def run(): clear() wireframe() a = 5 # verdeelparameter x = -((1-sqrt(5))/2) # gulden getal s = 30. # overspanning m = 5; b = 360./m # pentacap (script nog vervolledigen zodat m andere waarden kan aannemen) k1 = 0.035 # steilte hoek = (90.-b)/2 d = 2. # laagdikte c = (x*s+k1*s*s/2*sin(radians(2*hoek)))/(k1*s*cos(radians(hoek))+k1*s*sin(radians(hoek))) # pentacapvoorwaarde # compret van 1 blad T = Formex([[[-a,0,d],[-a+2,0,d]],[[-a,0,d],[1-a,3,d]],[[1-a,3,d],[2-a,0,d]]],1) B = Formex([[[1-a,-1,0],[3-a,-1,0]],[[1-a,-1,0],[2-a,2,0]],[[2-a,2,0],[3-a,-1,0]]],2) W1 = Formex([[[2-a,2,0],[1-a,3,d]],[[2-a,2,0],[3-a,3,d]],[[2-a,2,0],[2-a,0,d]]]) W2 = Formex([[[1-a,-1,0],[-a,0,d]],[[1-a,-1,0],[2-a,0,d]],[[1-a,-1,0],[1-a,-3,d]]]) W3 = Formex([[[0,3*a,d],[0,3*(a-1)-1,0]]]) top = T.replic2(a,a,2,3,bias=1,taper=-1).reflect(1,0,True).unique() bot = B.replic2(a-1,a-1,2,3,bias=1,taper=-1).reflect(1,-1,True).unique() web = W1.replic2(a-1,a-1,2,3,bias=1,taper=-1) + W2.replic2(a,a,2,-3,bias=1,taper=-1) + W3 blad = (top+bot+web).scale([1.,1./3,1.]).translate([0,a,0]) # herschalen vlakblad = blad.scale([s*sin(radians(b/2))/a,s*cos(radians(b/2))/a,1.]).rotate(-45.) # transleren en mappen op hyperbolische paraboloide (z=k1*x*y) vlakblad2=vlakblad.translate([-c,-c,0]) j=vlakblad2.map(lambda x,y,z:[x,y,k1*x*y]) #overige bladen genereren hyparcap=j.translate([c,c,0]).rosette(m,360/m,2,[0.,0.,0.]) draw(hyparcap)
def sliceBranch(S, cp, s0, s1, cl, nslices): """Slice a single branch of the bifurcation - `S`: the bifurcation surface, oriented parallel to xy. - `cp` : the center of the bifurcation. - `s0`, `s1`: the control polylines along the branch. - `cl`: the centerline of the branch. - `nslices`: the number of slices used to approximate the branch surface. """ visual = drawOption('visual') cl = cl.approx(ntot=nslices) s0 = s0.approx(ntot=nslices) s1 = s1.approx(ntot=nslices) h0 = slicer(S, s0, cl, cutat=-1, visual=visual) if visual: clear() draw(h0, color='black') h1 = slicer(S, cl, s1, cutat=-1, visual=visual) # if visual: # draw(h0,color='red') # draw(h1,color='blue') return [h0, h1]
def showDeformation(): clear() linewidth(1) draw(F,color=black) linewidth(3) deformed_plot(optimscale) view('last',True)
def createScene(text=None, caged=True, color=None, move=0): """Create a scene of the story. The scene draws the horse (H), with the specified color number (0..7), caged or not, with the local axes (CS), and possibly a text. If move > 0, the horse moves before the scene is drawn. The horse and cage actors are returned. """ global line, H, C, CS if move: H, C, CS = [ i.rotate(30, 1).rotate(-10., 2).translate([0., -move * 0.1, 0.]) for i in [H, C, CS] ] if caged: cage = draw( C, mode='wireframe', wait=False, ) else: cage = None if color is None: color = 1 + random.randint(6) H.setProp(color) horse = draw(H) if text: drawText(text, 20, line, size=20) line += line_inc axes = drawAxes(CS, size=0.4, draw_planes=False) zoomAll() zoom(0.7) return horse, cage
def spliner(): """Slice the surface to a sequence of cross sections.""" import olist from plugins.curve import BezierSpline S = selection.check(single=True) if not S: return res = askItems([_I('Direction',[1.,0.,0.]), _I('# slices',20), _I('remove_invalid',False), ],caption = 'Define the slicing planes') if res: axis = res['Direction'] nslices = res['# slices'] remove_cruft = res['remove_invalid'] pf.GUI.setBusy(True) slices = S.slice(dir=axis,nplanes=nslices) pf.GUI.setBusy(False) print([ s.nelems() for s in slices ]) split = [ s.splitProp() for s in slices if s.nelems() > 0 ] split = olist.flatten(split) hasnan = [ isnan(s.coords).any() for s in split ] print(hasnan) print(sum(hasnan)) #print [s.closed for s in split] export({'%s/split' % selection[0]:split}) draw(split,color='blue',bbox='last',view=None) splines = [ BezierSpline(s.coords[s.elems[:,0]],closed=True) for s in split ] draw(splines,color='red',bbox='last',view=None) export({'%s/splines' % selection[0]:splines})
