux_dist = AtomicMatrixDistributor(self.partition,
                                                aux_broadcast_comm,
                                                self.aux_partition)
        self.work_dist = AtomicMatrixDistributor(self.partition,
                                                 broadcast_comm,
                                                 self.work_partition)
示例#2
0
    def redistribute_and_broadcast(self, dist_comm, dup_comm):
        # Data exists on self which is a "nice" distribution but now
        # we want it on sub_partition which has a smaller communicator
        # whose parent is self.comm.
        #
        # We want our own data replicated on each

        # XXX direct comparison of communicators are unsafe as we do not use
        # MPI_Comm_compare

        #assert subpartition.comm.parent == self.partition.comm
        from gpaw.utilities.partition import AtomPartition

        newrank_a = self.partition.rank_a % dist_comm.size
        masters_only_partition = AtomPartition(self.partition.comm, newrank_a)
        dst_partition = AtomPartition(dist_comm, newrank_a)
        copy = self.deepcopy()
        copy.redistribute(masters_only_partition)

        dst = ArrayDict(dst_partition,
                        self.shapes_a,
                        dtype=self.dtype,
                        keymap=self.keymap)
        data = dst.toarray()
        if dup_comm.rank == 0:
            data0 = copy.toarray()
            data[:] = data0
        dup_comm.broadcast(data, 0)
        dst.fromarray(data)
        return dst
示例#3
0
    def read(self, filename):
        from ase.io.trajectory import read_atoms
        self.log('Reading from {}'.format(filename))

        self.reader = reader = Reader(filename)

        atoms = read_atoms(reader.atoms)
        self._set_atoms(atoms)

        res = reader.results
        self.results = dict((key, res.get(key)) for key in res.keys())
        if self.results:
            self.log('Read {}'.format(', '.join(sorted(self.results))))

        self.log('Reading input parameters:')
        # XXX param
        self.parameters = self.get_default_parameters()
        dct = {}
        for key, value in reader.parameters.asdict().items():
            if (isinstance(value, dict)
                    and isinstance(self.parameters[key], dict)):
                self.parameters[key].update(value)
            else:
                self.parameters[key] = value
            dct[key] = self.parameters[key]

        self.log.print_dict(dct)
        self.log()

        self.initialize(reading=True)

        self.density.read(reader)
        self.hamiltonian.read(reader)
        self.occupations.read(reader)
        self.scf.read(reader)
        self.wfs.read(reader)

        # We need to do this in a better way:  XXX
        from gpaw.utilities.partition import AtomPartition
        atom_partition = AtomPartition(self.wfs.gd.comm,
                                       np.zeros(len(self.atoms), dtype=int))
        self.wfs.atom_partition = atom_partition
        self.density.atom_partition = atom_partition
        self.hamiltonian.atom_partition = atom_partition
        rank_a = self.density.gd.get_ranks_from_positions(self.spos_ac)
        new_atom_partition = AtomPartition(self.density.gd.comm, rank_a)
        for obj in [self.density, self.hamiltonian]:
            obj.set_positions_without_ruining_everything(
                self.spos_ac, new_atom_partition)

        self.hamiltonian.xc.read(reader)

        if self.hamiltonian.xc.name == 'GLLBSC':
            # XXX GLLB: See test/lcaotddft/gllbsc.py
            self.occupations.calculate(self.wfs)

        return reader
示例#4
0
    def get_density(self, atom_indices=None, gridrefinement=2):
        """Get sum of atomic densities from the given atom list.

