def __init__(self,features,items,strategy='uniform',alpha=None, bias=None): ''' Class Initializer. Arguments: :param strategy: how we sample the new negative labels options are "popular", and "uniform", or None :param alpha: how to flatten the unigram distribution we sample from 0.0 corresponds to uniform, 1.0 corresponds to complete popular sampling. :param features: which features are being sampled? expects a list of features, which can be multidimensional (e.g. you can pass 'household_id', or ['city,'state'] as a single element of the list of all features to sample :param items: possible values of sampled feature; again a list of combinations that can be multidimensional depending on the corresponding feature. should be a list of lists of tuples, but if single-dimensional could also be a list of lists of objects as long as they are hashable sample_bias: constant term added to count of labels in data for sampling from unigram ''' self.df = None self.strategy_name = strategy if alpha is not None: self.alpha=alpha elif str.lower(self.strategy_name)=="uniform": self.alpha=0. elif str.lower(self.strategy_name)=="popular": self.alpha=1. if bias is None: self.bias=10 else: self.bias=bias self.features=features self.items= items assert isinstance(self.alpha, float), "Must provide sampling strategy or alpha term that is a float" assert isinstance(self.features, list), "Must provide features as a list (even if its just one)" Callback.__init__(self)
def __init__(self, my_model, train_p, test_p, lc_file_name=None): Callback.__init__(self) self.my_model = my_model self.test = test_p self.train = train_p self.lc_file = None self.lc_file_name = lc_file_name
def __init__(self, predit_funct=None): Callback.__init__(self) # output_notebook() self.loss = np.array([]) self.psnrs = np.array([]) output_server("line") self.imagew = 512 self.min_loss = 10000 self.predit_funct = predit_funct self.p = figure() self.p2 = figure() self.x = np.array([]) self.y = np.array([]) self.bx = np.array([]) self.by = np.array([]) self.cx = np.array([]) self.epochNo = 0 self.p.line(self.x, self.y, name='line', color="tomato", line_width=2) self.p.line(self.bx, self.by, name='batch_line', color="blue", line_width=2) self.p2.line(self.cx, self.psnrs, name='psnr', color="green", line_width=2) show(self.p) # show(self.p2) # self.p2 = figure(x_range=[0, self.imagew], y_range=[0, self.imagew]) # self.p2.image_rgba(name='image', image=[np.array((self.imagew, self.imagew), dtype='uint32')], x=0, y=0, dw=self.imagew, dh=self.imagew) # show(self.p2) self.psnr = 0
def __init__(self, dataset_id): Callback.__init__(self) self.seen = 0 self.dataset_id = dataset_id self.samples = 1000 self.oldperc = 0
def __init__(self, test_generator, test_batches, weights_file, history_file, n=10): """ Constructor for the TrackTestHistoryAndModel callback. :param test_generator: generator, iterator that generates batched test data image patches. :param test_batches: int, number of complete batches in the generator. :param weights_file: str, target path for the model weights/parameters to be stored in HDF5 format. :param history_file: str, target path for the history CSV file. :param n: int, marks after how many epochs the model is being evaluated on the test data. """ Callback.__init__(self) self.test_generator = test_generator self.test_batches = test_batches self.weights_file = weights_file self.history_file = history_file self.n = n self.accuracies = [] self.losses = []
def __init__(self, only_save_weight: bool = True, *models: Tuple[Model, PathLike]): Callback.__init__(self) self._only_save_weight = only_save_weight self._models = models self._best = np.inf
def __init__(self, X_test, Y_test, x_aug, y_aug, indices): Callback.__init__(self) self.X_test = X_test self.Y_test = Y_test self.x_aug = x_aug self.y_aug = y_aug self.indices = indices
def __init__(self, X_test, Y_test, x_aug, y_aug, indices): Callback.__init__(self) self.X_test = X_test self.Y_test = to_label(Y_test[0]) self.x_aug = x_aug self.y_aug = to_label(y_aug[0]) self.indices = indices
def __init__(self, dev_data, maxlen, trained_model_path, trigger_model, object_model, subject_model, loc_model, time_model, negative_model, train_model, max_learning_rate=extract_train_config.learning_rate, min_learning_rate=extract_train_config.min_learning_rate): Callback.__init__(self, ) self.best = 0. self.passed = 0 self.maxlen = maxlen self.dev_data = dev_data # 训练后模型路径 self.trained_mdoel_path = trained_model_path # 学习率 self.max_learning_rate = max_learning_rate self.min_learning_rate = min_learning_rate # 论元模型 self.trigger_model = trigger_model self.object_model = object_model self.subject_model = subject_model self.negative_model = negative_model self.time_model = time_model self.loc_model = loc_model # 主模型 self.train_model = train_model