def fillBorders(): _data_ = _name_+'fillBorders_data' S = showBorder() try: B = named('border') except: return if B: props = [ b.prop[0] for b in B ] dia = Dialog([ _I('Fill which borders',itemtype='radio',choices=['All','One']), _I('Filling method',itemtype='radio',choices=['radial','border']), _I('merge',False,text='Merge fills into current surface'), ]) if _data_ in pf.PF: dia.updateData(pf.PF[_data_]) res = dia.getResults() if res: pf.PF[_data_] = res if res['Fill which borders'] == 'One': B = B[:1] fills = [ fillBorder(b,method=res['Filling method']).setProp(i+1) for i,b in enumerate(B) ] if res['merge']: name = selection.names[0] S = named(name) for f in fills: S += f export({name:S}) selection.draw() else: draw(fills) export(dict([('fill-%s'%i,f) for i,f in enumerate(fills)]))
def run(): clear() flat() reset() examples = { 'Square': square_example, 'Rectangle': rectangle_example, 'Circle': circle_example, 'CloseLoop': close_loop_example, } res = askItems([ _I('example', text='Select an example', choices=examples.keys()), ]) if res: F = examples[res['example']]() if F is None: return draw(F) S = sectionChar(F) S.update(extendedSectionChar(S)) print(mydict.CDict(S)) G = Formex([[[S['xG'], S['yG']]]]) draw(G, bbox='last') showaxes([S['xG'], S['yG'], 0.], S['alpha'], F.dsize(), 'red')
def run(): layout(2) wireframe() # draw in viewport 0 viewport(0) view('front') clear() rtri = Formex('3:016932').scale([1.5,1,0]) F = rtri + rtri.shear(0,1,-0.5).trl(0,-4.0) + rtri.shear(0,1,0.75).trl(0,3.0) draw(F) drawCircles(F,triangleCircumCircle,color=red) zoomAll() drawCircles(F,triangleInCircle,color=blue) drawCircles(F,triangleBoundingCircle,color=black) zoomAll() # draw in viewport 1 viewport(1) view('iso') clear() F,c = cube_tri() draw(F) drawCircles(F,triangleInCircle) zoomAll() if not ack("Keep both viewports ?"): print("Removing a viewport") # remove last viewport removeViewport()
def run(): m = 36 # number of cells along torus big circle n = 36 # number of cells along torus small circle message("Create a triangle with three colored members") F = Formex('l:164', [1, 2, 3]) clear() draw(F) pause() message("Replicate it into a rectangular pattern") F = F.replic2(m, n, 1, 1) clear() draw(F) pause() message("Fold the rectangle into a tube") G = F.translate(2, 1).cylindrical([2, 1, 0], [1., 360. / n, 1.]) clear() draw(G, view='right') pause() message("Bend the tube into a torus with mean radius 5") H = G.translate(0, 5).cylindrical([0, 2, 1], [1., 360. / m, 1.]) clear() draw(H, view='iso') pause() message("Cut a part from the torus") K = H.cutWithPlane([0., 2., 0.], [1., 1., 1.], side='-') clear() draw(K)
def run(): clear() wireframe() n = 10 a = 2. / 3. d = 1. / n e1 = Formex([[[0, 0, d], [2, 0, d]], [[2, 0, d], [1, 1, d]], [[1, 1, d], [0, 0, d]]], prop=1) e2 = Formex([[[0, 0, d], [1, 1 - a, 0]], [[2, 0, d], [1, 1 - a, 0]], [[1, 1, d], [1, 1 - a, 0]]], prop=3) # top and bottom layers e4 = e1.replic2(n, n, 2, 1, bias=1, taper=-1).bb(1. / (2 * n), 1. / (2 * n) / tand(30)) e5 = e1.replic2(n - 1, n - 1, 2, 1, bias=1, taper=-1).translate([1, 1 - a, -d]).bb(1. / (2 * n), 1. / (2 * n) / tand(30)) # diagonals e6 = e2.replic2(n, n, 2, 1, bias=1, taper=-1).bb(1. / (2 * n), 1. / (2 * n) / tand(30)) e5.setProp(2) # full structure out = (e4 + e5 + e6).translate(2, -d) draw(out)
def run(): clear() smoothwire() # The object to reposition A = Formex('4:0123', 1).replic2(6, 3) # The object to define the position B = Formex('3:016', 2).replic2(4, 4, taper=-1).trl(0, 7.) drawObjectWithName(A, 'Object A') drawObjectWithName(B, 'Object B') #define matching points X = A[0, [0, 3, 1]] drawPointsNumbered(X, red, 'X') Y = B[3, [1, 2, 0]] Y[2] = Y[0].trl([0., 1., 1.]) drawPointsNumbered(Y, green, 'Y') zoomAll() pause() # Reposition A so that X are aligned with Y C = A.position(X, Y) draw(C, color=blue) zoomAll()