        All atoms are taken if the list is not given."""

        all_atoms = self.calculator.get_atoms()
        if atom_indices is None:
            atom_indices = range(len(all_atoms))

        density = self.calculator.density
        spos_ac = all_atoms.get_scaled_positions()
        rank_a = self.finegd.get_ranks_from_positions(spos_ac)

        density.set_positions(all_atoms.get_scaled_positions(),
                              AtomPartition(self.finegd.comm, rank_a))

        # select atoms
        atoms = []
        D_asp = {}
        rank_a = []
        all_D_asp = self.calculator.density.D_asp
        all_rank_a = self.calculator.density.atom_partition.rank_a
        for a in atom_indices:
            if a in all_D_asp:
                D_asp[len(atoms)] = all_D_asp.get(a)
            atoms.append(all_atoms[a])
            rank_a.append(all_rank_a[a])
        atoms = Atoms(atoms,
                      cell=all_atoms.get_cell(),
                      pbc=all_atoms.get_pbc())
        spos_ac = atoms.get_scaled_positions()
        Z_a = atoms.get_atomic_numbers()

        par = self.calculator.parameters
        setups = Setups(Z_a, par.setups, par.basis, XC(par.xc),
                        self.calculator.wfs.world)

        # initialize
        self.initialize(setups, self.calculator.timer, np.zeros(len(atoms)),
                        False)
        self.set_mixer(None)

        # FIXME nparray causes partitionong.py test to fail
        self.set_positions(spos_ac, AtomPartition(self.gd.comm, rank_a))
        self.D_asp = D_asp
        basis_functions = BasisFunctions(
            self.gd, [setup.phit_j for setup in self.setups], cut=True)
        basis_functions.set_positions(spos_ac)
        self.initialize_from_atomic_densities(basis_functions)

        aed_sg, gd = self.get_all_electron_density(atoms, gridrefinement)
        return aed_sg.sum(axis=0), gd
示例#5
0
文件: density.py 项目: thonmaker/gpaw
    def read(self, reader):
        nt_xG = self.gd.empty(self.ncomponents)
        self.gd.distribute(reader.density.density, nt_xG)
        nt_xG *= reader.bohr**3

        # Read atomic density matrices
        natoms = len(self.setups)
        atom_partition = AtomPartition(self.gd.comm, np.zeros(natoms, int),
                                       'density-gd')
        D_asp = self.setups.empty_atomic_matrix(self.ncomponents,
                                                atom_partition)
        self.atom_partition = atom_partition  # XXXXXX
        spos_ac = np.zeros((natoms, 3))  # XXXX
        self.atomdist = self.redistributor.get_atom_distributions(spos_ac)

        D_sP = reader.density.atomic_density_matrices
        if self.gd.comm.rank == 0:
            D_asp.update(unpack_atomic_matrices(D_sP, self.setups))
            D_asp.check_consistency()

        if self.collinear:
            nt_sG = nt_xG
            nt_vG = None
        else:
            nt_sG = nt_xG[:1]
            nt_vG = nt_xG[1:]

        self.initialize_directly_from_arrays(nt_sG, nt_vG, D_asp)
示例#6
0
    def set_positions(self, spos_ac):
        self.positions_set = False
        rank_a = self.gd.get_ranks_from_positions(spos_ac)
        atom_partition = AtomPartition(self.gd.comm, rank_a)
        # XXX pass AtomPartition around instead of spos_ac?
        # All the classes passing around spos_ac end up needing the ranks
        # anyway.

        if self.rank_a is not None and self.kpt_u[0].P_ani is not None:
            self.timer.start('Redistribute')
            mynks = len(self.kpt_u)

            def get_empty(a):
                ni = self.setups[a].ni
                return np.empty((mynks, self.bd.mynbands, ni), self.dtype)

            self.atom_partition.redistribute(atom_partition,
                                             [kpt.P_ani for kpt in self.kpt_u],
                                             get_empty)
            self.timer.stop('Redistribute')

        self.rank_a = rank_a
        self.atom_partition = atom_partition

        self.kd.symmetry.check(spos_ac)
示例#7
0
    def set_positions(self, spos_ac, rank_a):
        atom_partition = AtomPartition(self.gd.comm, rank_a)

        self.nct.set_positions(spos_ac)
        self.ghat.set_positions(spos_ac)
        self.mixer.reset()

