def spawn_solid_cube(self, location, texture=None, size=(1, 1, 1), color=(1, 1, 1, 0.5), callback=None): geo = BoxGeometry(size[0], size[1], size[2]) mat = Material(color=color[0:3], transparency=color[3], map=texture) cube = Mesh(geometry=geo, material=mat) self.spawn(cube, location) if callback is not None: collider = BoxCollider(p1=p1, p2=p2, parent=cube, callback=callback) self.colliders.append(collider) return (cube, collider) return cube
def build(self): layout = FloatLayout() # create renderer self.renderer = Renderer() # create scene scene = Scene() # create default cube for scene for i in range(1, 6): for j in range(1, 6): cube_geo = BoxGeometry(*[1] * 3) cube_mat = Material(color=(randint(0, 10) * .1, randint(0, 10) * .1, randint(0, 10) * .1)) cube = Mesh(geometry=cube_geo, material=cube_mat) # default pos == (0, 0, 0) cube.pos.y = -0.5 cube.pos.z = -i cube.pos.x = j - 3 self.cubes.append(cube) scene.add(cube) # create camera for scene self.camera = PerspectiveCamera( fov=75, # distance from the screen aspect=0, # "screen" ratio near=1, # nearest rendered point far=20 # farthest rendered point ) # start rendering the scene and camera self.renderer.render(scene, self.camera) # set renderer ratio is its size changes # e.g. when added to parent self.renderer.bind(size=self._adjust_aspect) layout.add_widget(self.renderer) #Clock.schedule_interval(self.move_cubes, 1/60) Window.bind(on_key_down=self.handle_keys) return layout
def build(self): root = FloatLayout() self.renderer = Renderer() self.renderer.set_clear_color((.2, .2, .2, 1.)) scene = Scene() geometry = BoxGeometry(1, 1, 1) material = Material(color=(0., 1., 0.), diffuse=(0., 1., 0.), specular=(.35, .35, .35)) self.cube = Mesh(geometry, material) self.cube.pos.z = -3 camera = PerspectiveCamera(75, 0.3, 1, 1000) scene.add(self.cube) self.renderer.render(scene, camera) root.add_widget(self.renderer) Clock.schedule_interval(self._rotate_cube, 1 / 20) self.renderer.bind(size=self._adjust_aspect) return root
def build(self): self.renderer = Renderer() scene = Scene() camera = PerspectiveCamera(45, 1, 0.1, 2500) self.renderer.set_clear_color((.2, .2, .2, 1.)) self.camera = camera root = ObjectTrackball(camera, 10) # add a cube to the environment as an example # NOTE: the grid will be rendered without transparency if it # is added before the box. # This may be because the shader is not called until a 'triangles' mesh is # rendered? Hence the Fragment Shader has not yet been called? geometry = BoxGeometry(1, 1, 1) material = Material(color=(1., 1., 1.), diffuse=(1., 1., 1.), specular=(.35, .35, .35)) obj = Mesh(geometry, material) scene.add(obj) # create a grid on the xz plane geometry = GridGeometry(size=(30, 30), spacing=1) material = Material(color=(1., 1., 1.), diffuse=(1., 1., 1.), specular=(.35, .35, .35), transparency=.1) lines = Lines(geometry, material) lines.rotation.x = 90 scene.add(lines) self.renderer.render(scene, camera) self.renderer.main_light.intensity = 500 root.add_widget(self.renderer) self.renderer.bind(size=self._adjust_aspect) return root