def run(): reset() smoothwire() res = askItems([ dict(name='m', value=12, text='number of modules in axial direction'), dict(name='n', value=8, text='number of modules in tangential direction'), dict(name='r', value=10., text='barrel radius'), dict(name='a', value=180., text='barrel opening angle'), dict(name='l', value=30., text='barrel length'), dict(name='eltype', value='quad8', text='element type', itemtype='radio', choices=['tri3', 'quad4', 'quad8', 'quad9']), ]) if not res: return globals().update(res) # Grid g = Formex('4:0123').replic2(m, n).toMesh().convert(eltype) # Create barrel barrel = g.rotate(90, 1).translate(0, r).scale([1., a / n, l / m]).cylindrical() draw(barrel, color=red, bkcolor=blue) export({'Barrel': barrel})
def update(self): """Perform every updates of the game logic, events handling and drawing. Also known as the game loop.""" # Events handling for event in pygame.event.get(): event_handlers = [ self._event_quit, gui.event_handler ] for handler in event_handlers: if handler(event): break # Drawings self.window.blit(self.images['window'], self.images['window'].get_rect()) self._draw_name_input() self._draw_classes_selector() self._draw_abilities() self._draw_skills() gui.draw(self.window) # PyGame-related updates pygame.display.update() self.clock.tick(settings.FPS)
def drawAxis(len,dir,text): """Draw an axis of given length and direction annotated with text.""" F = Formex('l:1').scale(len).rotate(dir) #T = F[0][1].scale(1.1) draw(F,linewidth=2.0) drawText3D(F[0][1]+(2.,-0.5,0.),text,size=18) return F
def RotatingCircle(): """Rotating Circle When staring at the cross in the middle, the disappearing magenta circles create the illusion of a green rotating circle. If you keep concentrating your gaze on the centre, the green circle wil seem to devour the magenta circle, up to a point where you no longer see the magenta circles. Blinking or changing your focus will immediately undo the effect. """ resetview([0.8,0.8,0.8]) ask = askItems([('Number of circles',12),('Radius of circles',1.2),('Radius of the figure',12),('Number of rotations',16),('color of circles',[1.0,0.40,1.0]),('Sleep time',0.03),('Zoom',14.)]) if not ask: return N = ask['Number of circles'] r = ask['Radius of circles'] R = ask['Radius of the figure'] n = ask['Number of rotations'] col = ask['color of circles'] sl = ask['Sleep time'] sc = ask['Zoom'] box=[[-sc,-sc,-sc],[sc,sc,sc]] draw(shape('plus'),bbox=box) F = sector(r,360.,1,16).trl(0,R).rosette(N-1,360./N) delay(sl) for i in range(n*N): F = F.rotate(-360./N) dr = draw(F,color=col,bbox=box) if i>0: undraw(DR) DR=dr
def run(): """Ask the user for data and show the corresponding Wire Stent.""" wireframe() reset() res = askItems([ _I('L', 80., text='Length of the stent'), _I('D', 10., text='Diameter of the stent'), _I('n', 12, text='Total number of wires'), _I('b', 30., text='Pitch angle of the wires'), _I('d', 0.2, text='Diameter of the wires'), _I('show', itemtype='radio', choices=['Formex', 'Curves']), ]) if not res: return globals().update(res) if (n % 2) != 0: warning('Number of wires must be even!') return H = DoubleHelixStent(D, L, d, n, b) clear() if show == 'Formex': draw(H.getFormex(), view='iso') else: view('iso') for w, c in zip(H.getWireAxes(), ['black', 'magenta']): draw(w, color=c)
def Cussion(): """Cussion This is a powerful illusion, though again some color combinations might not work as well as others. The smaller squares on this 'chessboard' tend to give a distortion. Again, all horizontal and vertical lines are perfectly parallel and straight! """ resetview() b,h = 17,17 if b%2==0: b+=1 if h%2==0: h+=1 chess = Formex('4:0123').replic2(b,h,1,1).translate([-b/2+0.5,-h/2+0.5,0]) col=[random.rand(3),random.rand(3)] sq1 = Formex('4:0123').scale([0.25,0.25,1]).translate([-0.45,0.2,0]) sq2 = Formex('4:0123').scale([0.25,0.25,1]).translate([0.2,-0.45,0]) F = sq1.translate([1,0,0]).replic(int(b/2)-1,1)+sq2.translate([0,1,0]).replic(int(h/2)-1,1,dir=1) sq = sq1+sq2 for i in range(int(b/2)): for j in range(int(h/2)): if i+j < (int(b/2)+int(b/2))/2-1: F += sq.translate([i+1,j+1,0]) colors=ndarray([0,0]) for i in F: if (int(i[0,0])+int(i[0,1])-1)%2 == 0: colors=append(colors,col[1]) else: colors=append(colors,col[0]) colors= colors.reshape(-1,3) F = F.rosette(4,90) draw(F,color=colors.reshape(-1,3)) draw(chess,color=col)
