示例#1
0
文件: utils.py 项目: sanghack81/SDCIT
def regression_distance_k(Kx: np.ndarray, Ky: np.ndarray):
    warnings.warn('not tested yet!')
    import gpflow
    from gpflow.kernels import White, Linear
    from gpflow.models import GPR

    T = len(Kx)

    eig_Ky, eiy = truncated_eigen(*eigdec(Ky, min(100, T // 4)))
    eig_Kx, eix = truncated_eigen(*eigdec(Kx, min(100, T // 4)))

    X = eix @ diag(sqrt(eig_Kx))  # X @ X.T is close to K_X
    Y = eiy @ diag(sqrt(eig_Ky))
    n_feats = X.shape[1]

    linear = Linear(n_feats, ARD=True)
    white = White(n_feats)
    gp_model = GPR(X, Y, linear + white)
    gpflow.train.ScipyOptimizer().minimize(gp_model)

    Kx = linear.compute_K_symm(X)
    sigma_squared = white.variance.value

    P = Kx @ pdinv(Kx + sigma_squared * np.eye(T))

    M = P @ Ky @ P
    O = np.ones((T, 1))
    N = O @ np.diag(M).T
    D = np.sqrt(N + N.T - 2 * M)
    return D
示例#2
0
文件: utils.py 项目: sanghack81/SDCIT
def residual_kernel(K_Y: np.ndarray, K_X: np.ndarray, use_expectation=True, with_gp=True, sigma_squared=1e-3, return_learned_K_X=False):
    """Kernel matrix of residual of Y given X based on their kernel matrices, Y=f(X)"""
    import gpflow
    from gpflow.kernels import White, Linear
    from gpflow.models import GPR

    K_Y, K_X = centering(K_Y), centering(K_X)
    T = len(K_Y)

    if with_gp:
        eig_Ky, eiy = truncated_eigen(*eigdec(K_Y, min(100, T // 4)))
        eig_Kx, eix = truncated_eigen(*eigdec(K_X, min(100, T // 4)))

        X = eix @ diag(sqrt(eig_Kx))  # X @ X.T is close to K_X
        Y = eiy @ diag(sqrt(eig_Ky))
        n_feats = X.shape[1]

        linear = Linear(n_feats, ARD=True)
        white = White(n_feats)
        gp_model = GPR(X, Y, linear + white)
        gpflow.train.ScipyOptimizer().minimize(gp_model)

        K_X = linear.compute_K_symm(X)
        sigma_squared = white.variance.value

    P = pdinv(np.eye(T) + K_X / sigma_squared)  # == I-K @ inv(K+Sigma) in Zhang et al. 2011
    if use_expectation:  # Flaxman et al. 2016 Gaussian Processes for Independence Tests with Non-iid Data in Causal Inference.
        RK = (K_X + P @ K_Y) @ P
    else:  # Zhang et al. 2011. Kernel-based Conditional Independence Test and Application in Causal Discovery.
        RK = P @ K_Y @ P

    if return_learned_K_X:
        return RK, K_X
    else:
        return RK
示例#3
0
def test_combination_LMC_kernels():
    N, D, P = 100, 3, 2
    kernel_list1 = [Linear(active_dims=[1]), SquaredExponential()]
    L1 = len(kernel_list1)
    kernel_list2 = [SquaredExponential(), Linear(), Linear()]
    L2 = len(kernel_list2)
    k1 = LinearCoregionalization(kernel_list1, np.random.randn(P, L1))
    k2 = LinearCoregionalization(kernel_list2, np.random.randn(P, L2))
    kernel = k1 + k2
    X = np.random.randn(N, D)
    K1 = k1(X, full_cov=True)
    K2 = k2(X, full_cov=True)
    K = kernel(X, full_cov=True)
    assert K.shape == [N, P, N, P]
    np.testing.assert_allclose(K, K1 + K2)
示例#4
0
def compute_residual_eig(Y: np.ndarray, Kx: np.ndarray) -> np.ndarray:
    """Residual of Y based on Kx, a kernel matrix of X"""
    assert len(Y) == len(Kx)

