示例#1
0
    def __init__(self,features,items,strategy='uniform',alpha=None, bias=None):
        '''
        Class Initializer.
        Arguments:
            :param strategy: how we sample the new negative labels
                options are "popular", and "uniform", or None
            :param alpha: how to flatten the unigram distribution we sample from
                0.0 corresponds to uniform, 1.0 corresponds to complete popular sampling.
            :param features: which features are being sampled?
                expects a list of features, which can be multidimensional
                (e.g. you can pass 'household_id', or ['city,'state'] as a single element of the list of all features to sample
            :param items: possible values of sampled feature; again a list of combinations
                that can be multidimensional depending on the corresponding feature. should be a list of lists of tuples,
                but if single-dimensional could also be a list of lists of objects as long as they are hashable
            sample_bias: constant term added to count of labels in data for sampling from unigram
        '''
        self.df = None
        self.strategy_name = strategy
        if alpha is not None:
            self.alpha=alpha
        elif str.lower(self.strategy_name)=="uniform":
            self.alpha=0.
        elif str.lower(self.strategy_name)=="popular":
            self.alpha=1.
        if bias is None:
            self.bias=10
        else:
            self.bias=bias
        self.features=features
        self.items= items

        assert isinstance(self.alpha, float), "Must provide sampling strategy or alpha term that is a float"
        assert isinstance(self.features, list), "Must provide features as a list (even if its just one)"

        Callback.__init__(self)
示例#2
0
 def __init__(self, my_model, train_p, test_p, lc_file_name=None):
     Callback.__init__(self)
     self.my_model = my_model
     self.test = test_p
     self.train = train_p
     self.lc_file = None
     self.lc_file_name = lc_file_name
示例#3
0
 def __init__(self, predit_funct=None):
     Callback.__init__(self)
     # output_notebook()
     self.loss = np.array([])
     self.psnrs = np.array([])
     output_server("line")
     self.imagew = 512
     self.min_loss = 10000
     self.predit_funct = predit_funct
     self.p = figure()
     self.p2 = figure()
     self.x = np.array([])
     self.y = np.array([])
     self.bx = np.array([])
     self.by = np.array([])
     self.cx = np.array([])
     self.epochNo = 0
     self.p.line(self.x, self.y, name='line', color="tomato", line_width=2)
     self.p.line(self.bx, self.by, name='batch_line', color="blue", line_width=2)
     self.p2.line(self.cx, self.psnrs, name='psnr', color="green", line_width=2)
     show(self.p)
     # show(self.p2)
     # self.p2 = figure(x_range=[0, self.imagew], y_range=[0, self.imagew])
     # self.p2.image_rgba(name='image', image=[np.array((self.imagew, self.imagew), dtype='uint32')], x=0, y=0, dw=self.imagew, dh=self.imagew)
     # show(self.p2)
     self.psnr = 0
示例#4
0
    def __init__(self, dataset_id):
        Callback.__init__(self)
        self.seen = 0
        self.dataset_id = dataset_id

        self.samples = 1000
        self.oldperc = 0
    def __init__(self,
                 test_generator,
                 test_batches,
                 weights_file,
                 history_file,
                 n=10):
        """
        Constructor for the TrackTestHistoryAndModel callback.

        :param test_generator:  generator, iterator that generates batched test data image patches.
        :param test_batches:    int, number of complete batches in the generator.
        :param weights_file:    str, target path for the model weights/parameters to be stored in HDF5 format.
        :param history_file:    str, target path for the history CSV file.
        :param n:               int, marks after how many epochs the model is being evaluated on the test data.
        """
        Callback.__init__(self)

        self.test_generator = test_generator
        self.test_batches = test_batches
        self.weights_file = weights_file
        self.history_file = history_file
        self.n = n