        #self.nt_sG = None
        self.nt_sg = None
        self.nt_g = None
        self.rhot_g = None
        self.Q_aL = None

        # If both old and new atomic ranks are present, start a blank dict if
        # it previously didn't exist but it will needed for the new atoms.
        assert rank_a is not None
        if (self.rank_a is not None and
            self.D_asp is None and (rank_a == self.gd.comm.rank).any()):
            self.D_asp = {}

        if (self.rank_a is not None and self.D_asp is not None
            and not isinstance(self.gd.comm, SerialCommunicator)):
            self.timer.start('Redistribute')
            def get_empty(a):
                ni = self.setups[a].ni
                return np.empty((self.ns, ni * (ni + 1) // 2))
            self.atom_partition.redistribute(atom_partition, self.D_asp,
                                             get_empty)            
            self.timer.stop('Redistribute')
        
        self.rank_a = rank_a
        self.atom_partition = atom_partition
示例#8
0
    def set_positions(self, spos_ac, rank_a):
        atom_partition = AtomPartition(self.gd.comm, rank_a)

        self.spos_ac = spos_ac
        self.vbar.set_positions(spos_ac)
        self.xc.set_positions(spos_ac)

        # If both old and new atomic ranks are present, start a blank dict if
        # it previously didn't exist but it will needed for the new atoms.
        # XXX what purpose does this serve?  In what case does it happen?
        # How would one even go about figuring it out?  Why does it all have
        # to be so unreadable? -Ask
        #
        if (self.rank_a is not None and self.dH_asp is None
                and (rank_a == self.gd.comm.rank).any()):
            self.dH_asp = {}

        if self.rank_a is not None and self.dH_asp is not None:
            self.timer.start('Redistribute')

            def get_empty(a):
                ni = self.setups[a].ni
                return np.empty((self.ns, ni * (ni + 1) // 2))

            self.atom_partition.redistribute(atom_partition, self.dH_asp,
                                             get_empty)
            self.timer.stop('Redistribute')

        self.rank_a = rank_a
        self.atom_partition = atom_partition
        self.dh_distributor = AtomicMatrixDistributor(atom_partition,
                                                      self.setups,
                                                      self.kptband_comm,
                                                      self.ns)
示例#9
0
    def read(self, reader):
        h = reader.hamiltonian

        # Read all energies:
        for name in ENERGY_NAMES:
            energy = h.get(name)
            if energy is not None:
                energy /= reader.ha
            setattr(self, name, energy)

        # Read pseudo potential on the coarse grid
        # and broadcast on kpt/band comm:
        self.vt_sG = self.gd.empty(self.nspins)
        self.gd.distribute(h.potential / reader.ha, self.vt_sG)

        self.atom_partition = AtomPartition(self.gd.comm,
                                            np.zeros(len(self.setups), int),
                                            name='hamiltonian-init-serial')

        # Read non-local part of hamiltonian
        self.dH_asp = {}
        dH_sP = h.atomic_hamiltonian_matrices / reader.ha

        if self.gd.comm.rank == 0:
            self.dH_asp = unpack_atomic_matrices(dH_sP, self.setups)

        if hasattr(self.poisson, 'read'):
            self.poisson.read(reader)
            self.poisson.set_grid_descriptor(self.finegd)
示例#10
0
    def initialize_positions(self, atoms=None):
        """Update the positions of the atoms."""
        self.log('Initializing position-dependent things.\n')
        if atoms is None:
            atoms = self.atoms
        else:
            atoms = atoms.copy()
            self._set_atoms(atoms)

        mpi.synchronize_atoms(atoms, self.world)

