示例#1
0
 def load_image_with_annots(self, image_id=None, rng=None):
     """ Returns a random image and its annotations """
     if image_id is not None and self.seed is not None:
         rng = kwarray.ensure_rng(self.seed * len(self) + image_id)
     rng = kwarray.ensure_rng(rng)
     img, anns = demodata_toy_img(gsize=self._full_imgsize,
                                  categories=self.catpats,
                                  gray=self.gray,
                                  rng=rng, n_annots=(0, 10))
     _node_to_id = self.catgraph.node_to_id
     img['id'] = int(rng.rand() * self._n_images)
     img['file_name'] = '{}.png'.format(img['id'])
     for ann in anns:
         ann['category_id'] = _node_to_id[ann['category_name']]
     return img, anns
示例#2
0
    def get_positive(self, index=None, rng=None):
        """
        Get localization information for a positive region

        Args:
            index (int or None): indexes into the current positive pool
                or if None returns a random negative

            rng (RandomState): used only if index is None

        Returns:
            Dict: tr: target info dictionary

        Example:
            >>> from ndsampler import coco_sampler
            >>> rng = kwarray.ensure_rng(0)
            >>> self = coco_sampler.CocoSampler.demo().regions
            >>> tr = self.get_positive(0, rng=rng)
            >>> print(ub.repr2(tr, precision=2))
        """
        if index is None:
            rng = kwarray.ensure_rng(rng)
            index = rng.randint(0, self.n_positives)

        if self._pos_select_idxs is not None:
            index = self._pos_select_idxs[index]

        tr = self.targets.iloc[index]
        return tr
示例#3
0
    def __init__(self,
                 index_to_label,
                 batch_size=1,
                 num_batches='auto',
                 quantile=0.5,
                 shuffle=False,
                 rng=None):
        import kwarray

        rng = kwarray.ensure_rng(rng, api='python')
        label_to_indices = kwarray.group_items(np.arange(len(index_to_label)),
                                               index_to_label)

        label_to_freq = ub.map_vals(len, label_to_indices)

        label_to_subsampler = {
            label: RingSampler(indices, shuffle=shuffle, rng=rng)
            for label, indices in label_to_indices.items()
        }

        self.label_to_freq = label_to_freq
        self.index_to_label = index_to_label
        self.batch_size = batch_size
        self.shuffle = shuffle
        self.rng = rng
        self.label_to_indices = label_to_indices
        self.label_to_subsampler = label_to_subsampler

        if num_batches == 'auto':
            self.num_batches = self._auto_num_batches(quantile)
        else:
            self.num_batches = num_batches

        self.labels = list(self.label_to_indices.keys())
示例#4
0
 def random(Coords, num=1, dim=2, rng=None, meta=None):
     """
     Makes random coordinates; typically for testing purposes
     """
     rng = kwarray.ensure_rng(rng)
     self = Coords(data=rng.rand(num, dim), meta=meta)
     return self
示例#5
0
    def random(cls, nesting=(2, 5), rng=None):
        """
        CommandLine:
            xdoctest -m ndsampler.delayed DelayedWarp.random

        Example:
            >>> from ndsampler.delayed import *  # NOQA
            >>> self = DelayedWarp.random(nesting=(4, 7))
            >>> print('self = {!r}'.format(self))
            >>> print(ub.repr2(self.nesting(), nl=-1, sort=0))
        """
        from kwarray.distributions import DiscreteUniform, Uniform
        rng = kwarray.ensure_rng(rng)
        chan_distri = DiscreteUniform.coerce((1, 5), rng=rng)
        nest_distri = DiscreteUniform.coerce(nesting, rng=rng)
        size_distri = DiscreteUniform.coerce((8, 64), rng=rng)
        raw_distri = Uniform(rng=rng)
        leaf_c = chan_distri.sample()
        leaf_w = size_distri.sample()
        leaf_h = size_distri.sample()
        raw = raw_distri.sample(leaf_h, leaf_w, leaf_c)
        layer = raw
        depth = nest_distri.sample()
        for _ in range(depth):
            tf = Affine.random(rng=rng).matrix
            layer = DelayedWarp(layer, tf, dsize='auto')
        self = layer
        return self
示例#6
0
    def demo(cls, key='img', rng=None, **kwargs):
        """
        Create data for tests

