示例#1
0
 def spawn_solid_cube(self,
                      location,
                      texture=None,
                      size=(1, 1, 1),
                      color=(1, 1, 1, 0.5),
                      callback=None):
     geo = BoxGeometry(size[0], size[1], size[2])
     mat = Material(color=color[0:3], transparency=color[3], map=texture)
     cube = Mesh(geometry=geo, material=mat)
     self.spawn(cube, location)
     if callback is not None:
         collider = BoxCollider(p1=p1,
                                p2=p2,
                                parent=cube,
                                callback=callback)
         self.colliders.append(collider)
         return (cube, collider)
     return cube
示例#2
0
    def build(self):
        layout = FloatLayout()

        # create renderer
        self.renderer = Renderer()

        # create scene
        scene = Scene()

        # create default cube for scene
        for i in range(1, 6):
            for j in range(1, 6):
                cube_geo = BoxGeometry(*[1] * 3)
                cube_mat = Material(color=(randint(0, 10) * .1,
                                           randint(0, 10) * .1,
                                           randint(0, 10) * .1))
                cube = Mesh(geometry=cube_geo,
                            material=cube_mat)  # default pos == (0, 0, 0)
                cube.pos.y = -0.5
                cube.pos.z = -i
                cube.pos.x = j - 3
                self.cubes.append(cube)
                scene.add(cube)

        # create camera for scene
        self.camera = PerspectiveCamera(
            fov=75,  # distance from the screen
            aspect=0,  # "screen" ratio
            near=1,  # nearest rendered point
            far=20  # farthest rendered point
        )

        # start rendering the scene and camera
        self.renderer.render(scene, self.camera)

        # set renderer ratio is its size changes
        # e.g. when added to parent
        self.renderer.bind(size=self._adjust_aspect)

        layout.add_widget(self.renderer)
        #Clock.schedule_interval(self.move_cubes, 1/60)
        Window.bind(on_key_down=self.handle_keys)
        return layout
示例#3
0
    def build(self):
        root = FloatLayout()

        self.renderer = Renderer()
        self.renderer.set_clear_color((.2, .2, .2, 1.))
        scene = Scene()
        geometry = BoxGeometry(1, 1, 1)
        material = Material(color=(0., 1., 0.),
                            diffuse=(0., 1., 0.),
                            specular=(.35, .35, .35))
        self.cube = Mesh(geometry, material)
        self.cube.pos.z = -3
        camera = PerspectiveCamera(75, 0.3, 1, 1000)

        scene.add(self.cube)
        self.renderer.render(scene, camera)

        root.add_widget(self.renderer)
        Clock.schedule_interval(self._rotate_cube, 1 / 20)
        self.renderer.bind(size=self._adjust_aspect)

        return root
示例#4
0
    def build(self):
        self.renderer = Renderer()
        scene = Scene()
        camera = PerspectiveCamera(45, 1, 0.1, 2500)
        self.renderer.set_clear_color((.2, .2, .2, 1.))

        self.camera = camera
        root = ObjectTrackball(camera, 10)

        # add a cube to the environment as an example
        # NOTE: the grid will be rendered without transparency if it
        # is added before the box.
        # This may be because the shader is not called until a 'triangles' mesh is
        # rendered? Hence the Fragment Shader has not yet been called?
        geometry = BoxGeometry(1, 1, 1)
        material = Material(color=(1., 1., 1.),
                            diffuse=(1., 1., 1.),
                            specular=(.35, .35, .35))
        obj = Mesh(geometry, material)
        scene.add(obj)

        # create a grid on the xz plane
        geometry = GridGeometry(size=(30, 30), spacing=1)
        material = Material(color=(1., 1., 1.),
                            diffuse=(1., 1., 1.),
                            specular=(.35, .35, .35),
                            transparency=.1)
        lines = Lines(geometry, material)
        lines.rotation.x = 90
        scene.add(lines)

        self.renderer.render(scene, camera)
        self.renderer.main_light.intensity = 500

        root.add_widget(self.renderer)
        self.renderer.bind(size=self._adjust_aspect)
        return root
示例#5
0
    def build(self):
        layout = GridLayout(cols=3)

        # create renderer
        self.renderer = Renderer(size_hint=(5, 5))
        self.renderer.set_clear_color((0.1, 0.1, 0.1, 1))  # rgba