        self.accuracies = []
        self.losses = []
示例#6
0
 def __init__(self,
              only_save_weight: bool = True,
              *models: Tuple[Model, PathLike]):
     Callback.__init__(self)
     self._only_save_weight = only_save_weight
     self._models = models
     self._best = np.inf
示例#7
0
 def __init__(self, X_test, Y_test, x_aug, y_aug, indices):
     Callback.__init__(self)
     self.X_test = X_test
     self.Y_test = Y_test
     self.x_aug = x_aug
     self.y_aug = y_aug
     self.indices = indices
示例#8
0
 def __init__(self, predit_funct=None):
     Callback.__init__(self)
     # output_notebook()
     self.loss = np.array([])
     self.psnrs = np.array([])
     output_server("line")
     self.imagew = 512
     self.min_loss = 10000
     self.predit_funct = predit_funct
     self.p = figure()
     self.p2 = figure()
     self.x = np.array([])
     self.y = np.array([])
     self.bx = np.array([])
     self.by = np.array([])
     self.cx = np.array([])
     self.epochNo = 0
     self.p.line(self.x, self.y, name='line', color="tomato", line_width=2)
     self.p.line(self.bx,
                 self.by,
                 name='batch_line',
                 color="blue",
                 line_width=2)
     self.p2.line(self.cx,
                  self.psnrs,
                  name='psnr',
                  color="green",
                  line_width=2)
     show(self.p)
     # show(self.p2)
     # self.p2 = figure(x_range=[0, self.imagew], y_range=[0, self.imagew])
     # self.p2.image_rgba(name='image', image=[np.array((self.imagew, self.imagew), dtype='uint32')], x=0, y=0, dw=self.imagew, dh=self.imagew)
     # show(self.p2)
     self.psnr = 0
 def __init__(self, X_test, Y_test, x_aug, y_aug, indices):
     Callback.__init__(self)
     self.X_test = X_test
     self.Y_test = to_label(Y_test[0])
     self.x_aug = x_aug
     self.y_aug = to_label(y_aug[0])
     self.indices = indices
示例#10
0
 def __init__(self,
              dev_data,
              maxlen,
              trained_model_path,
              trigger_model,
              object_model,
              subject_model,
              loc_model,
              time_model,
              negative_model,
              train_model,
              max_learning_rate=extract_train_config.learning_rate,
              min_learning_rate=extract_train_config.min_learning_rate):
     Callback.__init__(self, )
     self.best = 0.
     self.passed = 0
     self.maxlen = maxlen
     self.dev_data = dev_data
     # 训练后模型路径
     self.trained_mdoel_path = trained_model_path
     # 学习率
     self.max_learning_rate = max_learning_rate
     self.min_learning_rate = min_learning_rate
     # 论元模型
     self.trigger_model = trigger_model
     self.object_model = object_model
     self.subject_model = subject_model
     self.negative_model = negative_model
     self.time_model = time_model
     self.loc_model = loc_model
     # 主模型
     self.train_model = train_model
示例#11
0
    def __init__(self,
                 model,
                 tf_record_db,
                 checkpoint_save_path=None,
                 log_save_path=None,
                 batch_size=32):
        """
        Args:
            model: instance of @keras.model.Model. The model to be evaluate. The model's input must be a @keras.layers.Input layer.
            tf_record_db: instance of  @tfrecords_db.TfRecordDB.

        Kwargs:
            checkpoint_save_path: file to save the checkpoint.
            log_save_path: file to save the log file.
            batch_size: the evaluation batch size.


        """
        Callback.__init__(self)

        self._model = model
        self._tf_record_db = tf_record_db
        self._checkpoint_save_path = checkpoint_save_path
        self._log_save_path = log_save_path
        self._batch_size = batch_size

        self._model.compile(loss='categorical_crossentropy',
                            optimizer='sgd',
                            metrics=['accuracy'])
示例#12
0
 def __init__(self):
     """
     Constructor.
     """
     Callback.__init__(self)
     self.losses = []
     return
示例#13
0
    def __init__(self,
                 epochs,
                 X_test_claims,
                 y_test,
                 loss_filename,
                 epsilon=0.0,
                 min_epoch=15,
                 X_test_nt=None):
        self.epochs = epochs
        self.patience = 2
        self.counter = 0
        self.prev_score = 0
        self.epsilon = epsilon
        self.loss_filename = loss_filename
        self.min_epoch = min_epoch
        self.X_test_nt = X_test_nt
        #self.print_train_f1 = print_train_f1

        #self.X_train_claims = X_train_claims
        #self.X_train_orig_docs = X_train_orig_docs
        #self.X_train_evid = X_train_evid
        #self.y_train = y_train