        Example:
            >>> from netharn.data.data_containers import *  # NOQA
            >>> print(ItemContainer.demo('img'))
            >>> print(ItemContainer.demo('labels'))
            >>> print(ItemContainer.demo('box'))

        """
        import kwarray
        rng = kwarray.ensure_rng(rng)
        if key == 'img':
            shape = kwargs.get('shape', (3, 512, 512))
            data = rng.rand(*shape).astype(np.float32)
            data = torch.from_numpy(data)
            self = cls(data, stack=True)
        elif key == 'labels':
            n = rng.randint(0, 10)
            data = rng.randint(0, 10, n)
            data = torch.from_numpy(data)
            self = cls(data, stack=False)
        elif key == 'box':
            n = rng.randint(0, 10)
            data = rng.rand(n, 4)
            data = torch.from_numpy(data)
            self = cls(data, stack=False)
        else:
            raise KeyError(key)
        return self
示例#7
0
def image_variations(image_basis):
    """
    Helper to make several variations of image inputs for opencv with different
    dtypes etc..
    """
    rng = kwarray.ensure_rng(0)

    if image_basis is None:
        image_basis = {
            'dims': [(32, 32), (37, 41), (53, 31)],
            'channels': [None, 1, 3, 4, 20, 1024],
            'dtype': ['uint8', 'int64', 'float32', 'float64'],
        }

    # TODO: how to specify conditionals?
    # conditionals = {
    #     np.uint8
    # }

    for imgkw in list(basis_product(image_basis)):
        if imgkw['channels'] is None:
            shape = imgkw['dims']
        else:
            shape = imgkw['dims'] + (imgkw['channels'], )
        dtype = np.dtype(imgkw['dtype'])
        img = rng.rand(*shape)
        if dtype.kind in {'i', 'u'}:
            img = img * 255
        img = img.astype(dtype)
        yield imgkw, img
示例#8
0
    def __init__(self, size=4, border=1, n=100, rng=None):
        import kwarray
        rng = kwarray.ensure_rng(rng)

        h = w = size

        whiteish = 1 - (np.abs(rng.randn(n, 1, h, w) / 4) % 1)
        blackish = (np.abs(rng.randn(n, 1, h, w) / 4) % 1)

        fw = border
        slices = [slice(None, fw), slice(-fw, None)]

        # class 0 is white block inside a black frame
        data1 = whiteish.copy()
        for sl1, sl2 in it.product(slices, slices):
            data1[..., sl1, :] = blackish[..., sl1, :]
            data1[..., :, sl2] = blackish[..., :, sl2]

        # class 1 is black block inside a white frame
        data2 = blackish.copy()
        for sl1, sl2 in it.product(slices, slices):
            data2[..., sl1, :] = whiteish[..., sl1, :]
            data2[..., :, sl2] = whiteish[..., :, sl2]

        self.data = np.concatenate([data1, data2], axis=0)
        self.labels = np.array(([0] * n) + ([1] * n))

        suffix = ub.hash_data([size, border, n, rng],
                              base='abc',
                              hasher='sha1')[0:16]
        self.input_id = 'TD2D_{}_'.format(n) + suffix
示例#9
0
    def demo(cls, n=10, p_true=0.5, p_error=0.2, rng=None):
        """
        Create random data for tests

        Example:
            >>> cfsn = BinaryConfusionVectors.demo(n=1000, p_error=0.1)
            >>> print(cfsn.data._pandas())
            >>> roc_info = cfsn.roc()
            >>> pr_info = cfsn.precision_recall()
            >>> print('roc_info = {!r}'.format(roc_info))
            >>> print('pr_info = {!r}'.format(pr_info))
            >>> # xdoctest: +REQUIRES(--show)
            >>> import kwplot
            >>> kwplot.autompl()
            >>> kwplot.figure(fnum=1, pnum=(1, 2, 1))
            >>> pr_info.draw()
            >>> kwplot.figure(fnum=1, pnum=(1, 2, 2))
            >>> roc_info.draw()
        """
        import kwarray
        rng = kwarray.ensure_rng(rng)
        score = rng.rand(n)