        # create scene
        scene = Scene()
        self.cubes = []

        # create cubes for scene
        #
        # default pure green cube
        cube_geo = BoxGeometry(.3, .3, .3)
        cube_mat = Material(color=(0, 0.5, 0)  # base color
                            )
        self.cubes.append(Mesh(geometry=cube_geo,
                               material=cube_mat))  # default pos == (0, 0, 0)
        self.cubes[0].pos.z = -5
        self.cubes[0].pos.x = 1
        self.cubes[0].pos.y = 0.8
        self.cubes[0].rotation.x = 45

        # black cube, red shadow, half-transparent
        cube_geo = BoxGeometry(.3, .3, .3)
        cube_mat = Material(
            transparency=0.5,
            color=(0, 0, 0),  # base color
            diffuse=(10, 0, 0),  # color of "shadows"
            specular=(0, 0, 0)  # mirror-like reflections
        )
        self.cubes.append(Mesh(geometry=cube_geo,
                               material=cube_mat))  # default pos == (0, 0, 0)
        self.cubes[1].pos.z = -5
        self.cubes[1].pos.x = -1
        self.cubes[1].pos.y = 0.8
        self.cubes[1].rotation.y = 45

        # default pure green cube with red reflections
        cube_geo = BoxGeometry(.3, .3, .3)
        cube_mat = Material(
            transparency=1,
            color=(0, 0.5, 0),  # base color
            diffuse=(0, 0, 0),  # color of "shadows"
            specular=(10, 0, 0)  # mirror-like reflections
        )
        self.cubes.append(Mesh(geometry=cube_geo,
                               material=cube_mat))  # default pos == (0, 0, 0)
        self.cubes[2].pos.z = -5
        self.cubes[2].pos.x = 1
        self.cubes[2].pos.y = -0.8
        self.cubes[2].rotation.z = 45

        # something.obj from Blender
        loader = OBJLoader()
        self.cubes.extend(
            loader.load(join(FOLDER, 'models', 'something.obj')).children)
        self.cubes[3].pos.z = -5
        self.cubes[3].pos.x = -1
        self.cubes[3].pos.y = -0.8
        self.cubes[3].rotation.x = 45
        self.cubes[3].material.color = (0.1, 0.4, 0.1)
        self.cubes[3].material.texture_ratio = 0.0

        # cube object from Blender
        loader = OBJLoader()
        self.main_cube = loader.load(join(FOLDER, 'models', 'cube.obj'))
        self.main_cube.rotation.x = 45
        self.main_cube.rotation.y = 45
        self.main_cube.pos.z = -5
        self.main_cube.scale = (0.5, 0.5, 0.5)
        scene.add(self.main_cube)

        planes = [((0, 0, -10), (0, 0, 0)), ((-10, 0, 0), (0, -90, 0)),
                  ((10, 0, 0), (0, 90, 0)),
                  ((0, 0, 10), (0, 180, 0))]  # position and rotation changes
        for plane in planes:
            geo = BoxGeometry(5, 5, .1)
            mat = Material(color=(1, 1, 1))
            mesh = Mesh(geometry=geo, material=mat)
            mesh.pos.x += plane[0][0]
            mesh.pos.y += plane[0][1]
            mesh.pos.z += plane[0][2]
            mesh.rot.x += plane[1][0]
            mesh.rot.y += plane[1][1]
            mesh.rot.z += plane[1][2]
            scene.add(mesh)

        # create camera for scene
        self.camera = PerspectiveCamera(
            fov=75,  # distance from the screen
            aspect=0,  # "screen" ratio
            near=.1,  # nearest rendered point
            far=1000  # farthest rendered point
        )

        # start rendering the scene and camera
        for cube in self.cubes:
            scene.add(cube)
        self.renderer.render(scene, self.camera)

        # set renderer ratio is its size changes
        # e.g. when added to parent
        self.renderer.bind(size=self._adjust_aspect)

        layout.add_widget(Factory.CamRot())
        layout.add_widget(Factory.LightPanel())
        layout.add_widget(Factory.CamStrafe())
        layout.add_widget(Widget())

        layout.add_widget(self.renderer)

        layout.add_widget(Label(text='+\n\nY\n\n-'))
        layout.add_widget(Factory.CamNav())
        layout.add_widget(Label(text='-      X      +'))
        layout.add_widget(Factory.ObjNav())