        self.X_test_claims = X_test_claims
        # self.X_test_orig_docs = X_test_orig_docs
        self.y_test = y_test
        Callback.__init__(self)
 def __init__(self, filepath, filepathmean, epoch_start=0, do_mean=True):
     Callback.__init__(self)
     self.filepath = filepath
     self.filepathmean = filepathmean
     self.headers = True
     self.keys = []
     self.epoch_start = epoch_start
     self.do_mean = do_mean
示例#15
0
 def __init__(self):
     Callback.__init__(self)
     self.epoch_acc_dic = {}
     self.epoch_loss_dic = {}
     self.epoch_val_acc_dic = {}
     self.epoch_val_loss_dic = {}
     self.epoch_time_dic = {}
     self.starttime = None
示例#16
0
 def __init__(self, name, peptides, mhc_seqs, labels, weights, predictor):
     Callback.__init__(self)
     self.name = name
     self.peptides = peptides
     self.mhc_seqs = mhc_seqs
     self.labels = labels
     self.weights = weights
     self.predictor = predictor
     self.aucs = defaultdict(list)
 def __init__(self, x_test, y_test, save_file_weights, save_file_hist, n=10):
     Callback.__init__(self)
     self.x_test = x_test
     self.y_test = y_test
     self.save_file_weights = save_file_weights
     self.save_file_hist = save_file_hist
     self.n = n
     self.test_acc = []
     self.test_loss = []
示例#18
0
 def __init__(self, config):
     Callback.__init__(self)
     self.model_dir = os.path.join(FRCNN_MODELS_DIR, config.model_name)
     with open(os.path.join(self.model_dir, 'config.json'), 'w') as file:
         json.dump(config,
                   file,
                   default=lambda o: o.__dict__,
                   indent=4,
                   separators=(',', ': '))
 def __init__(self,
              print_fcn=print,
              format_epoch="Epoch: {} - {}",
              format_keyvalue="{}: {:0.4f}",
              format_separator=" - "):
     Callback.__init__(self)
     self.print_fcn = print_fcn
     self.format_epoch = format_epoch
     self.format_keyvalue = format_keyvalue
     self.format_separator = format_separator
示例#20
0
 def __init__(self, test_data, train_data, is_bidirectional, infeat,
              outfeat, model_type):
     Callback.__init__(self)
     self.test_data = test_data
     self.train_data = train_data
     self.count = 0
     self.idx = 1 if is_bidirectional else 5
     self.infeat = infeat
     self.outfeat = outfeat
     self.description = model_type
示例#21
0
 def __init__(self,
              tensorboard_callback,
              trace_level=tf.RunOptions.FULL_TRACE):
     """initialise the baseclass,
 keep a reference to the tensorboard callback (we access the tensorboard writer)
 create run_options and run_metadata objects to record data."""
     Callback.__init__(self)
     self.tensorboard_callback = tensorboard_callback
     self.run_options = tf.RunOptions(trace_level=trace_level)
     self.run_metadata = tf.RunMetadata()
示例#22
0
    def __init__(self, out_file):
        """
        Constructor for the TrackTrainHistory callback.

        :param out_file: str, target location of the history CSV file.
        """
        Callback.__init__(self)

        self.accuracies = []
        self.losses = []
        self.out_file = out_file
示例#23
0
 def __init__(self, training, network, count_mode='samples'):
     # FIXME[question]: can we use real python multiple inheritance here?
     # (that is just super().__init__(*args, **kwargs))
     BaseTrainer.__init__(self, training, network)
     Callback.__init__(self)
     if count_mode == 'samples':
         self.use_steps = False
     elif count_mode == 'steps':
         self.use_steps = True
     else:
         raise ValueError('Unknown `count_mode`: ' + str(count_mode))
示例#24
0
 def __init__(self,
              train_generator,
              val_generator,
              summary_path,
              loss,
              model=None):
     Callback.__init__(self)
     self.train_generator = train_generator
     self.val_generator = val_generator
     self.summary_path = summary_path
     self.loss = loss
    def __init__(self,
                 x_data,
                 y_data,
                 model_filename,
                 eval_fun=None,
                 eval_every_n_epochs=1,
                 save_best=True):
        """
        Produces an instance of a keras Callback. It allows for running a set of routines when a
        number of training epochs has elapsed.

        Each routine accepts the X and Y data and the best performing model up to the current
        epoch. The best performing model is evaluated by the validation accuracy (or the train
        accuracy if no validation is done). It allows for you to evaluate you model during
        training and print performance reports of the model. it also allows you to have snapshots
        of your model during training.