def __init__(self, model, tf_record_db, checkpoint_save_path=None, log_save_path=None, batch_size=32): """ Args: model: instance of @keras.model.Model. The model to be evaluate. The model's input must be a @keras.layers.Input layer. tf_record_db: instance of @tfrecords_db.TfRecordDB. Kwargs: checkpoint_save_path: file to save the checkpoint. log_save_path: file to save the log file. batch_size: the evaluation batch size. """ Callback.__init__(self) self._model = model self._tf_record_db = tf_record_db self._checkpoint_save_path = checkpoint_save_path self._log_save_path = log_save_path self._batch_size = batch_size self._model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])
def __init__(self): """ Constructor. """ Callback.__init__(self) self.losses = [] return
def __init__(self, epochs, X_test_claims, y_test, loss_filename, epsilon=0.0, min_epoch=15, X_test_nt=None): self.epochs = epochs self.patience = 2 self.counter = 0 self.prev_score = 0 self.epsilon = epsilon self.loss_filename = loss_filename self.min_epoch = min_epoch self.X_test_nt = X_test_nt #self.print_train_f1 = print_train_f1 #self.X_train_claims = X_train_claims #self.X_train_orig_docs = X_train_orig_docs #self.X_train_evid = X_train_evid #self.y_train = y_train self.X_test_claims = X_test_claims # self.X_test_orig_docs = X_test_orig_docs self.y_test = y_test Callback.__init__(self)
def __init__(self, filepath, filepathmean, epoch_start=0, do_mean=True): Callback.__init__(self) self.filepath = filepath self.filepathmean = filepathmean self.headers = True self.keys = [] self.epoch_start = epoch_start self.do_mean = do_mean
def __init__(self): Callback.__init__(self) self.epoch_acc_dic = {} self.epoch_loss_dic = {} self.epoch_val_acc_dic = {} self.epoch_val_loss_dic = {} self.epoch_time_dic = {} self.starttime = None
def __init__(self, name, peptides, mhc_seqs, labels, weights, predictor): Callback.__init__(self) self.name = name self.peptides = peptides self.mhc_seqs = mhc_seqs self.labels = labels self.weights = weights self.predictor = predictor self.aucs = defaultdict(list)
def __init__(self, x_test, y_test, save_file_weights, save_file_hist, n=10): Callback.__init__(self) self.x_test = x_test self.y_test = y_test self.save_file_weights = save_file_weights self.save_file_hist = save_file_hist self.n = n self.test_acc = [] self.test_loss = []
def __init__(self, config): Callback.__init__(self) self.model_dir = os.path.join(FRCNN_MODELS_DIR, config.model_name) with open(os.path.join(self.model_dir, 'config.json'), 'w') as file: json.dump(config, file, default=lambda o: o.__dict__, indent=4, separators=(',', ': '))
def __init__(self, print_fcn=print, format_epoch="Epoch: {} - {}", format_keyvalue="{}: {:0.4f}", format_separator=" - "): Callback.__init__(self) self.print_fcn = print_fcn self.format_epoch = format_epoch self.format_keyvalue = format_keyvalue self.format_separator = format_separator
def __init__(self, test_data, train_data, is_bidirectional, infeat, outfeat, model_type): Callback.__init__(self) self.test_data = test_data self.train_data = train_data self.count = 0 self.idx = 1 if is_bidirectional else 5 self.infeat = infeat self.outfeat = outfeat self.description = model_type
def __init__(self, tensorboard_callback, trace_level=tf.RunOptions.FULL_TRACE): """initialise the baseclass, keep a reference to the tensorboard callback (we access the tensorboard writer) create run_options and run_metadata objects to record data.""" Callback.__init__(self) self.tensorboard_callback = tensorboard_callback self.run_options = tf.RunOptions(trace_level=trace_level) self.run_metadata = tf.RunMetadata()
def __init__(self, out_file): """ Constructor for the TrackTrainHistory callback. :param out_file: str, target location of the history CSV file. """ Callback.__init__(self) self.accuracies = [] self.losses = [] self.out_file = out_file
def __init__(self, training, network, count_mode='samples'): # FIXME[question]: can we use real python multiple inheritance here? # (that is just super().__init__(*args, **kwargs)) BaseTrainer.__init__(self, training, network) Callback.__init__(self) if count_mode == 'samples': self.use_steps = False elif count_mode == 'steps': self.use_steps = True else: raise ValueError('Unknown `count_mode`: ' + str(count_mode))
def __init__(self, train_generator, val_generator, summary_path, loss, model=None): Callback.__init__(self) self.train_generator = train_generator self.val_generator = val_generator self.summary_path = summary_path self.loss = loss