def MotionInducedBlindness(): """Motion Induced Blindness This is a very nice illusion. Look at the centre of the image. The moving background will give the illusion that the other static points disappear. Blinking or changing your focus will immediately undo the effect. Cool huh? """ resetview('black') res = askItems([('Number of static points',10),('Background',None,'radio',{'choices':['Tiles','Structured points','Random points']}),('Rotations',2),('Rotation angle',2),('Number of random points',300)]) if not res: return nr,a,rot,back,n = res['Number of random points'],res['Rotation angle'],res['Rotations'],res['Background'],res['Number of static points'] draw(shape('star').scale(0.4),color=red,linewidth=2) points = Formex([[0,-10,0]]).rosette(n,360./n) draw(points,color=random.rand(3),marksize=10) col=random.rand(3) if back=='Tiles': F = shape('plus').replic2(11,11,3,3).translate([-15,-15,0]) elif back=='Structured points': F = Formex([[0,0,0]]).replic2(30,30,1).translate([-15,-15,0]) else: F = Formex(random.rand((nr,3))).scale([30,30,0]).translate([-15,-15,0]) for i in range(rot*360/a): F = F.rotate(a) dr = draw(F,color=col,linewidth=2,bbox=[[-10,-10,0],[10,10,0]]) if i>0: undraw(DR) DR = dr
def run(): global barrel reset() wireframe() res = askItems([ dict(name='m', value=10, text='number of modules in axial direction'), dict(name='n', value=8, text='number of modules in tangential direction'), dict(name='r', value=10., text='barrel radius'), dict(name='a', value=180., text='barrel opening angle'), dict(name='l', value=30., text='barrel length'), ]) if not res: return globals().update(res) # Diagonals d = Formex('l:5', 1).rosette(4, 90).translate([1, 1, 0]).replic2(m, n, 2, 2) # Longitudinals h = Formex('l:1', 3).replic2(2 * m, 2 * n + 1, 1, 1) # End bars e = Formex('l:2', 0).replic2(2, 2 * n, 2 * m, 1) # Create barrel barrel = (d + h + e).rotate(90, 1).translate(0, r).scale( [1., a / (2 * n), l / (2 * m)]).cylindrical() draw(barrel)
def RunningInCircles(): """Running In Circles If you don't look directly at the rectangles, both rectangles will appear to 'overtake' each other constantly, although they are moving at equal and constant speed. """ resetview() box= [[-8,-8,-8],[8,8,8]] N = 72 R = 10 C = circle(a1=360./N).points() O =[0,0,0] F = Formex([[C[i],C[i+1],O] for i in arange(0,2*N,2)]).scale([R,R,0]) F.setProp([0,7]) p = circle(a1=360./N).points() centre = Formex([add(p[0:len(p):2],p[-1])]).translate([-1,0,0]) centre.setProp(1) draw(centre,bbox=box) draw(F,bbox=box) b1 = Formex('4:0123').scale([1.5,0.8,0]).translate([0,8.5,0.1]) b1.setProp(3) b2 = Formex('4:0123').scale([1.5,0.8,0]).translate([0,7,0.1]) b2.setProp(6) b = b1+b2 col = [random.rand(3)/3,[1,1,1]-random.rand(3)/8] for i in range(4*N): b = b.rotate(360./N/4) dr = draw(b,bbox=box,color=col) if i>0: undraw(DR) DR = dr
def run(): layout(2) wireframe() # draw in viewport 0 viewport(0) view('front') clear() rtri = Formex('3:016932').scale([1.5, 1, 0]) F = rtri + rtri.shear(0, 1, -0.5).trl(0, -4.0) + rtri.shear( 0, 1, 0.75).trl(0, 3.0) draw(F) drawCircles(F, triangleCircumCircle, color=red) zoomAll() drawCircles(F, triangleInCircle, color=blue) drawCircles(F, triangleBoundingCircle, color=black) zoomAll() # draw in viewport 1 viewport(1) view('iso') clear() F, c = cube_tri() draw(F) drawCircles(F, triangleInCircle) zoomAll() if not ack("Keep both viewports ?"): print("Removing a viewport") # remove last viewport removeViewport()