        Args:
            x_data: The list of X data
            y_data: The list of Y data
            model_filename: The filename to use for saving the model snapshots
            eval_fun: The list of functions to run
            eval_every_n_epochs: The number of epochs after each to run the routines
            save_best: Set True to save the model snapshots
        """
        Callback.__init__(self)
        self.save_best = save_best
        self.eval_every_n_epochs = eval_every_n_epochs
        self.eval_fun = eval_fun
        if eval_fun is None:
            self.eval_fun = []

        elif not isinstance(eval_fun, list) and not isinstance(
                eval_fun, tuple):
            self.eval_fun = [eval_fun]
        else:
            self.eval_fun = eval_fun
        if not isinstance(x_data, list) and not isinstance(x_data, tuple):
            self.x_test = [x_data]
        else:
            self.x_test = x_data
        if not isinstance(y_data, list) and not isinstance(y_data, tuple):
            self.y_test = [y_data]
        else:
            self.y_test = y_data
        if not isinstance(self.y_test, type(self.x_test)) or not isinstance(
                self.eval_fun, type(self.x_test)):
            assert AssertionError('Given types for x_y or incorrect')
        self.best_val_loss = None
        self.model_filename = model_filename
        self.best_val_model = None
        self.update_since_last = False
示例#26
0
 def __init__(self, name, checkpoint_path, net_name="NET", print_fcn=print):
     Callback.__init__(self)
     self.print_fcn = print_fcn
     self.checkpoint_path = checkpoint_path
     self.log_file_name = "logs/" + str(
         name
     ) + ".txt"  #_" + strftime("%Y-%m-%d_%H:%M:%S", gmtime()) + ".txt")
     log_file = open(self.log_file_name, "a")
     log_file.write("------")
     log_file.write("NEW NET: " + net_name)
     log_file.write("------")
     log_file.close()
     self.best_val_loss = 20
示例#27
0
    def __init__(self, target, save_monitor='val_loss', mode='desc'):
        Callback.__init__(self)
        self._target = target
        self._save_monitor = save_monitor
        self._mode = mode

        if mode == 'desc':
            self._best = float('inf')
        elif mode == 'asc':
            self._best = -float('inf')
        else:
            raise ValueError(
                "Invalid mode '%s'. Mode must be either 'asc' or 'desc'.")
        self._mode_map = {'asc': self.is_asc, 'desc': self.is_desc}
 def __init__(self,
              validation,
              train,
              test,
              every_n=25,
              verbose=0,
              folder_test="",
              network_name=""):
     Callback.__init__(self)
     self.every_n = every_n
     self.verbose = verbose
     self.network_name = network_name
     self.folder_test = folder_test
     self.validation = validation
     self.train = train
     self.test = test
示例#29
0
    def __init__(self, name, fig_title, url):
        """
        fig_title: Figure Title
        url : str, optional
            Url of the bokeh-server. Ex: when starting the bokeh-server with
            ``bokeh-server --ip 0.0.0.0`` at ``alice``, server_url should be
            ``http://alice:5006``. When not specified the default configured
            by ``bokeh_server`` in ``.blocksrc`` will be used. Defaults to
            ``http://localhost:5006/``.

        Reference: mila-udem/blocks-extras
        """
        Callback.__init__(self)
        self.name = name
        self.fig_title = fig_title
        self.plots = []
        output_server(name, url=url)
        cursession().publish()
示例#30
0
    def __init__(self, dataset, epochs, n_classes, batch_size, h5_model_path,
                 fold_stats_path):
        # allocating inputs as properties
        self.dataset = dataset
        self.epochs = epochs
        self.n_classes = n_classes
        self.batch_size = batch_size
        self.h5_model_path = h5_model_path
        self.fold_stats_path = fold_stats_path

        # pre-allocating train, valid and test dicts with loss and conf_mtx
        self.train = {'loss': [], 'acc': []}
        self.valid = {'loss': [], 'acc': []}

        # pre-allocating best (to track the best net configuration)
        self.best = {'loss': float('inf'), 'acc': 0, 'idx': None}

        # calling the super class constructor
        Callback.__init__(self)
 def __init__(self,cv_number):
     Callback.__init__(self)
     self.cv_number = cv_number
示例#32
0
 def __init__(self, batch_size, **kwargs):
     Callback.__init__(self, **kwargs)
     self.batch_size = batch_size
示例#33
0
 def __init__(self, test_data):
     Callback.__init__(self)
     self.test_data = test_data
     self.count = 0
示例#34
0
 def __init__(self, val = False):
     Callback.__init__(self)
     self.val = val
     self.losses = []
     self.batch_losses = []
     self.batch_accs = []
示例#35
0
文件: callbacks.py 项目: kelvict/seya
 def __init__(self, W, transpose=False):
     Callback.__init__(self)
     self.W = W
     self.W_shape = self.W.get_value().shape
     self.transpose = transpose