        Clock.schedule_interval(self.rotate_cube, .01)
        Clock.schedule_interval(self.scale_cube, 1)

        # keyboard listener
        Listener()
        return layout
示例#6
0
def create_joint_rectangle(x, y, z):
    geometry = BoxGeometry(x, y, z)
    for i in range(len(geometry.vertices)):
        geometry.vertices[i][0] += (x / 2)
    return geometry
示例#7
0
文件: main2.py 项目: JustChasti/testr
    def build(self):
        self.theflag = 0
        self.theflag0 = 0
        self.distan = 1000  # дистанция до начальной точки (0,0,-50) что бы ничего не было за экраном (надо будет выстваить на изменение)
        bl = BoxLayout(orientation='vertical',
                       size_hint=(.15, 1),
                       spacing=10,
                       padding=10)  # левая панель
        al = AnchorLayout(anchor_x='left',
                          anchor_y='center')  # основная система интерфейса
        layout = GridLayout(cols=2, spacing=3,
                            size_hint=(1, 1))  #сетка для кнопок поворота

        matrix = np.load('matrix0.npy', allow_pickle=True)
        counter = int(int(matrix.size) / 2)
        x = np.zeros(counter)
        y = np.zeros(counter)
        z = np.zeros(counter)
        soe = np.zeros((counter, counter))

        for i in range(2):
            if (i == 0):
                for j in range(counter):
                    for k in range(3):
                        a = matrix[i, j]
                        if (k == 0):
                            x[j] = a[k] * 10
                        elif (k == 1):
                            y[j] = a[k] * 10
                        else:
                            z[j] = a[k] * 10
            else:
                for j in range(counter):
                    a = matrix[i, j]
                    for k in range(counter):
                        soe[j][k] = a[k]
        print(x, y, z)
        print(soe)
        # кнопка загрузки координат
        loader = Button(text='Load', on_press=self.load)
        bl.add_widget(loader)

        #starter = Button(text='Построить', on_press = self.letstart)
        #bl.add_widget(starter)

        bl.add_widget(Widget())
        # create renderer
        self.renderer = Renderer()

        # create scene
        scene = Scene()

        #lines
        k0 = 0
        k1 = 0
        lines_list = []
        for i in soe:
            for j in i:
                if (j == 1):
                    line0_geo = BoxGeometry(
                        1,
                        int(((y[k0] - y[k1])**2 + (x[k0] - x[k1])**2 +
                             (z[k0] - z[k1])**2)**0.5), 1)
                    #print(int(((abs(x[k0]-x[k1]) + abs(y[k0]-y[k1])+ abs(z[k0]-z[k1]))**0.5)),'length')
                    #print(int(abs(y[k0]-y[k1]) + abs(x[k0]-x[k1])+ abs(z[k0]-z[k1])))
                    line0_mat = Material()
                    self.line0 = Mesh(
                        geometry=line0_geo,
                        material=line0_mat)  # default pos == (0, 0, 0)
                    self.line0.pos.x = int((x[k0] + x[k1]) / 2)
                    self.line0.pos.y = int((y[k0] + y[k1]) / 2)
                    self.line0.pos.z = int((z[k0] + z[k1]) / 2) - self.distan
                    if y[k0] - y[k1] == 0 and x[k0] - x[
                            k1] == 0 and z[k0] - z[k1] != 0:
                        self.line0.rotation.x = 90
                    elif y[k0] - y[k1] == 0 and x[k0] - x[k1] != 0 and z[
                            k0] - z[k1] == 0:
                        self.line0.rotation.z = 90
                    elif y[k0] - y[k1] != 0 and x[k0] - x[k1] == 0 and z[
                            k0] - z[k1] == 0:
                        ###
                        fff = 0
                    elif y[k0] - y[k1] != 0 and x[k0] - x[k1] != 0 and z[
                            k0] - z[k1] == 0:
                        self.line0.rotation.z = math.atan(
                            (x[k0] - x[k1]) / (y[k0] - y[k1])) / math.pi * 180
                    elif y[k0] - y[k1] != 0 and x[k0] - x[
                            k1] == 0 and z[k0] - z[k1] != 0:
                        #self.line0.rotation.x = math.atan((z[k0]-z[k1])/(y[k0]-y[k1]))/math.pi*180
                        self.line0.rotation.x = math.acos(
                            abs(y[k0] - y[k1]) /
                            ((x[k0] - x[k1])**2 + (y[k0] - y[k1])**2 +
                             (z[k0] - z[k1])**2)**0.5) / math.pi * 180
                        #print()
                    elif y[k0] - y[k1] == 0 and x[k0] - x[k1] != 0 and z[
                            k0] - z[k1] != 0:
                        self.line0.rotation.z = math.atan(
                            (x[k0] - x[k1]) /
                            (z[k0] - z[k1])) / math.pi * 180 * -1
                        self.line0.rotation.x = 90