def showSurfaceValue(S,txt,val,onEdges): val = nan_to_num(val) mi,ma = val.min(),val.max() print(mi,ma) # Test: replace min with max dec = min(abs(mi),abs(ma)) print(dec) if dec > 0.0: dec = max(0,3-int(log10(dec))) else: dec = 2 # create a colorscale and draw the colorlegend CS = ColorScale('RAINBOW',mi,ma,0.5*(mi+ma),1.) cval = array(map(CS.color,ravel(val))) cval = cval.reshape(append(val.shape,cval.shape[-1])) clear() if onEdges: F = Formex(S.coords[S.getEdges()]) draw(F,color=cval)#,linewidth=2) else: draw(S,color=cval) lights(False) CL = ColorLegend(CS,100) CLA = decors.ColorLegend(CL,10,10,30,200,dec=dec) GD.canvas.addDecoration(CLA) drawtext(txt,10,230,'hv18')
def create(): """Create a closed surface and a set of points.""" nx,ny,nz = npts # Create surface if surface == 'file': S = TriSurface.read(filename).centered() elif surface == 'sphere': S = simple.sphere(ndiv=grade) if refine > S.nedges(): S = S.refine(refine) draw(S, color='red') if not S.isClosedManifold(): warning("This is not a closed manifold surface. Try another.") return None,None # Create points if points == 'grid': P = simple.regularGrid([-1.,-1.,-1.],[1., 1., 1.],[nx-1,ny-1,nz-1]) else: P = random.rand(nx*ny*nz*3) sc = array(scale) siz = array(S.sizes()) tr = array(trl) P = Formex(P.reshape(-1, 3)).resized(sc*siz).centered().translate(tr*siz) draw(P, marksize=1, color='black') zoomAll() return S,P
def run(): global barrel reset() wireframe() res = askItems([ dict(name='m',value=10,text='number of modules in axial direction'), dict(name='n',value=8,text='number of modules in tangential direction'), dict(name='r',value=10.,text='barrel radius'), dict(name='a',value=180.,text='barrel opening angle'), dict(name='l',value=30.,text='barrel length'), ]) if not res: return globals().update(res) # Diagonals d = Formex('l:5',1).rosette(4,90).translate([1,1,0]).replic2(m,n,2,2) # Longitudinals h = Formex('l:1',3).replic2(2*m,2*n+1,1,1) # End bars e = Formex('l:2',0).replic2(2,2*n,2*m,1) # Create barrel barrel = (d+h+e).rotate(90,1).translate(0,r).scale([1.,a/(2*n),l/(2*m)]).cylindrical() draw(barrel)
def run(): reset() smooth() lights(True) S = TriSurface.read(getcfg('datadir')+'/horse.off') SA = draw(S) res = askItems([ ('direction',[1.,0.,0.]), ('number of sections',20), ('color','red'), ('ontop',False), ('remove surface',False), ]) if not res: return d = res['direction'] n = res['number of sections'] c = res['color'] slices = S.slice(dir=d,nplanes=n) linewidth(2) draw(slices,color=c,view=None,bbox='last',nolight=True,ontop=res['ontop']) export({'_HorseSlice_slices':slices}) if res['remove surface']: undraw(SA) zoomAll()
def convertToFormex(): """Convert all dxf parts to a plex-2 Formex This uses the :func:`dxf.toLines` function to transform all Lines, Arcs and PolyLines to a plex-2 Formex. The parameters chordal and arcdiv used to set the precision of the Arc approximation are asked from the user.. """ parts = named('_dxf_sel_') if not parts: return res = askItems( [ _I('method',choices=['chordal error','fixed number'],tooltip="What method should be used to approximate the Arcs by straight line segments."), _I('chordal',0.01), _I('ndiv',8), ], enablers = [ ('method','chordal error','chordal'), ('method','fixed number','ndiv'), ] ) if res: chordal = res['chordal'] if res['method'][0] == 'c': ndiv = None else: ndiv = res['ndiv'] coll = dxf.collectByType(parts) lines = dxf.toLines(chordal=chordal,arcdiv=ndiv) print("Number of lines: %s" % _lines.nelems()) export({'_dxf_lines_':lines}) clear() draw(lines)
def clip_surface(): """Clip the stl model.""" if not check_surface(): return itemlist = [['axis',0],['begin',0.0],['end',1.0],['nodes','any']] res = askItems(itemlist,caption='Clipping Parameters') if res: updateGUI() nodes,elems = PF['old_surface'] = PF['surface'] F = Formex(nodes[elems]) bb = F.bbox() GD.message("Original bbox: %s" % bb) xmi = bb[0][0] xma = bb[1][0] dx = xma-xmi axis = int(res[0][1]) xc1 = xmi + float(res[1][1]) * dx xc2 = xmi + float(res[2][1]) * dx nodid = res[3][1] #print(nodid) clear() draw(F,color='yellow') w = F.test(nodes='any',dir=axis,min=xc1,max=xc2) F = F.clip(w) draw(F,color='red')