def build(self): layout = GridLayout(cols=3) # create renderer self.renderer = Renderer(size_hint=(5, 5)) self.renderer.set_clear_color((0.1, 0.1, 0.1, 1)) # rgba # create scene scene = Scene() self.cubes = [] # create cubes for scene # # default pure green cube cube_geo = BoxGeometry(.3, .3, .3) cube_mat = Material(color=(0, 0.5, 0) # base color ) self.cubes.append(Mesh(geometry=cube_geo, material=cube_mat)) # default pos == (0, 0, 0) self.cubes[0].pos.z = -5 self.cubes[0].pos.x = 1 self.cubes[0].pos.y = 0.8 self.cubes[0].rotation.x = 45 # black cube, red shadow, half-transparent cube_geo = BoxGeometry(.3, .3, .3) cube_mat = Material( transparency=0.5, color=(0, 0, 0), # base color diffuse=(10, 0, 0), # color of "shadows" specular=(0, 0, 0) # mirror-like reflections ) self.cubes.append(Mesh(geometry=cube_geo, material=cube_mat)) # default pos == (0, 0, 0) self.cubes[1].pos.z = -5 self.cubes[1].pos.x = -1 self.cubes[1].pos.y = 0.8 self.cubes[1].rotation.y = 45 # default pure green cube with red reflections cube_geo = BoxGeometry(.3, .3, .3) cube_mat = Material( transparency=1, color=(0, 0.5, 0), # base color diffuse=(0, 0, 0), # color of "shadows" specular=(10, 0, 0) # mirror-like reflections ) self.cubes.append(Mesh(geometry=cube_geo, material=cube_mat)) # default pos == (0, 0, 0) self.cubes[2].pos.z = -5 self.cubes[2].pos.x = 1 self.cubes[2].pos.y = -0.8 self.cubes[2].rotation.z = 45 # something.obj from Blender loader = OBJLoader() self.cubes.extend( loader.load(join(FOLDER, 'models', 'something.obj')).children) self.cubes[3].pos.z = -5 self.cubes[3].pos.x = -1 self.cubes[3].pos.y = -0.8 self.cubes[3].rotation.x = 45 self.cubes[3].material.color = (0.1, 0.4, 0.1) self.cubes[3].material.texture_ratio = 0.0 # cube object from Blender loader = OBJLoader() self.main_cube = loader.load(join(FOLDER, 'models', 'cube.obj')) self.main_cube.rotation.x = 45 self.main_cube.rotation.y = 45 self.main_cube.pos.z = -5 self.main_cube.scale = (0.5, 0.5, 0.5) scene.add(self.main_cube) planes = [((0, 0, -10), (0, 0, 0)), ((-10, 0, 0), (0, -90, 0)), ((10, 0, 0), (0, 90, 0)), ((0, 0, 10), (0, 180, 0))] # position and rotation changes for plane in planes: geo = BoxGeometry(5, 5, .1) mat = Material(color=(1, 1, 1)) mesh = Mesh(geometry=geo, material=mat) mesh.pos.x += plane[0][0] mesh.pos.y += plane[0][1] mesh.pos.z += plane[0][2] mesh.rot.x += plane[1][0] mesh.rot.y += plane[1][1] mesh.rot.z += plane[1][2] scene.add(mesh) # create camera for scene self.camera = PerspectiveCamera( fov=75, # distance from the screen aspect=0, # "screen" ratio near=.1, # nearest rendered point far=1000 # farthest rendered point ) # start rendering the scene and camera for cube in self.cubes: scene.add(cube) self.renderer.render(scene, self.camera) # set renderer ratio is its size changes # e.g. when added to parent self.renderer.bind(size=self._adjust_aspect) layout.add_widget(Factory.CamRot()) layout.add_widget(Factory.LightPanel()) layout.add_widget(Factory.CamStrafe()) layout.add_widget(Widget()) layout.add_widget(self.renderer) layout.add_widget(Label(text='+\n\nY\n\n-')) layout.add_widget(Factory.CamNav()) layout.add_widget(Label(text='- X +')) layout.add_widget(Factory.ObjNav()) Clock.schedule_interval(self.rotate_cube, .01) Clock.schedule_interval(self.scale_cube, 1) # keyboard listener Listener() return layout
def create_joint_rectangle(x, y, z): geometry = BoxGeometry(x, y, z) for i in range(len(geometry.vertices)): geometry.vertices[i][0] += (x / 2) return geometry