                    ###
                    elif y[k0] - y[k1] != 0 and x[k0] - x[k1] != 0 and z[
                            k0] - z[k1] != 0:
                        if ((x[k0] < x[k1] and y[k0] < y[k1])
                                or (x[k0] > x[k1] and y[k0] > y[k1])):
                            #self.line0.rotation.z = math.atan((abs(z[k0]-z[k1]))/1.5/(abs(y[k0]-y[k1])))/math.pi*180
                            self.line0.rotation.z = math.acos(
                                abs(y[k0] - y[k1]) /
                                ((x[k0] - x[k1])**2 + (y[k0] - y[k1])**2 +
                                 (0)**2)**0.5) / math.pi * 180 * -1
                            #проблема
                        else:
                            self.line0.rotation.z = math.acos(
                                abs(y[k0] - y[k1]) /
                                ((x[k0] - x[k1])**2 + (y[k0] - y[k1])**2 +
                                 (0)**2)**0.5) / math.pi * 180
                        #self.line0.rotation.x = math.atan((1.25*abs(x[k0]-x[k1]))/(abs(y[k0]-y[k1])))/math.pi*180*-1
                        if ((z[k0] < z[k1] and y[k0] < y[k1])
                                or (z[k0] > z[k1] and y[k0] > y[k1])):
                            self.line0.rotation.x = math.acos(
                                abs(y[k0] - y[k1]) /
                                ((0)**2 + (y[k0] - y[k1])**2 +
                                 (z[k0] - z[k1])**2)**0.5) / math.pi * 180
                            #проблема
                        else:
                            self.line0.rotation.x = math.acos(
                                abs(y[k0] - y[k1]) /
                                ((0)**2 + (y[k0] - y[k1])**2 +
                                 (z[k0] - z[k1])**2)**0.5) / math.pi * 180 * -1

                        #self.line0.rotation.x = math.acos(abs(y[k0]-y[k1])/((0)**2+(y[k0]-y[k1])**2+(z[k0]-z[k1])**2)**0.5)/math.pi*180*-1#there
                        print(self.line0.rotation.z)
                        print(self.line0.rotation.x)
                    lines_list.append(self.line0)
                k1 += 1
            k0 += 1
            k1 = 0
        line0_geo = BoxGeometry(1, y[1] - y[0], 1)
        line0_mat = Material()
        self.line0 = Mesh(geometry=line0_geo,
                          material=line0_mat)  # default pos == (0, 0, 0)
        self.line0.pos.z = int(z[0]) - self.distan

        #self.line3.rotation.x = 90

        #points
        point_list = []
        sumx = 0
        sumy = 0
        sumz = 0
        sumcount = 0
        loader = OBJLoader()

        for i in range(counter):
            point_geom = SphereGeometry(1.1)
            point_mat = Material()
            self.point0 = Mesh(geometry=point_geom, material=point_mat)
            self.point0.pos.x = int(x[i])
            self.point0.pos.y = int(y[i])
            self.point0.pos.z = int(z[i]) - self.distan
            self.point0.scale = (1, 1, 1)
            point_list.append(self.point0)
            sumx += self.point0.pos.x
            sumy += self.point0.pos.y
            sumz += self.point0.pos.z
            sumcount += 1
            #scene.add(self.point0)