    eig_Kx, eix = truncated_eigen(*eigdec(Kx, min(100, len(Kx) // 4)))
    phi_X = eix @ np.diag(np.sqrt(eig_Kx))  # X @ X.T is close to K_X
    n_feats = phi_X.shape[1]

    linear_kernel = Linear(n_feats, ARD=True)
    gp_model = GPR(phi_X, Y, linear_kernel + White(n_feats))
    gp_model.optimize()

    new_Kx = linear_kernel.compute_K_symm(phi_X)
    sigma_squared = gp_model.kern.white.variance.value[0]

    return (pdinv(np.eye(len(Kx)) + new_Kx / sigma_squared) @ Y).squeeze()
示例#5
0
    def init_model(self, Model, X, Y):
        """
        Initialize the model
        TODO: Currently I'm coding in the choice of having purely a combo
        of Matern and Linear. We can make this flexible.
        """
        Dx = X.shape[1]
        kern = Matern52(input_dim=len(self.matern_dims),
                        active_dims=self.matern_dims,
                        lengthscales=SETTINGS.lengthscales * Dx ** 0.5) + \
            Linear(input_dim=len(self.linear_dims),
                   active_dims=self.linear_dims)
        lik = Gaussian()
        lik.variance = SETTINGS.likelihood_variance

        gamma = kmeans2(X, self.M_gamma, minit='points')[
            0] if self.M_gamma > 0 else np.empty((0, Dx))
        beta = kmeans2(X, self.M_beta, minit='points')[0]

        if self.M_gamma > 0:
            gamma_minibatch_size = SETTINGS.gamma_minibatch_size 
        else 
            gamma_minibatch_size = None

        self.model = Model(X, Y, kern, lik, gamma, beta,
                           minibatch_size=SETTINGS.minibatch_size,
                           gamma_minibatch_size=gamma_minibatch_size)
        self.sess = self.model.enquire_session()
示例#6
0
文件: kernels.py 项目: bunkerj/gpar
def get_linear_kernel(original_X, current_X):
    X_dim = original_X.shape[1]
    Y_dim = current_X.shape[1] - X_dim
    k1 = RBF(input_dim=X_dim, active_dims=list(range(X_dim)))
    if Y_dim > 0:
        k_linear = Linear(input_dim=Y_dim,
                          active_dims=list(range(X_dim, X_dim + Y_dim)))
        return k1 + k_linear
    return k1
示例#7
0
文件: kernels.py 项目: bunkerj/gpar
def get_linear_input_dependent_kernel(original_X, current_X):
    X_dim = original_X.shape[1]
    Y_dim = current_X.shape[1] - X_dim
    k1 = RBF(input_dim=X_dim, active_dims=list(range(X_dim)))
    if Y_dim > 0:
        k2 = RationalQuadratic(input_dim=X_dim, active_dims=list(range(X_dim)))
        k_linear = Linear(input_dim=Y_dim,
                          active_dims=list(range(X_dim, X_dim + Y_dim)))
        return k1 + k2 * k_linear
    return k1
示例#8
0
def test_latent_kernels():
    kernel_list = [SquaredExponential(), White(), White() + Linear()]

    multioutput_kernel_list = [
        SharedIndependent(SquaredExponential(), 3),
        SeparateIndependent(kernel_list),
        LinearCoregionalization(kernel_list, np.random.random((5, 3))),
    ]
    assert len(multioutput_kernel_list[0].latent_kernels) == 1
    assert multioutput_kernel_list[1].latent_kernels == tuple(kernel_list)
    assert multioutput_kernel_list[2].latent_kernels == tuple(kernel_list)
示例#9
0
def test_kernel() -> None:
    """Tests implementation of the custom white kernel.