        rank_a = self.wfs.gd.get_ranks_from_positions(self.spos_ac)
        atom_partition = AtomPartition(self.wfs.gd.comm, rank_a, name='gd')
        self.wfs.set_positions(self.spos_ac, atom_partition)
        self.density.set_positions(self.spos_ac, atom_partition)
        self.hamiltonian.set_positions(self.spos_ac, atom_partition)
示例#11
0
def redistribute_atomic_matrices(D_asp, gd2, nspins, setups, redistributor,
                                 kptband_comm):
    D_sP = pack_atomic_matrices(D_asp)
    natoms = len(setups)
    atom_partition = AtomPartition(gd2.comm, np.zeros(natoms, int),
                                   'density-gd')
    D_asp = setups.empty_atomic_matrix(nspins, atom_partition)
    spos_ac = np.zeros((natoms, 3))  # XXXX
    atomdist = redistributor.get_atom_distributions(spos_ac)

    if gd2.comm.rank == 0:
        if kptband_comm.rank > 0:
            nP = sum(setup.ni * (setup.ni + 1) // 2 for setup in setups)
            D_sP = np.empty((nspins, nP))
        kptband_comm.broadcast(D_sP, 0)
        D_asp.update(unpack_atomic_matrices(D_sP, setups))
        D_asp.check_consistency()
    return atom_partition, atomdist, D_asp
示例#12
0
    def get_density(self, atom_indices=None, gridrefinement=2):
        """Get sum of atomic densities from the given atom list.

        Parameters
        ----------
        atom_indices : list_like
            All atoms are taken if the list is not given.
        gridrefinement : 1, 2, 4
            Gridrefinement given to get_all_electron_density

        Returns
        -------
        type
             spin summed density, grid_descriptor
        """

        all_atoms = self.calculator.get_atoms()
        if atom_indices is None:
            atom_indices = range(len(all_atoms))

        # select atoms
        atoms = self.calculator.get_atoms()[atom_indices]
        spos_ac = atoms.get_scaled_positions()
        Z_a = atoms.get_atomic_numbers()

        par = self.calculator.parameters
        setups = Setups(Z_a, par.setups, par.basis, XC(par.xc),
                        self.calculator.wfs.world)

        # initialize
        self.initialize(setups, self.calculator.timer, np.zeros(
            (len(atoms), 3)), False)
        self.set_mixer(None)
        rank_a = self.gd.get_ranks_from_positions(spos_ac)
        self.set_positions(spos_ac, AtomPartition(self.gd.comm, rank_a))
        basis_functions = BasisFunctions(
            self.gd, [setup.phit_j for setup in self.setups], cut=True)
        basis_functions.set_positions(spos_ac)
        self.initialize_from_atomic_densities(basis_functions)

        aed_sg, gd = self.get_all_electron_density(atoms, gridrefinement)
        return aed_sg.sum(axis=0), gd
示例#13
0
 def read_projections(self, reader):
     nslice = self.bd.get_slice()
     nproj_a = [setup.ni for setup in self.setups]
     atom_partition = AtomPartition(self.gd.comm,
                                    np.zeros(len(nproj_a), int))
     for u, kpt in enumerate(self.kpt_u):
         if self.collinear:
             index = (kpt.s, kpt.k)
         else:
             index = (kpt.k, )
         kpt.projections = Projections(self.bd.nbands,
                                       nproj_a,
                                       atom_partition,
                                       self.bd.comm,
                                       collinear=self.collinear,
                                       spin=kpt.s,
                                       dtype=self.dtype)
         if self.gd.comm.rank == 0:
             P_nI = reader.proxy('projections', *index)[nslice]
             if not self.collinear:
                 P_nI.shape = (self.bd.mynbands, -1)
             kpt.projections.matrix.array[:] = P_nI
示例#14
0
    def set_positions(self, spos_ac, atom_partition=None):
        self.positions_set = False
        # rank_a = self.gd.get_ranks_from_positions(spos_ac)
        # atom_partition = AtomPartition(self.gd.comm, rank_a)
        # XXX pass AtomPartition around instead of spos_ac?
        # All the classes passing around spos_ac end up needing the ranks
        # anyway.