def run(): items = [ widgets.simpleInputItem(n, globals()[n]) for n in ['r0', 'r1', 'h', 't', 'nr', 'nt'] ] + [ widgets.simpleInputItem( 'diag', diag, itemtype='radio', choices=['', 'u', 'd']) ] dialog = widgets.InputDialog(items) while not dialog.result() == widgets.TIMEOUT: res = dialog.getResults() if not res: break globals().update(res) F = cone(r0, r1, h, t, nr, nt, diag) G = cone1(r0, r1, h, t, nr, nt, diag).swapAxes(1, 2).trl(0, 2 * max(r0, r1)) G.setProp(1) H = F + G clear() draw(H) return
def sliceBranch(S,cp,s0,s1,cl,nslices): """Slice a single branch of the bifurcation - `S`: the bifurcation surface, oriented parallel to xy. - `cp` : the center of the bifurcation. - `s0`, `s1`: the control polylines along the branch. - `cl`: the centerline of the branch. - `nslices`: the number of slices used to approximate the branch surface. """ visual = drawOption('visual') cl = cl.approx(ntot=nslices) s0 = s0.approx(ntot=nslices) s1 = s1.approx(ntot=nslices) h0 = slicer(S,s0,cl,cutat=-1,visual=visual) if visual: clear() draw(h0,color='black') h1 = slicer(S,cl,s1,cutat=-1,visual=visual) # if visual: # draw(h0,color='red') # draw(h1,color='blue') return [h0,h1]
def undo_stl(): """Undo the last transformation.""" global F,oldF clear() linewidth(1) F = oldF draw(F,color='green')
def run(): clear() smoothwire() # The object to reposition A = Formex('4:0123',1).replic2(6,3) # The object to define the position B = Formex('3:016',2).replic2(4,4,taper=-1).trl(0,7.) drawObjectWithName(A,'Object A') drawObjectWithName(B,'Object B') #define matching points X = A[0,[0,3,1]] drawPointsNumbered(X,red,'X') Y = B[3,[1,2,0]] Y[2] = Y[0].trl([0.,1.,1.]) drawPointsNumbered(Y,green,'Y') zoomAll() pause() # Reposition A so that X are aligned with Y C = A.position(X,Y) draw(C,color=blue) zoomAll()
def ShadesOfGrey(): """Shades Of Grey Our perception of brightness is relative. Therefore, the figure on the left looks a little darker than the one right. The effect can be somewhat subtle though. """ resetview([0.8,0.8,0.8]) sc = 2 box = [[-2,0,-2],[2,8,2]] back = Formex('4:0123').scale([8,8,1]) back += back.translate([-8,0,0]) back.setProp([0,7]) C = circle(a1=11.25).rotate(-90,2).points() F = Formex([[C[i],C[i+1],2*C[i+1],2*C[i]] for i in range(0,32,2)]).translate([2,4,0]) n = 40 for i in range(n): F = F.translate([-2./n,0,0]) G = F.reflect(0) dr1 = draw(F+G,color=[0.6,0.6,0.6],bbox=box) dr2 = draw(back,bbox=box) if i>0: undraw(DR2) undraw(DR1) else: sleep(2) DR1 = dr1 DR2 = dr2
def cutPart(M, x0, x1): """Cut part of section at plane thru x0 and return part between x0 and x1""" M = M.clipAtPlane(x1, x0 - x1, nodes='all') meshlist = M.splitProp() meshlist = [meshToPolyLine2(m) for m in meshlist] #meshlist = [ p.cutWithPlane(x0,x1-x0,side='+') for p in meshlist ] draw(meshlist, flat=True, alpha=1, linewidth=3) #print erf meshlist = olist.flatten(meshlist) if len(meshlist) == 1: pl = meshlist[0] elif len(meshlist) == 2: p1, p0 = meshlist pl = PolyLine(Coords.concatenate([p0.coords, p1.coords])) else: print([p.nelems() for p in meshlist]) [ draw(p, color=c) for p, c in zip(meshlist, pf.canvas.settings.colormap) ] pl = longestItem(meshlist) return pl
def drawCSys(ax=Formex([[[1., 0., 0.]],[[0., 1., 0.]],[[0., 0., 1.]], [[0., 0., 0.]]]), color='black'): """it draws the coordinate system with origin in ax[0] and directions determined by the 3 points in ax[1:4]""" assex=array([ax[3], ax[0]]) assey=array([ax[3], ax[1]]) assez=array([ax[3], ax[2]]) for asse in [assex, assey, assez]:draw(Formex(asse.reshape(1, 2, 3)), color=color) drawNumbers(Formex([assex[1], assey[1],assez[1] ]))#
def run(): reset() smoothwire() res = askItems([ dict(name='m',value=12,text='number of modules in axial direction'), dict(name='n',value=8,text='number of modules in tangential direction'), dict(name='r',value=10.,text='barrel radius'), dict(name='a',value=180.,text='barrel opening angle'), dict(name='l',value=30.,text='barrel length'), dict(name='eltype',value='quad8',text='element type',itemtype='radio',choices=['tri3','quad4','quad8','quad9']), ]) if not res: return globals().update(res) # Grid g = Formex('4:0123').replic2(m,n).toMesh().convert(eltype) # Create barrel barrel = g.rotate(90,1).translate(0,r).scale([1.,a/n,l/m]).cylindrical() draw(barrel,color=red,bkcolor=blue) export({'Barrel':barrel})