def build(self): self.theflag = 0 self.theflag0 = 0 self.distan = 1000 # дистанция до начальной точки (0,0,-50) что бы ничего не было за экраном (надо будет выстваить на изменение) bl = BoxLayout(orientation='vertical', size_hint=(.15, 1), spacing=10, padding=10) # левая панель al = AnchorLayout(anchor_x='left', anchor_y='center') # основная система интерфейса layout = GridLayout(cols=2, spacing=3, size_hint=(1, 1)) #сетка для кнопок поворота matrix = np.load('matrix0.npy', allow_pickle=True) counter = int(int(matrix.size) / 2) x = np.zeros(counter) y = np.zeros(counter) z = np.zeros(counter) soe = np.zeros((counter, counter)) for i in range(2): if (i == 0): for j in range(counter): for k in range(3): a = matrix[i, j] if (k == 0): x[j] = a[k] * 10 elif (k == 1): y[j] = a[k] * 10 else: z[j] = a[k] * 10 else: for j in range(counter): a = matrix[i, j] for k in range(counter): soe[j][k] = a[k] print(x, y, z) print(soe) # кнопка загрузки координат loader = Button(text='Load', on_press=self.load) bl.add_widget(loader) #starter = Button(text='Построить', on_press = self.letstart) #bl.add_widget(starter) bl.add_widget(Widget()) # create renderer self.renderer = Renderer() # create scene scene = Scene() #lines k0 = 0 k1 = 0 lines_list = [] for i in soe: for j in i: if (j == 1): line0_geo = BoxGeometry( 1, int(((y[k0] - y[k1])**2 + (x[k0] - x[k1])**2 + (z[k0] - z[k1])**2)**0.5), 1) #print(int(((abs(x[k0]-x[k1]) + abs(y[k0]-y[k1])+ abs(z[k0]-z[k1]))**0.5)),'length') #print(int(abs(y[k0]-y[k1]) + abs(x[k0]-x[k1])+ abs(z[k0]-z[k1]))) line0_mat = Material() self.line0 = Mesh( geometry=line0_geo, material=line0_mat) # default pos == (0, 0, 0) self.line0.pos.x = int((x[k0] + x[k1]) / 2) self.line0.pos.y = int((y[k0] + y[k1]) / 2) self.line0.pos.z = int((z[k0] + z[k1]) / 2) - self.distan if y[k0] - y[k1] == 0 and x[k0] - x[ k1] == 0 and z[k0] - z[k1] != 0: self.line0.rotation.x = 90 elif y[k0] - y[k1] == 0 and x[k0] - x[k1] != 0 and z[ k0] - z[k1] == 0: self.line0.rotation.z = 90 elif y[k0] - y[k1] != 0 and x[k0] - x[k1] == 0 and z[ k0] - z[k1] == 0: ### fff = 0 elif y[k0] - y[k1] != 0 and x[k0] - x[k1] != 0 and z[ k0] - z[k1] == 0: self.line0.rotation.z = math.atan( (x[k0] - x[k1]) / (y[k0] - y[k1])) / math.pi * 180 elif y[k0] - y[k1] != 0 and x[k0] - x[ k1] == 0 and z[k0] - z[k1] != 0: #self.line0.rotation.x = math.atan((z[k0]-z[k1])/(y[k0]-y[k1]))/math.pi*180 self.line0.rotation.x = math.acos( abs(y[k0] - y[k1]) / ((x[k0] - x[k1])**2 + (y[k0] - y[k1])**2 + (z[k0] - z[k1])**2)**0.5) / math.pi * 180 #print() elif y[k0] - y[k1] == 0 and x[k0] - x[k1] != 0 and z[ k0] - z[k1] != 0: self.line0.rotation.z = math.atan( (x[k0] - x[k1]) / (z[k0] - z[k1])) / math.pi * 180 * -1 self.line0.rotation.x = 90 ### elif y[k0] - y[k1] != 0 and x[k0] - x[k1] != 0 and z[ k0] - z[k1] != 0: if ((x[k0] < x[k1] and y[k0] < y[k1]) or (x[k0] > x[k1] and y[k0] > y[k1])): #self.line0.rotation.z = math.atan((abs(z[k0]-z[k1]))/1.5/(abs(y[k0]-y[k1])))/math.pi*180 self.line0.rotation.z = math.acos( abs(y[k0] - y[k1]) / ((x[k0] - x[k1])**2 + (y[k0] - y[k1])**2 + (0)**2)**0.5) / math.pi * 180 * -1 #проблема else: self.line0.rotation.z = math.acos( abs(y[k0] - y[k1]) / ((x[k0] - x[k1])**2 + (y[k0] - y[k1])**2 + (0)**2)**0.5) / math.pi * 180 #self.line0.rotation.x = math.atan((1.25*abs(x[k0]-x[k1]))/(abs(y[k0]-y[k1])))/math.pi*180*-1 if ((z[k0] < z[k1] and y[k0] < y[k1]) or (z[k0] > z[k1] and y[k0] > y[k1])): self.line0.rotation.x = math.acos( abs(y[k0] - y[k1]) / ((0)**2 + (y[k0] - y[k1])**2 + (z[k0] - z[k1])**2)**0.5) / math.pi * 180 #проблема else: self.line0.rotation.x = math.acos( abs(y[k0] - y[k1]) / ((0)**2 + (y[k0] - y[k1])**2 + (z[k0] - z[k1])**2)**0.5) / math.pi * 180 * -1 #self.line0.rotation.x = math.acos(abs(y[k0]-y[k1])/((0)**2+(y[k0]-y[k1])**2+(z[k0]-z[k1])**2)**0.5)/math.pi*180*-1#there