        if atom_partition is None:
            rank_a = self.gd.get_ranks_from_positions(spos_ac)
            atom_partition = AtomPartition(self.gd.comm, rank_a)

        if self.atom_partition is not None and self.kpt_u[0].P_ani is not None:
            with self.timer('Redistribute'):
                for kpt in self.mykpts:
                    P = kpt.projections
                    assert self.atom_partition == P.atom_partition
                    kpt.projections = P.redist(atom_partition)
                    assert atom_partition == kpt.projections.atom_partition

        self.atom_partition = atom_partition
        self.kd.symmetry.check(spos_ac)
        self.spos_ac = spos_ac
示例#15
0
def read(paw, reader, read_projections=True):
    r = reader
    timer = paw.timer
    timer.start('Read')

    wfs = paw.wfs
    density = paw.density
    hamiltonian = paw.hamiltonian
    natoms = len(paw.atoms)

    world = paw.wfs.world
    gd = wfs.gd
    kd = wfs.kd
    bd = wfs.bd

    master = (world.rank == 0)
    parallel = (world.size > 1)

    version = r['version']

    hdf5 = hasattr(r, 'hdf5')

    # Verify setup fingerprints and count projectors and atomic matrices:
    for setup in wfs.setups.setups.values():
        try:
            key = atomic_names[setup.Z] + 'Fingerprint'
            if setup.type != 'paw':
                key += '(%s)' % setup.type
            if setup.fingerprint != r[key]:
                str = 'Setup for %s (%s) not compatible with restart file.' \
                    % (setup.symbol, setup.filename)
                if paw.input_parameters['idiotproof']:
                    raise RuntimeError(str)
                else:
                    warnings.warn(str)
        except (AttributeError, KeyError):
            str = 'Fingerprint of setup for %s (%s) not in restart file.' \
                % (setup.symbol, setup.filename)
            if paw.input_parameters['idiotproof']:
                raise RuntimeError(str)
            else:
                warnings.warn(str)
    nproj = sum([setup.ni for setup in wfs.setups])
    nadm = sum([setup.ni * (setup.ni + 1) // 2 for setup in wfs.setups])

    # Verify dimensions for minimally required netCDF variables:
    ng = gd.get_size_of_global_array()
    shapes = {
        'ngptsx': ng[0],
        'ngptsy': ng[1],
        'ngptsz': ng[2],
        'nspins': wfs.nspins,
        'nproj': nproj,
        'nadm': nadm
    }
    for name, dim in shapes.items():
        if r.dimension(name) != dim:
            raise ValueError('shape mismatch: expected %s=%d' % (name, dim))

    timer.start('Density')
    density.read(r, parallel, wfs.kptband_comm)
    timer.stop('Density')

    timer.start('Hamiltonian')
    hamiltonian.read(r, parallel)
    timer.stop('Hamiltonian')

    from gpaw.utilities.partition import AtomPartition
    atom_partition = AtomPartition(gd.comm, np.zeros(natoms, dtype=int))
    # <sarcasm>let's set some variables directly on some objects!</sarcasm>
    wfs.atom_partition = atom_partition
    wfs.rank_a = np.zeros(natoms, int)
    density.atom_partition = atom_partition
    hamiltonian.atom_partition = atom_partition

    if version > 0.3:
        Etot = hamiltonian.Etot
        energy_error = r['EnergyError']
        if energy_error is not None:
            paw.scf.energies = [Etot, Etot + energy_error, Etot]
        wfs.eigensolver.error = r['EigenstateError']
        if version < 1:
            wfs.eigensolver.error *= gd.dv
    else:
        paw.scf.converged = r['Converged']

    if version > 0.6:
        if paw.occupations.fixmagmom:
            if 'FermiLevel' in r.get_parameters():
                paw.occupations.set_fermi_levels_mean(r['FermiLevel'])
            if 'FermiSplit' in r.get_parameters():
                paw.occupations.set_fermi_splitting(r['FermiSplit'])
        else:
            if 'FermiLevel' in r.get_parameters():
                paw.occupations.set_fermi_level(r['FermiLevel'])
    else:
        if (not paw.input_parameters.fixmom
                and 'FermiLevel' in r.get_parameters()):
            paw.occupations.set_fermi_level(r['FermiLevel'])