        point_geom = SphereGeometry()
        point_mat = Material()
        self.point1 = Mesh(geometry=point_geom, material=point_mat)
        self.point1.pos.x = sumx / sumcount
        self.point1.pos.y = sumy / sumcount
        self.point1.pos.z = sumz / sumcount
        self.point1.scale = (1, 1, 1)
        #scene.add(self.point1)
        self.camera = PerspectiveCamera(
            fov=100,  # размер окна т.е. чем больше фов тем больше масштаб
            aspect=0,  # "screen" ratio
            near=1,  # рендер от
            far=10000  # дистанция рендера
        )

        k0 = 0
        self.ll = []
        for i in soe:
            for j in i:
                if (j == 1):
                    self.ll.append(lines_list[k0])
                    scene.add(lines_list[k0])
                    k0 += 1

        for i in range(counter):
            scene.add(point_list[i])
            pass

        self.pp = point_list
        self.renderer.render(scene, self.camera)
        self.renderer.bind(size=self._adjust_aspect)
        al.add_widget(self.renderer)
        bl.add_widget(Factory.Fov())
        bl.add_widget(Factory.CamNav())
        al.add_widget(bl)
        return al
示例#8
0
    def build(self):
        layout = GridLayout(cols=3)

        # create renderer
        self.renderer = Renderer(size_hint=(5, 5))
        self.renderer.set_clear_color(
            (0.1, 0.1, 0.1, 1)
        )  # rgba

        # create scene
        scene = Scene()
        self.cubes = []

        # create cubes for scene
        #
        # default pure green cube
        cube_geo = BoxGeometry(.3, .3, .3)
        cube_mat = Material(
            color=(0, 0.5, 0)  # base color
        )
        self.cubes.append(Mesh(
            geometry=cube_geo,
            material=cube_mat
        ))  # default pos == (0, 0, 0)
        self.cubes[0].pos.z = -5
        self.cubes[0].pos.x = 1
        self.cubes[0].pos.y = 0.8
        self.cubes[0].rotation.x = 45

        # black cube, red shadow, half-transparent
        cube_geo = BoxGeometry(.3, .3, .3)
        cube_mat = Material(
            transparency=0.5,
            color=(0, 0, 0),  # base color
            diffuse=(10, 0, 0),  # color of "shadows"
            specular=(0, 0, 0)  # mirror-like reflections
        )
        self.cubes.append(Mesh(
            geometry=cube_geo,
            material=cube_mat
        ))  # default pos == (0, 0, 0)
        self.cubes[1].pos.z = -5
        self.cubes[1].pos.x = -1
        self.cubes[1].pos.y = 0.8
        self.cubes[1].rotation.y = 45

        # default pure green cube with red reflections
        cube_geo = BoxGeometry(.3, .3, .3)
        cube_mat = Material(
            transparency=1,
            color=(0, 0.5, 0),  # base color
            diffuse=(0, 0, 0),  # color of "shadows"
            specular=(10, 0, 0)  # mirror-like reflections
        )
        self.cubes.append(Mesh(
            geometry=cube_geo,
            material=cube_mat
        ))  # default pos == (0, 0, 0)
        self.cubes[2].pos.z = -5
        self.cubes[2].pos.x = 1
        self.cubes[2].pos.y = -0.8
        self.cubes[2].rotation.z = 45

        # black cube with red reflections
        # and half-transparent
        cube_geo = BoxGeometry(.3, .3, .3)
        cube_mat = Material(
            transparency=0.5,
            color=(0, 0, 0),  # base color
            specular=(10, 0, 0)  # mirror-like reflections
        )
        self.cubes.append(Mesh(
            geometry=cube_geo,
            material=cube_mat
        ))  # default pos == (0, 0, 0)
        self.cubes[3].pos.z = -5
        self.cubes[3].pos.x = -1
        self.cubes[3].pos.y = -0.8
        self.cubes[3].rotation.x = 45

        cube_geo = BoxGeometry(.3, .3, .3)
        cube_mat = Material(
            transparency=0.5,
            color=(0, 0, 0),  # base color
            specular=(10, 0, 0)
        )
        self.main_cube = Mesh(
            geometry=cube_geo,
            material=cube_mat
        )  # default pos == (0, 0, 0)
        self.main_cube.rotation.x = 45
        self.main_cube.rotation.y = 45
        self.main_cube.pos.z = -5
        scene.add(self.main_cube)

        plane_geo = BoxGeometry(5, 5, .1)
        plane_mat = Material(
            color=(1, 1, 1)  # base color
        )
        plane = Mesh(
            geometry=plane_geo,
            material=plane_mat
        )
        plane.pos.z = -10
        scene.add(plane)