def series(): view='iso' for n in [3,4,6,8,12]: for m in [3,4,6,12,36]: clear() draw(torus(m,n),view) view=None
def inputLongitudinalSeeds(): """Interactive input of the longitudinal meshing seeds. """ global dialog def show(): """Show the current seeds""" global dialog, SA undraw(SA) dialog.acceptData() res = dialog.results if not res: return sat = [ seeding3zones(nseeds=eval(res['nseeds%s' % i]), zonesizes=eval(res['ratios%s' % i])) for i in range(3) ] print('# of seeds in branches: %s' % [sum([len(i) for i in j]) - 1 for j in sat]) SA = drawLongitudinalSeeding(long_splines, sat) return sat def accept(): """Accept the current seeds""" sat = show() if sat: export({'sat': [concatenate(ati) for ati in sat]}) dialog.accept() def help(): showInfo( "Set the seeding parameters for the 3 branches. Each branch is divided in 3 parts: close to the bifurcation, far from the bifurcation and the central part between these two. Only the data for the first two need to be entered. The 3rd (central) is calculated as transition." ) clear() long_splines = named('long_splines') draw(long_splines, linewidth=1, color='gray', flat=True, alpha=1) drawNumbers( Formex([long_splines[i][0].subPoints(1)[-1] for i in [0, 2, 4]])) nseeds = '[5,3 ]' ratios = '[0.3, 0.4]' dialog = Dialog( caption='Ratio Seeding Spline', items=[ _I('nseeds0', nseeds), _I('ratios0', ratios), _I('nseeds1', nseeds), _I('ratios1', ratios), _I('nseeds2', nseeds), _I('ratios2', ratios), ], actions=[('Cancel', ), ('Show', show), ('Accept', accept), ('Help', help)], ) dialog.move(100, 100) dialog.getResults()
def showModel(self,nodes=True,elems=True): if nodes: Fn = Formex(self.DB.nodes) draw(Fn) if elems: Fe = [ Formex(self.DB.nodes[e],i+1) for i,e in enumerate(self.DB.elems.itervalues()) ] draw(Fe) zoomAll()
def drawFrame(P): """Draw a dashed frame at position P.""" d,e = (2,3) # dash length and step h = Formex('l:1').scale(d) v = h.rotate(-90).replic(4,-e,1) h = h.replic(6,e,0) frame = (h + v).trl(P) draw(frame,linewidth=1.0,bbox=None)
def drawHelperLines(): branch = named('branch') for i in range(3): draw(branch[2 * i:2 * i + 2], color=['red', 'green', 'blue'][i], flat=True, alpha=1, linewidth=3)
def drawCrossSplines(): sp = getData('cross_splines') if drawOption('fill_cross'): [draw(Formex([si.coords for si in s]),color='black' ,flat=True, alpha=1) for s in sp] else: [draw(s,color=c,flat=True, alpha=1) for s,c in zip(sp,color_half_branch)] if drawOption('numbers'): [[drawNumbers(si.coords) for si in s] for s in sp]
def drawTransform(transform): print("Transforming grid") trf = transforms[transform] G = trf(F) clear() print("Drawing Colored grid") draw(G,color=color,colormap=colortable) drawText('Created with pyFormex',20,20,size=24)
def drawChanges(self): """Draws old and new version of a Formex with differrent colors. old and new can be a either Formex instances or names or lists thereof. old are drawn in yellow, new in the current color. """ self.draw(wait=False) draw(self.values,color='yellow',bbox=None,clear=False,shrink=self.shrink)
def run(): # Locate calpy and load interface from plugins import calpy_itf try: Q = calpy_itf.QuadInterpolator except: print("NO CALPY: I'm out of here!") return # Now, let's create a grid of 'quad8' elements # size of the grid nx, ny = 4, 3 # plexitude nplex = 8 clear() flatwire() M = Formex('4:0123').replic2(nx, ny).toMesh().convert('quad%s' % nplex, fuse=True) #draw(M,color=yellow) # Create the Mesh interpolateor gprule = (5, 1) # integration rule: minimum (1,1), maximum (5,5) Q = calpy_itf.QuadInterpolator(M.nelems(), M.nplex(), gprule) # Define some random data at the GP. # We use 3 data per