def __init__(self, x_data, y_data, model_filename, eval_fun=None, eval_every_n_epochs=1, save_best=True): """ Produces an instance of a keras Callback. It allows for running a set of routines when a number of training epochs has elapsed. Each routine accepts the X and Y data and the best performing model up to the current epoch. The best performing model is evaluated by the validation accuracy (or the train accuracy if no validation is done). It allows for you to evaluate you model during training and print performance reports of the model. it also allows you to have snapshots of your model during training. Args: x_data: The list of X data y_data: The list of Y data model_filename: The filename to use for saving the model snapshots eval_fun: The list of functions to run eval_every_n_epochs: The number of epochs after each to run the routines save_best: Set True to save the model snapshots """ Callback.__init__(self) self.save_best = save_best self.eval_every_n_epochs = eval_every_n_epochs self.eval_fun = eval_fun if eval_fun is None: self.eval_fun = [] elif not isinstance(eval_fun, list) and not isinstance( eval_fun, tuple): self.eval_fun = [eval_fun] else: self.eval_fun = eval_fun if not isinstance(x_data, list) and not isinstance(x_data, tuple): self.x_test = [x_data] else: self.x_test = x_data if not isinstance(y_data, list) and not isinstance(y_data, tuple): self.y_test = [y_data] else: self.y_test = y_data if not isinstance(self.y_test, type(self.x_test)) or not isinstance( self.eval_fun, type(self.x_test)): assert AssertionError('Given types for x_y or incorrect') self.best_val_loss = None self.model_filename = model_filename self.best_val_model = None self.update_since_last = False
def __init__(self, name, checkpoint_path, net_name="NET", print_fcn=print): Callback.__init__(self) self.print_fcn = print_fcn self.checkpoint_path = checkpoint_path self.log_file_name = "logs/" + str( name ) + ".txt" #_" + strftime("%Y-%m-%d_%H:%M:%S", gmtime()) + ".txt") log_file = open(self.log_file_name, "a") log_file.write("------") log_file.write("NEW NET: " + net_name) log_file.write("------") log_file.close() self.best_val_loss = 20
def __init__(self, target, save_monitor='val_loss', mode='desc'): Callback.__init__(self) self._target = target self._save_monitor = save_monitor self._mode = mode if mode == 'desc': self._best = float('inf') elif mode == 'asc': self._best = -float('inf') else: raise ValueError( "Invalid mode '%s'. Mode must be either 'asc' or 'desc'.") self._mode_map = {'asc': self.is_asc, 'desc': self.is_desc}
def __init__(self, validation, train, test, every_n=25, verbose=0, folder_test="", network_name=""): Callback.__init__(self) self.every_n = every_n self.verbose = verbose self.network_name = network_name self.folder_test = folder_test self.validation = validation self.train = train self.test = test
def __init__(self, name, fig_title, url): """ fig_title: Figure Title url : str, optional Url of the bokeh-server. Ex: when starting the bokeh-server with ``bokeh-server --ip 0.0.0.0`` at ``alice``, server_url should be ``http://alice:5006``. When not specified the default configured by ``bokeh_server`` in ``.blocksrc`` will be used. Defaults to ``http://localhost:5006/``. Reference: mila-udem/blocks-extras """ Callback.__init__(self) self.name = name self.fig_title = fig_title self.plots = [] output_server(name, url=url) cursession().publish()
def __init__(self, dataset, epochs, n_classes, batch_size, h5_model_path, fold_stats_path): # allocating inputs as properties self.dataset = dataset self.epochs = epochs self.n_classes = n_classes self.batch_size = batch_size self.h5_model_path = h5_model_path self.fold_stats_path = fold_stats_path # pre-allocating train, valid and test dicts with loss and conf_mtx self.train = {'loss': [], 'acc': []} self.valid = {'loss': [], 'acc': []} # pre-allocating best (to track the best net configuration) self.best = {'loss': float('inf'), 'acc': 0, 'idx': None} # calling the super class constructor Callback.__init__(self)
def __init__(self,cv_number): Callback.__init__(self) self.cv_number = cv_number
def __init__(self, batch_size, **kwargs): Callback.__init__(self, **kwargs) self.batch_size = batch_size
def __init__(self, test_data): Callback.__init__(self) self.test_data = test_data self.count = 0
def __init__(self, val = False): Callback.__init__(self) self.val = val self.losses = [] self.batch_losses = [] self.batch_accs = []
def __init__(self, W, transpose=False): Callback.__init__(self) self.W = W self.W_shape = self.W.get_value().shape self.transpose = transpose