        data = kwarray.DataFrameArray({
            'is_true': (score > p_true).astype(np.uint8),
            'pred_score':
            score,
        })

        flags = rng.rand(n) < p_error
        data['is_true'][flags] = 1 - data['is_true'][flags]

        classes = ['c1', 'c2', 'c3']
        self = cls(data, cx=1, classes=classes)
        return self
示例#10
0
    def _demo_probs(self, num=5, rng=0, nonrandom=3, hackargmax=True):
        """ dummy probabilities for testing """
        import torch
        rng = kwarray.ensure_rng(rng)
        class_energy = torch.FloatTensor(rng.rand(num, len(self)))

        # Setup the first few examples to prefer being classified
        # as a fine grained class to a decreasing degree.
        # The first example is set to have equal energy
        # The i + 2-th example is set to have an extremely high energy.
        start = 0
        nonrandom = min(nonrandom, (num - start))
        if nonrandom > 0:
            path = sorted(ub.take(self.node_to_idx, nx.dag_longest_path(self.graph)))

            class_energy[start] = 1 / len(class_energy[start])
            if hackargmax:
                # HACK: even though we want to test uniform distributions, it makes
                # regression tests difficiult because torch and numpy return a
                # different argmax when the array has more than one max value.
                # add a VERY small epsilon to make max values distinct
                class_energy[start] += torch.linspace(0, .00001, len(class_energy[start]))

            if nonrandom > 1:
                for i in range(nonrandom - 2):
                    class_energy[start + i + 1][path] += 2 ** (i / 4)
                class_energy[start + i + 2][path] += 2 ** 20

        class_probs = self.hierarchical_softmax(class_energy, dim=1)
        return class_probs
示例#11
0
    def _demo_item(self, dims=(4, 4), rng=None):
        """
        Create an input that satisfies this spec

        Returns:
            dict: an item like it might appear when its returned from the
                `__getitem__` method of a :class:`torch...Dataset`.

        Example:
            >>> dims = (1, 1)
            >>> ChannelSpec.coerce(3)._demo_item(dims, rng=0)
            >>> ChannelSpec.coerce('r|g|b|disaprity')._demo_item(dims, rng=0)
            >>> ChannelSpec.coerce('rgb|disaprity')._demo_item(dims, rng=0)
            >>> ChannelSpec.coerce('rgb,disaprity')._demo_item(dims, rng=0)
            >>> ChannelSpec.coerce('rgb')._demo_item(dims, rng=0)
            >>> ChannelSpec.coerce('gray')._demo_item(dims, rng=0)
        """
        import torch
        import kwarray
        rng = kwarray.ensure_rng(rng)
        item_shapes = self._item_shapes(dims)
        item = {
            key: torch.from_numpy(rng.rand(*shape))
            for key, shape in item_shapes.items()
        }
        return item
示例#12
0
 def worker_init_fn(worker_id):
     for i in range(worker_id + 1):
         seed = np.random.randint(0, int(2**32) - 1)
     seed = seed + worker_id
     kwarray.seed_global(seed)
     if self.augmenter:
         rng = kwarray.ensure_rng(None)
         self.augmenter.seed_(rng)
示例#13
0
    def load_negative(self, index=None, pad=None, window_dims=None, rng=None):

        if index is not None and self.seed is not None:
            rng = kwarray.ensure_rng(self.seed * len(self) + index)