    It checks output tensor shapes and values.
    """
    np.random.seed(0)

    x_a = np.random.randint(0, 5, 3)
    x_b = np.random.randint(0, 5, 2)
    x_c = np.random.randint(0, 5, 1)

    x_a = build_and_concat_label_mask(x_a, label=1)
    x_b = build_and_concat_label_mask(x_b, label=2)
    x_c = build_and_concat_label_mask(x_c, label=3)

    # Concatenate signals and sort by x[:, 0]
    x = np.vstack((x_a, x_b, x_c))

    x = tf.convert_to_tensor(x, dtype=tf.float64)
    x2 = x[:-1, :]

    # White kernel
    noise_variances = tf.convert_to_tensor(0.1 * np.array([1.0, 2.0, 3.0]),
                                           dtype=tf.float64)

    linear_kernel = Linear(active_dims=[0])
    multi_kernel = MultiWhiteKernel(labels=(1, 2, 3),
                                    variances=noise_variances,
                                    active_dims=[1])

    n = 3
    variances = tf.zeros((x.shape[0], ), dtype=tf.float64)
    for i in range(n):
        mask = tf.cast(tf.equal(x[:, -1], i + 1), tf.float64)
        mask_variances = mask * noise_variances[i]
        variances = variances + mask_variances

    # Test dimensions
    assert np.array_equal(
        linear_kernel(x).numpy().shape,
        multi_kernel(x).numpy().shape)
    assert np.array_equal(
        linear_kernel(x2).numpy().shape,
        multi_kernel(x2).numpy().shape)

    assert np.array_equal(
        linear_kernel(x, x2).numpy().shape,
        multi_kernel(x, x2).numpy().shape)
    assert np.array_equal(
        linear_kernel(x2, x).numpy().shape,
        multi_kernel(x2, x).numpy().shape)

    # Test variances
    assert np.linalg.norm(multi_kernel(x).numpy() - np.diag(variances)) < 1e-9
示例#10
0
    def make_mf_dgp(cls, X, Y, Z, add_linear=True, minibatch_size=None):
        """
        Constructor for convenience. Constructs a mf-dgp model from training data and inducing point locations

        :param X: List of target
        :param Y:
        :param Z:
        :param add_linear:
        :return:
        """

        n_fidelities = len(X)

        Din = X[0].shape[1]
        Dout = Y[0].shape[1]

        kernels = [RBF(Din, active_dims=list(range(Din)), variance=1., lengthscales=1, ARD=True)]
        for l in range(1, n_fidelities):
            D = Din + Dout
            D_range = list(range(D))
            k_corr = RBF(Din, active_dims=D_range[:Din], lengthscales=1, variance=1.0, ARD=True)
            k_prev = RBF(Dout, active_dims=D_range[Din:], variance=1., lengthscales=1.0)
            k_in = RBF(Din, active_dims=D_range[:Din], variance=1., lengthscales=1, ARD=True)
            if add_linear:
                k_l = k_corr * (k_prev + Linear(Dout, active_dims=D_range[Din:], variance=1.)) + k_in
            else:
                k_l = k_corr * k_prev + k_in
            kernels.append(k_l)

        """
        A White noise kernel is currently expected by Mf-DGP at all layers except the last.
        In cases where no noise is desired, this should be set to 0 and fixed, as follows:

            white = White(1, variance=0.)
            white.variance.trainable = False
            kernels[i] += white
        """
        for i, kernel in enumerate(kernels[:-1]):
            kernels[i] += White(1, variance=1e-6)

        num_data = 0
        for i in range(len(X)):
            _log.info('\nData at Fidelity {}'.format(i + 1))
            _log.info('X - {}'.format(X[i].shape))
            _log.info('Y - {}'.format(Y[i].shape))
            _log.info('Z - {}'.format(Z[i].shape))
            num_data += X[i].shape[0]

        layers = init_layers_mf(Y, Z, kernels, num_outputs=Dout)

        model = DGP_Base(X, Y, Gaussian(), layers, num_samples=10, minibatch_size=minibatch_size)

        return model
示例#11
0
    X = np.hstack((X, rng.randn(10, 1)))
    kernel1 = gpflow.kernels.Coregion(output_dim=output_dim, rank=rank, active_dims=[0])
    # compute another kernel with additinoal inputs,
    # make sure out kernel is still okay.
    kernel2 = gpflow.kernels.SquaredExponential(active_dims=[1])
    kernel_prod = kernel1 * kernel2
    K1 = kernel_prod(X)
    K2 = kernel1(X) * kernel2(X)  # slicing happens inside kernel
    assert np.allclose(K1, K2)


