示例#1
0
文件: utils.py 项目: sanghack81/SDCIT
def residual_kernel(K_Y: np.ndarray, K_X: np.ndarray, use_expectation=True, with_gp=True, sigma_squared=1e-3, return_learned_K_X=False):
    """Kernel matrix of residual of Y given X based on their kernel matrices, Y=f(X)"""
    import gpflow
    from gpflow.kernels import White, Linear
    from gpflow.models import GPR

    K_Y, K_X = centering(K_Y), centering(K_X)
    T = len(K_Y)

    if with_gp:
        eig_Ky, eiy = truncated_eigen(*eigdec(K_Y, min(100, T // 4)))
        eig_Kx, eix = truncated_eigen(*eigdec(K_X, min(100, T // 4)))

        X = eix @ diag(sqrt(eig_Kx))  # X @ X.T is close to K_X
        Y = eiy @ diag(sqrt(eig_Ky))
        n_feats = X.shape[1]

        linear = Linear(n_feats, ARD=True)
        white = White(n_feats)
        gp_model = GPR(X, Y, linear + white)
        gpflow.train.ScipyOptimizer().minimize(gp_model)

        K_X = linear.compute_K_symm(X)
        sigma_squared = white.variance.value

    P = pdinv(np.eye(T) + K_X / sigma_squared)  # == I-K @ inv(K+Sigma) in Zhang et al. 2011
    if use_expectation:  # Flaxman et al. 2016 Gaussian Processes for Independence Tests with Non-iid Data in Causal Inference.
        RK = (K_X + P @ K_Y) @ P
    else:  # Zhang et al. 2011. Kernel-based Conditional Independence Test and Application in Causal Discovery.
        RK = P @ K_Y @ P

    if return_learned_K_X:
        return RK, K_X
    else:
        return RK
示例#2
0
文件: utils.py 项目: sanghack81/SDCIT
def regression_distance_k(Kx: np.ndarray, Ky: np.ndarray):
    warnings.warn('not tested yet!')
    import gpflow
    from gpflow.kernels import White, Linear
    from gpflow.models import GPR

    T = len(Kx)

    eig_Ky, eiy = truncated_eigen(*eigdec(Ky, min(100, T // 4)))
    eig_Kx, eix = truncated_eigen(*eigdec(Kx, min(100, T // 4)))

    X = eix @ diag(sqrt(eig_Kx))  # X @ X.T is close to K_X
    Y = eiy @ diag(sqrt(eig_Ky))
    n_feats = X.shape[1]

    linear = Linear(n_feats, ARD=True)
    white = White(n_feats)
    gp_model = GPR(X, Y, linear + white)
    gpflow.train.ScipyOptimizer().minimize(gp_model)

    Kx = linear.compute_K_symm(X)
    sigma_squared = white.variance.value

    P = Kx @ pdinv(Kx + sigma_squared * np.eye(T))

    M = P @ Ky @ P
    O = np.ones((T, 1))
    N = O @ np.diag(M).T
    D = np.sqrt(N + N.T - 2 * M)
    return D
示例#3
0
def compute_residual_eig(Y: np.ndarray, Kx: np.ndarray) -> np.ndarray:
    """Residual of Y based on Kx, a kernel matrix of X"""
    assert len(Y) == len(Kx)

    eig_Kx, eix = truncated_eigen(*eigdec(Kx, min(100, len(Kx) // 4)))
    phi_X = eix @ np.diag(np.sqrt(eig_Kx))  # X @ X.T is close to K_X
    n_feats = phi_X.shape[1]

    linear_kernel = Linear(n_feats, ARD=True)
    gp_model = GPR(phi_X, Y, linear_kernel + White(n_feats))
    gp_model.optimize()

    new_Kx = linear_kernel.compute_K_symm(phi_X)
    sigma_squared = gp_model.kern.white.variance.value[0]

    return (pdinv(np.eye(len(Kx)) + new_Kx / sigma_squared) @ Y).squeeze()