print(self.line0.rotation.z) print(self.line0.rotation.x) lines_list.append(self.line0) k1 += 1 k0 += 1 k1 = 0 line0_geo = BoxGeometry(1, y[1] - y[0], 1) line0_mat = Material() self.line0 = Mesh(geometry=line0_geo, material=line0_mat) # default pos == (0, 0, 0) self.line0.pos.z = int(z[0]) - self.distan #self.line3.rotation.x = 90 #points point_list = [] sumx = 0 sumy = 0 sumz = 0 sumcount = 0 loader = OBJLoader() for i in range(counter): point_geom = SphereGeometry(1.1) point_mat = Material() self.point0 = Mesh(geometry=point_geom, material=point_mat) self.point0.pos.x = int(x[i]) self.point0.pos.y = int(y[i]) self.point0.pos.z = int(z[i]) - self.distan self.point0.scale = (1, 1, 1) point_list.append(self.point0) sumx += self.point0.pos.x sumy += self.point0.pos.y sumz += self.point0.pos.z sumcount += 1 #scene.add(self.point0) point_geom = SphereGeometry() point_mat = Material() self.point1 = Mesh(geometry=point_geom, material=point_mat) self.point1.pos.x = sumx / sumcount self.point1.pos.y = sumy / sumcount self.point1.pos.z = sumz / sumcount self.point1.scale = (1, 1, 1) #scene.add(self.point1) self.camera = PerspectiveCamera( fov=100, # размер окна т.е. чем больше фов тем больше масштаб aspect=0, # "screen" ratio near=1, # рендер от far=10000 # дистанция рендера ) k0 = 0 self.ll = [] for i in soe: for j in i: if (j == 1): self.ll.append(lines_list[k0]) scene.add(lines_list[k0]) k0 += 1 for i in range(counter): scene.add(point_list[i]) pass self.pp = point_list self.renderer.render(scene, self.camera) self.renderer.bind(size=self._adjust_aspect) al.add_widget(self.renderer) bl.add_widget(Factory.Fov()) bl.add_widget(Factory.CamNav()) al.add_widget(bl) return al
def build(self): layout = GridLayout(cols=3) # create renderer self.renderer = Renderer(size_hint=(5, 5)) self.renderer.set_clear_color( (0.1, 0.1, 0.1, 1) ) # rgba # create scene scene = Scene() self.cubes = [] # create cubes for scene # # default pure green cube cube_geo = BoxGeometry(.3, .3, .3) cube_mat = Material( color=(0, 0.5, 0) # base color ) self.cubes.append(Mesh( geometry=cube_geo, material=cube_mat )) # default pos == (0, 0, 0) self.cubes[0].pos.z = -5 self.cubes[0].pos.x = 1 self.cubes[0].pos.y = 0.8 self.cubes[0].rotation.x = 45 # black cube, red shadow, half-transparent cube_geo = BoxGeometry(.3, .3, .3) cube_mat = Material( transparency=0.5, color=(0, 0, 0), # base color diffuse=(10, 0, 0), # color of "shadows" specular=(0, 0, 0) # mirror-like reflections ) self.cubes.append(Mesh( geometry=cube_geo, material=cube_mat )) # default pos == (0, 0, 0) self.cubes[1].pos.z = -5 self.cubes[1].pos.x = -1 self.cubes[1].pos.y = 0.8 self.cubes[1].rotation.y = 45 # default pure green cube with red reflections cube_geo = BoxGeometry(.3, .3, .3) cube_mat = Material( transparency=1, color=(0, 0.5, 0), # base color diffuse=(0, 0, 0), # color of "shadows" specular=(10, 0, 0) # mirror-like reflections ) self.cubes.append(Mesh( geometry=cube_geo, material=cube_mat )) # default pos == (0, 0, 0) self.cubes[2].pos.z = -5 self.cubes[2].pos.x = 1 self.cubes[2].pos.y = -0.8 self.cubes[2].rotation.z = 45 # black cube with red reflections # and half-transparent cube_geo = BoxGeometry(.3, .3, .3) cube_mat = Material( transparency=0.5, color=(0, 0, 0), # base color specular=(10, 0, 0) # mirror-like reflections ) self.cubes.append(Mesh( geometry=cube_geo, material=cube_mat )) # default pos == (0, 0, 0) self.cubes[3].pos.z = -5 self.cubes[3].pos.x = -1 self.cubes[3].pos.y = -0.8 self.cubes[3].rotation.x = 