GP, because we will use the data directly as colors ngp = prod(gprule) # number of datapoints per element data = random.rand(M.nelems(), ngp, 3) print("Number of data points per element: %s" % ngp) print("Original element data: %s" % str(data.shape)) # compute the data at the nodes, per element endata = Q.GP2Nodes(data) print("Element nodal data: %s" % str(endata.shape)) # compute nodal averages nodata = Q.NodalAvg(M.elems + 1, endata, M.nnodes()) print("Average nodal data: %s" % str(nodata.shape)) # extract the colors per element colors = nodata[M.elems] print("Color data: %s" % str(colors.shape)) layout(2) viewport(0) clear() smoothwire() lights(False) draw(M, color=endata) drawNumbers(M.coords) drawText("Per element interpolation", 20, 20, font='9x15') viewport(1) clear() smoothwire() lights(False) draw(M, color=colors) drawNumbers(M.coords) drawText("Averaged nodal values", 20, 20, font='9x15')
def readProperties(fn=None): """Read properties from file.""" if not fn: fn = askFilename(filter="Property files (*.prop)") if fn: p = fromfile(fn, sep=',') F.setProp(p) clear() draw(F)
def drawSelection(*args,**kargs): """Draws the current selection. Any arguments are passed to draw()""" clear() if selection: draw(selection,*args,**kargs) if show_numbers: showSelectionNumbers()
def drawChanges(): """Draws old and new version of a Formex with differrent colors. old and new can be a either Formex instances or names or lists thereof. old are drawn in yellow, new in the current color. """ clear() draw(selection, wait=False) draw(oldvalues, color="yellow", bbox=None)
def surfMesh(): spc = getData('cross_splines') Fspc = [[ci.toFormex() for ci in c] for c in spc] surf = [[ connect([Fi, Fi, Fj, Fj], nodid=[0, 1, 1, 0]) for Fi, Fj in zip(f[:-1], f[1:]) ] for f in Fspc] draw(surf) export({'surface_mesh': surf})
def drawSpiralCurves(PL, nwires, color1, color2=None): if color2 is None: color2 = color1 # Convert to Formex, because that has a rosette() method PL = PL.toFormex() if nwires > 1: PL = PL.rosette(nwires, 360. / nwires) draw(PL, color=color1) draw(PL.points(), color=color2)
def run(): reset() smoothwire() res = askItems([ ('w', 2, { 'text': 'width' }), ('l', 30, { 'text': 'length' }), ('n', 1, { 'text': 'number of turns' }), ]) if not res: return globals().update(res) C = Formex('l:1234') cell = connect([C, C, C, C], bias=[0, 1, 2, 3]) strip = cell.replic2(l, w, 1., 1.).translate(1, -0.5 * w) TA = draw(strip, color='orange', bkcolor='red') sleep(1) nsteps = 40 step = n * 180. / nsteps / l for i in arange(nsteps + 1): a = i * step torded = strip.map( lambda x, y, z: [x, y * cosd(x * a), y * sind(x * a)]) TB = draw(torded, color='orange', bkcolor='red') undraw(TA) TA = TB sleep(1) #TA = None nsteps = 60 step = 360. / nsteps for i in arange(1, nsteps + 1): ring = torded.trl(2, l * nsteps / pi / i).scale( [i * step / l, 1., 1.]).trl(0, -90).cylindrical(dir=[2, 0, 1]) TB = draw(ring, color='orange', bkcolor='red') undraw(TA) TA = TB sleep(1) nsteps = 80 step = 720. / nsteps for i in arange(1, nsteps + 1): mobius = ring.rotate(i * step, 1) TB = draw(mobius, color='orange', bkcolor='red', bbox='last') undraw(TA) TA = TB
def drawCentralPoint(): cp = named('central_point') print("Central Point = %s" % cp) draw(cp, bbox='last', color='black', marksize=8, flat=True, alpha=1, ontop=True)
def drawCSys(ax=Formex([[[1., 0., 0.]], [[0., 1., 0.]], [[0., 0., 1.]], [[0., 0., 0.]]]), color='black'): """it draws the coordinate system with origin in ax[0] and directions determined by the 3 points in ax[1:4]""" assex = array([ax[3], ax[0]]) assey = array([ax[3], ax[1]]) assez = array([ax[3], ax[2]]) for asse in [assex, assey, assez]: draw(Formex(asse.reshape(1, 2, 3)), color=color) drawNumbers(Formex([assex[1], assey[1], assez[1]])) #
def showCube(base, color): #print base,color if base == 'Triangle': cube = cube_tri else: cube = cube_quad cube, color = cube(color) clear() draw(cube, color=color) export({'cube': cube})