_dim = 3
kernel_setups_extended = (
    kernel_setups
    + [
        SquaredExponential() + Linear(),
        SquaredExponential() * Linear(),
        SquaredExponential() + Linear(variance=rng.rand(_dim)),
    ]
    + [ArcCosine(order=order) for order in ArcCosine.implemented_orders]
)


@pytest.mark.parametrize("kernel", kernel_setups_extended)
@pytest.mark.parametrize("N, dim", [[30, _dim]])
def test_diags(kernel, N, dim):
    X = np.random.randn(N, dim)
    kernel1 = tf.linalg.diag_part(kernel(X, full_cov=True))
    kernel2 = kernel(X, full_cov=False)
    assert np.allclose(kernel1, kernel2)
示例#12
0
def initialize_model(x_s,
                     y,
                     m,
                     q,
                     mu=None,
                     s=None,
                     joint=False,
                     infer_type="diag",
                     xi_kern="RBF",
                     x_st_infer=None,
                     x_st_test=None):
    """

    :param use_kronecker:
    :param t: Inputs (i.e. simulator inputs)
    :param x_s: spatiotemporal inputs (just temporal for KO...)
    :type x_s: Iterable of 2D np.ndarrays
    :param y: outputs
    :param m:
    :param q:
    :param joint: if true then we're training a joint model with 2 channels
        (output dimensions).  Theya re assumed to be provided as
        column-concatenated in y.
    :param infer_type: How to infer latent variables.  Options:
        * "diag": VI with diagonal Gaussian variational posterior
        * "full": VI will full Gaussian variational posterior
        * "mcmc": MCMC particle inference
    :return:
    """

    n_s = np.prod([x_si.shape[0] for x_si in x_s])
    # Providing transformed variables...
    if mu is None:
        if joint:
            y_pca = y[:, :n_s]  # Inputs only
        else:
            y_pca = y
        mu = pca(y_pca, q)
        s = 0.1 * np.ones(mu.shape)
        supervised = False
        train_kl = True
    else:
        supervised = True
        train_kl = False
    if m == mu.shape[0]:
        z = mu
    else:
        z = None

    x = [mu] + x_s
    d_in = [x_i.shape[1] for x_i in x]

    with gpflow.defer_build():
        # X -> Y kernels
        if xi_kern == "Linear":
            kern_list = [Linear(d_in[0], variance=0.01, ARD=True)]
            kern_list[-1].variance.transform = transforms.Logistic(
                1.0e-12, 1.0)
        elif xi_kern == "RBF":
            kern_list = [RBF(d_in[0], lengthscales=np.sqrt(d_in[0]), ARD=True)]
            kern_list[-1].lengthscales.transform = transforms.Logistic(
                1.0e-12, 1000.0)
            kern_list[-1].lengthscales.prior = Gamma(mu=2.0, var=1.0)
        elif xi_kern == "Sum":
            kern_list = [
                gpflow.kernels.Sum([
                    RBF(d_in[0], lengthscales=np.sqrt(d_in[0]), ARD=True),
                    Linear(d_in[0], variance=0.01, ARD=True)
                ])
            ]
            kern_list[-1].kernels[0].lengthscales.transform = \
                transforms.Logistic(1.0e-12, 1000.0)
            kern_list[-1].kernels[0].lengthscales.prior = Gamma(mu=2.0,
                                                                var=1.0)
            kern_list[-1].kernels[1].variance.transform = \
                transforms.Logistic(1.0e-12, 1.0)
        else:
            raise NotImplementedError("Unknown xi kernel {}".format(xi_kern))
        for d_in_i in d_in[1:]:
            kern_list.append(
                Exponential(d_in_i, lengthscales=np.sqrt(d_in_i), ARD=True))
        for kern in kern_list[1:]:
            kern.lengthscales = 0.1