    # Try to read the current time and kick strength in time-propagation TDDFT:
    for attr, name in [('time', 'Time'), ('niter', 'TimeSteps'),
                       ('kick_strength', 'AbsorptionKick')]:
        if hasattr(paw, attr):
            try:
                if r.has_array(name):
                    value = r.get(name, read=master)
                else:
                    value = r[name]
                setattr(paw, attr, value)
            except KeyError:
                pass

    # Try to read FDTD-related data
    try:
        use_fdtd = r['FDTD']
    except:
        use_fdtd = False

    if use_fdtd:
        from gpaw.fdtd.poisson_fdtd import FDTDPoissonSolver
        # fdtd_poisson will overwrite the poisson at a later stage
        paw.hamiltonian.fdtd_poisson = FDTDPoissonSolver(restart_reader=r,
                                                         paw=paw)

    # Try to read the number of Delta SCF orbitals
    try:
        norbitals = r.dimension('norbitals')
        paw.occupations.norbitals = norbitals
    except (AttributeError, KeyError):
        norbitals = None

    nibzkpts = r.dimension('nibzkpts')
    nbands = r.dimension('nbands')
    nslice = bd.get_slice()

    if (nibzkpts != len(wfs.kd.ibzk_kc)
            or nbands != bd.comm.size * bd.mynbands):
        paw.scf.reset()
    else:
        # Verify that symmetries for for k-point reduction hasn't changed:
        tol = 1e-12

        if master:
            bzk_kc = r.get('BZKPoints', read=master)
            weight_k = r.get('IBZKPointWeights', read=master)
            assert np.abs(bzk_kc - kd.bzk_kc).max() < tol
            assert np.abs(weight_k - kd.weight_k).max() < tol

        for kpt in wfs.kpt_u:
            # Eigenvalues and occupation numbers:
            timer.start('Band energies')
            k = kpt.k
            s = kpt.s
            if hdf5:  # fully parallelized over spins, k-points
                do_read = (gd.comm.rank == 0)
                indices = [s, k]
                indices.append(nslice)
                kpt.eps_n = r.get('Eigenvalues',
                                  parallel=parallel,
                                  read=do_read,
                                  *indices)
                gd.comm.broadcast(kpt.eps_n, 0)
                kpt.f_n = r.get('OccupationNumbers',
                                parallel=parallel,
                                read=do_read,
                                *indices)
                gd.comm.broadcast(kpt.f_n, 0)
            else:
                eps_n = r.get('Eigenvalues', s, k, read=master)
                f_n = r.get('OccupationNumbers', s, k, read=master)
                kpt.eps_n = eps_n[nslice].copy()
                kpt.f_n = f_n[nslice].copy()
            timer.stop('Band energies')

            if norbitals is not None:  # XXX will probably fail for hdf5
                timer.start('dSCF expansions')
                kpt.ne_o = np.empty(norbitals, dtype=float)
                kpt.c_on = np.empty((norbitals, bd.mynbands), dtype=complex)
                for o in range(norbitals):
                    kpt.ne_o[o] = r.get('LinearExpansionOccupations',
                                        s,
                                        k,
                                        o,
                                        read=master)
                    c_n = r.get('LinearExpansionCoefficients',
                                s,
                                k,
                                o,
                                read=master)
                    kpt.c_on[o, :] = c_n[nslice]
                timer.stop('dSCF expansions')

        if (r.has_array('PseudoWaveFunctions')
                and paw.input_parameters.mode != 'lcao'):