45 cube_geo = BoxGeometry(.3, .3, .3) cube_mat = Material( transparency=0.5, color=(0, 0, 0), # base color specular=(10, 0, 0) ) self.main_cube = Mesh( geometry=cube_geo, material=cube_mat ) # default pos == (0, 0, 0) self.main_cube.rotation.x = 45 self.main_cube.rotation.y = 45 self.main_cube.pos.z = -5 scene.add(self.main_cube) plane_geo = BoxGeometry(5, 5, .1) plane_mat = Material( color=(1, 1, 1) # base color ) plane = Mesh( geometry=plane_geo, material=plane_mat ) plane.pos.z = -10 scene.add(plane) # create camera for scene self.camera = PerspectiveCamera( fov=75, # distance from the screen aspect=0, # "screen" ratio near=.1, # nearest rendered point far=1000 # farthest rendered point ) # start rendering the scene and camera for cube in self.cubes: scene.add(cube) self.renderer.render(scene, self.camera) # set renderer ratio is its size changes # e.g. when added to parent self.renderer.bind(size=self._adjust_aspect) layout.add_widget(Factory.CamRot()) layout.add_widget(Widget()) layout.add_widget(Factory.CamStrafe()) layout.add_widget(Widget()) layout.add_widget(self.renderer) layout.add_widget(Label(text='+\n\nY\n\n-')) layout.add_widget(Factory.CamNav()) layout.add_widget(Label(text='- X +')) layout.add_widget(Factory.ObjNav()) Clock.schedule_interval(self.rotate_cube, .01) Clock.schedule_interval(self.scale_cube, 1) # keyboard listener Listener() return layout
def build(self): self.renderer = Renderer(shader_file=shader_file) scene = Scene() camera = PerspectiveCamera(45, 1, 0.1, 2500) self.renderer.set_clear_color(clear_color) self.camera = camera root = ObjectTrackball(camera, 10, self.renderer) id_color = (0, 0, 0x7F) geometry = BoxGeometry(1, 1, 1) material = Material(color=(1., 1., 1.), diffuse=(1., 1., 1.), specular=(.35, .35, .35), id_color=id_color, shininess=1.) obj = Mesh(geometry, material) scene.add(obj) root.object_list.append({'id': id_color, 'obj': obj}) id_color = (0, 0x7F, 0) geometry = BoxGeometry(1, 1, 1) material = Material(color=(0., 0., 1.), diffuse=(0., 0., 1.), specular=(.35, .35, .35), id_color=id_color, shininess=1.) obj = Mesh(geometry, material) obj.position.x = 2 scene.add(obj) root.object_list.append({'id': id_color, 'obj': obj}) # create a grid on the xz plane geometry = GridGeometry(size=(30, 30), spacing=1) material = Material(color=(1., 1., 1.), diffuse=(1., 1., 1.), specular=(.35, .35, .35), transparency=.5) lines = Lines(geometry, material) lines.rotation.x = 90 scene.add(lines) geometry = Geometry() geometry.vertices = [[0.0, 0.0, 0.0], [3.0, 0.0, 0.0]] geometry.lines = [Line2(a=0, b=1)] material = Material(color=(1., 0., 0.), diffuse=(1., 0., 0.), specular=(.35, .35, .35)) lines = Lines(geometry, material) lines.position.y = -0.01 scene.add(lines) geometry = Geometry() geometry.vertices = [[0.0, 0.0, 0.0], [0.0, 3.0, 0.0]] geometry.lines = [Line2(a=0, b=1)] material = Material(color=(0., 1., 0.), diffuse=(0., 1., 0.), specular=(1., 1.0, 1.0)) lines = Lines(geometry, material) scene.add(lines) geometry = Geometry() geometry.vertices = [[0.0, 0.0, 0.0], [0.0, 0.0, 3.0]] geometry.lines = [Line2(a=0, b=1)] material = Material(color=(0., 0., 1.), diffuse=(0., 0., 1.), specular=(.35, .35, .35)) lines = Lines(geometry, material) lines.position.y = -0.01 scene.add(lines) self.renderer.render(scene, camera) self.renderer.main_light.intensity = 1000 self.renderer.main_light.pos = (10, 10, -10) root.add_widget(self.renderer) self.renderer.bind(size=self._adjust_aspect) return root