        # Restructure the inputs for the SGPLVM:
        if joint:
            y_structured = np.concatenate((y[:, :n_s].reshape(
                (-1, 1)), y[:, n_s:].reshape((-1, 1))), 1)
        else:
            y_structured = y.reshape((-1, 1))

        # Initialize model:
        model_types = {"diag": Sgplvm, "full": SgplvmFullCovInfer}
        if infer_type not in model_types:
            raise NotImplementedError(
                "No suport for infer_type {}".format(infer_type))
        else:
            kgplvm = model_types[infer_type]
        model = kgplvm(x,
                       s,
                       y_structured,
                       kern_list,
                       m,
                       z,
                       train_kl=train_kl,
                       x_st_infer=x_st_infer,
                       x_st_test=x_st_test)
        model.likelihood.variance = 1.0e-2 * np.var(y)
        if supervised:
            # Lock provided inputs
            model.X0.trainable = False
            model.h_s.trainable = False
    model.compile()

    return model
示例#13
0
#####################################
###### Test Dataset Parameters ######
#####################################

ip = 0.  # Intervention point
dc = 1.0  # Discontinuity
sigma = 0.5  # Standard deviation
sigma_d = 0.  # Value added to the standard deviation after the intervention point
n = 20  # Number of data points

############################
###### Kernel Options ######
############################

Matern = Matern32()
linear_kernel = Linear() + Constant()  # "Linear" kernel
exp_kernel = Exponential()
RBF_kernel = SquaredExponential()

kernel_names = ['Linear', 'Exponential', 'Gaussian', 'Matern', 'BMA']
kernels = [linear_kernel, exp_kernel, RBF_kernel, Matern]
# make a dictionary that zips the kernel names with the corresponding kernel
kernel_dict = dict(zip(
    kernel_names,
    kernels))  # making a dictionary of kernels and their corresponding names


###########################################
###### Generation of Test Dataset ######
###########################################
def get_predictors(n):
示例#14
0
    X = np.hstack((X, rng.randn(10, 1)))
    kernel1 = gpflow.kernels.Coregion(output_dim=output_dim,
                                      rank=rank,
                                      active_dims=[0])
    # compute another kernel with additinoal inputs,
    # make sure out kernel is still okay.
    kernel2 = gpflow.kernels.SquaredExponential(active_dims=[1])
    kernel_prod = kernel1 * kernel2
    K1 = kernel_prod(X)
    K2 = kernel1(X) * kernel2(X)  # slicing happens inside kernel
    assert np.allclose(K1, K2)


_dim = 3
kernel_setups_extended = kernel_setups + [
    SquaredExponential() + Linear(),
    SquaredExponential() * Linear(),
    SquaredExponential() +
    Linear(ard=True, variance=rng.rand(_dim, 1).reshape(-1))
] + [ArcCosine(order=order) for order in ArcCosine.implemented_orders]


@pytest.mark.parametrize('kernel', kernel_setups_extended)
@pytest.mark.parametrize('N, dim', [[30, _dim]])
def test_diags(kernel, N, dim):
    X = np.random.randn(N, dim)
    kernel1 = tf.linalg.diag_part(kernel(X, full=True))
    kernel2 = kernel(X, full=False)
    assert np.allclose(kernel1, kernel2)

示例#15
0
class Container(dict, tf.Module):
    def __init__(self):
        super().__init__()


res = {
    'ckv': list(),
    'ckl': list(),
    'clv': list(),
    'dkv': list(),
    'dkl': list(),
    'dlv': list()
}

kernels = [Linear() + Constant(), RBF(), Matern32(), Exponential()]

SHOW_PLOTS = 1
epochs = 5

container = Container()

for e in range(epochs):

    print(f'epoch {e}')
    np.random.seed(e)
    '''
    n = 100  # Number of data points

    x = np.linspace(-3, 3, n)  # Evenly distributed x values