            timer.start('Pseudo-wavefunctions')
            wfs.read(r, hdf5)
            timer.stop('Pseudo-wavefunctions')

        if (r.has_array('WaveFunctionCoefficients')
                and paw.input_parameters.mode == 'lcao'):
            wfs.read_coefficients(r)

        timer.start('Projections')
        if hdf5 and read_projections:
            # Domain masters read parallel over spin, kpoints and band groups
            cumproj_a = np.cumsum([0] + [setup.ni for setup in wfs.setups])
            all_P_ni = np.empty((bd.mynbands, cumproj_a[-1]), dtype=wfs.dtype)
            for kpt in wfs.kpt_u:
                kpt.P_ani = {}
                indices = [kpt.s, kpt.k]
                indices.append(bd.get_slice())
                do_read = (gd.comm.rank == 0)
                # timer.start('ProjectionsCritical(s=%d,k=%d)' % (kpt.s,kpt.k))
                r.get('Projections',
                      out=all_P_ni,
                      parallel=parallel,
                      read=do_read,
                      *indices)
                # timer.stop('ProjectionsCritical(s=%d,k=%d)' % (kpt.s,kpt.k))
                if gd.comm.rank == 0:
                    for a in range(natoms):
                        ni = wfs.setups[a].ni
                        P_ni = np.empty((bd.mynbands, ni), dtype=wfs.dtype)
                        P_ni[:] = all_P_ni[:, cumproj_a[a]:cumproj_a[a + 1]]
                        kpt.P_ani[a] = P_ni

            del all_P_ni  # delete a potentially large matrix
        elif read_projections and r.has_array('Projections'):
            wfs.read_projections(r)
        timer.stop('Projections')

    # Manage mode change:
    paw.scf.check_convergence(density, wfs.eigensolver, wfs, hamiltonian,
                              paw.forces)
    newmode = paw.input_parameters.mode
    try:
        oldmode = r['Mode']
        if oldmode == 'pw':
            from gpaw.wavefunctions.pw import PW
            oldmode = PW(ecut=r['PlaneWaveCutoff'] * Hartree)
    except (AttributeError, KeyError):
        oldmode = 'fd'  # This is an old gpw file from before lcao existed

    if newmode == 'lcao':
        spos_ac = paw.atoms.get_scaled_positions() % 1.0
        wfs.load_lazily(hamiltonian, spos_ac)

    if newmode != oldmode:
        paw.scf.reset()

    # Get the forces from the old calculation:
    if r.has_array('CartesianForces'):
        paw.forces.F_av = r.get('CartesianForces', broadcast=True)
    else:
        paw.forces.reset()

    hamiltonian.xc.read(r)

    timer.stop('Read')
示例#16
0
def shape(a):
    return (a, a // 2)  # Shapes: (0, 0), (1, 0), (2, 1), ...


natoms = 33

if world.size == 1:
    rank_a = np.zeros(natoms, int)
else:
    # When on more than 2 cores, make sure that at least one core
    # (rank=0) has zero entries:
    lower = 0 if world.size == 2 else 1
    rank_a = gen.randint(lower, world.size, natoms)
assert (rank_a < world.size).all()

serial = AtomPartition(world, np.zeros(natoms, int))
partition = AtomPartition(world, rank_a)
even_partition = partition.as_even_partition()


def check(atomdict, title):
    if world.rank == world.size // 2 or world.rank == 0:
        print('rank %d %s: %s' % (world.rank, title.rjust(10), atomdict))

    # Create a normal, "well-behaved" dict against which to test arraydict.
    ref = dict(atomdict)
    #print atomdict
    assert set(atomdict.keys()) == set(ref.keys())  # check keys()
    for a in atomdict:  # check __iter__, __getitem__
        #print ref[a].shape, atomdict[a].shape #ref[a].shape, atomdict[a].shape
        #print ref[a], atomdict[a]