        # create camera for scene
        self.camera = PerspectiveCamera(
            fov=75,    # distance from the screen
            aspect=0,  # "screen" ratio
            near=.1,    # nearest rendered point
            far=1000     # farthest rendered point
        )

        # start rendering the scene and camera
        for cube in self.cubes:
            scene.add(cube)
        self.renderer.render(scene, self.camera)

        # set renderer ratio is its size changes
        # e.g. when added to parent
        self.renderer.bind(size=self._adjust_aspect)

        layout.add_widget(Factory.CamRot())
        layout.add_widget(Widget())
        layout.add_widget(Factory.CamStrafe())
        layout.add_widget(Widget())

        layout.add_widget(self.renderer)

        layout.add_widget(Label(text='+\n\nY\n\n-'))
        layout.add_widget(Factory.CamNav())
        layout.add_widget(Label(text='-      X      +'))
        layout.add_widget(Factory.ObjNav())

        Clock.schedule_interval(self.rotate_cube, .01)
        Clock.schedule_interval(self.scale_cube, 1)

        # keyboard listener
        Listener()
        return layout
示例#9
0
    def build(self):
        self.renderer = Renderer(shader_file=shader_file)
        scene = Scene()
        camera = PerspectiveCamera(45, 1, 0.1, 2500)
        self.renderer.set_clear_color(clear_color)

        self.camera = camera

        root = ObjectTrackball(camera, 10, self.renderer)

        id_color = (0, 0, 0x7F)
        geometry = BoxGeometry(1, 1, 1)
        material = Material(color=(1., 1., 1.),
                            diffuse=(1., 1., 1.),
                            specular=(.35, .35, .35),
                            id_color=id_color,
                            shininess=1.)
        obj = Mesh(geometry, material)
        scene.add(obj)
        root.object_list.append({'id': id_color, 'obj': obj})

        id_color = (0, 0x7F, 0)
        geometry = BoxGeometry(1, 1, 1)
        material = Material(color=(0., 0., 1.),
                            diffuse=(0., 0., 1.),
                            specular=(.35, .35, .35),
                            id_color=id_color,
                            shininess=1.)
        obj = Mesh(geometry, material)
        obj.position.x = 2
        scene.add(obj)
        root.object_list.append({'id': id_color, 'obj': obj})

        # create a grid on the xz plane
        geometry = GridGeometry(size=(30, 30), spacing=1)
        material = Material(color=(1., 1., 1.),
                            diffuse=(1., 1., 1.),
                            specular=(.35, .35, .35),
                            transparency=.5)
        lines = Lines(geometry, material)
        lines.rotation.x = 90
        scene.add(lines)

        geometry = Geometry()
        geometry.vertices = [[0.0, 0.0, 0.0], [3.0, 0.0, 0.0]]
        geometry.lines = [Line2(a=0, b=1)]
        material = Material(color=(1., 0., 0.),
                            diffuse=(1., 0., 0.),
                            specular=(.35, .35, .35))
        lines = Lines(geometry, material)
        lines.position.y = -0.01
        scene.add(lines)

        geometry = Geometry()
        geometry.vertices = [[0.0, 0.0, 0.0], [0.0, 3.0, 0.0]]
        geometry.lines = [Line2(a=0, b=1)]
        material = Material(color=(0., 1., 0.),
                            diffuse=(0., 1., 0.),
                            specular=(1., 1.0, 1.0))
        lines = Lines(geometry, material)
        scene.add(lines)

        geometry = Geometry()
        geometry.vertices = [[0.0, 0.0, 0.0], [0.0, 0.0, 3.0]]
        geometry.lines = [Line2(a=0, b=1)]
        material = Material(color=(0., 0., 1.),
                            diffuse=(0., 0., 1.),
                            specular=(.35, .35, .35))
        lines = Lines(geometry, material)
        lines.position.y = -0.01
        scene.add(lines)

        self.renderer.render(scene, camera)
        self.renderer.main_light.intensity = 1000
        self.renderer.main_light.pos = (10, 10, -10)

        root.add_widget(self.renderer)
        self.renderer.bind(size=self._adjust_aspect)

        return root