        sample = self._load_toy_sample(window_dims, pad, rng,
                                       centerobj='neg',
                                       n_annots=self._n_annots_neg)
        return sample
示例#14
0
 def __init__(self, items, shuffle=False, rng=None):
     import kwarray
     if len(items) == 0:
         raise Exception('no items to sample')
     self.rng = kwarray.ensure_rng(rng)
     self.items = np.array(items)
     self.shuffle = shuffle
     self.indices = np.arange(len(items))
     self._pos = None
     self.refresh()
示例#15
0
def random_ordered_tree(n, seed=None, pool=None):
    import kwarray
    rng = kwarray.ensure_rng(seed, 'python')
    tree = nx.dfs_tree(nx.random_tree(n, seed=seed))
    otree = nx.OrderedDiGraph()
    otree.add_edges_from(tree.edges)
    if pool is not None:
        for node in otree.nodes:
            otree.nodes[node]['label'] = rng.choice(pool)
    return otree
示例#16
0
 def random(cls, shape=None, rng=None):
     import kwarray
     rng = kwarray.ensure_rng(rng)
     self = cls(None)
     if isinstance(shape, int):
         shape = (shape, shape)
     if shape is None:
         shape = self.shape
     self.matrix = rng.rand(*shape)
     return self
示例#17
0
def worker_init_fn(worker_id, augmenter=None):
    for i in range(worker_id + 1):
        seed = np.random.randint(0, int(2**31) - 1)
    seed = seed + worker_id
    kwarray.seed_global(seed)

    worker_info = torch.utils.data.get_worker_info()
    self = worker_info.dataset

    if self.augmenter:
        rng = kwarray.ensure_rng(None)
        self.augmenter.seed_(rng)
示例#18
0
def test_class_torch():
    import numpy as np
    import torch
    import ubelt as ub
    import kwarray
    import kwimage

    thresh = .5

    num = 500
    rng = kwarray.ensure_rng(0)
    cpu_boxes = kwimage.Boxes.random(num,
                                     scale=400.0,
                                     rng=rng,
                                     format='tlbr',
                                     tensor=True)
    cpu_tlbr = cpu_boxes.to_tlbr().data
    # cpu_scores = torch.Tensor(rng.rand(len(cpu_tlbr)))
    # make all scores unique to ensure comparability
    cpu_scores = torch.Tensor(np.linspace(0, 1, len(cpu_tlbr)))
    cpu_cls = torch.LongTensor(rng.randint(0, 10, len(cpu_tlbr)))

    tlbr = cpu_boxes.to_tlbr().data.to('cuda')
    scores = cpu_scores.to('cuda')
    classes = cpu_cls.to('cuda')

    keep1 = []
    for idxs in ub.group_items(range(len(classes)),
                               classes.cpu().numpy()).values():
        # cls_tlbr = tlbr.take(idxs, axis=0)
        # cls_scores = scores.take(idxs, axis=0)
        cls_tlbr = tlbr[idxs]
        cls_scores = scores[idxs]
        cls_keep = torch_nms(cls_tlbr, cls_scores, thresh=thresh, bias=0)
        keep1.extend(list(ub.compress(idxs, cls_keep.cpu().numpy())))
    keep1 = sorted(keep1)

    keep_ = torch_nms(tlbr, scores, classes=classes, thresh=thresh, bias=0)
    keep2 = np.where(keep_.cpu().numpy())[0].tolist()

    keep3 = kwimage.non_max_supression(tlbr.cpu().numpy(),
                                       scores.cpu().numpy(),
                                       classes=classes.cpu().numpy(),
                                       thresh=thresh,
                                       bias=0,
                                       impl='gpu')

    print(len(keep1))
    print(len(keep2))
    print(len(keep3))

    print(set(keep1) - set(keep2))
    print(set(keep2) - set(keep1))
示例#19
0
    def random(self, n=3, rng=None, tight=False):
        """
        Create a random MultiPolygon

        Returns:
            MultiPolygon
        """
        import kwarray
        rng = kwarray.ensure_rng(rng)
        data = [Polygon.random(rng=rng, tight=tight) for _ in range(n)]
        self = MultiPolygon(data)
        return self
示例#20
0
文件: rational.py 项目: Erotemic/misc
 def random(cls, size=None, min=None, max=None, rng=None):
     min = np.iinfo(int).min if min is None else min
     max = np.iinfo(int).max if max is None else max
     rng = ensure_rng(rng)
     if size is None:
         n, d = map(int, rng.randint(min, max, size=2))
         return cls(n, d)
     else:
         items = np.empty(size, dtype=Rational)
         ns, ds = rng.randint(min, max, size=(2, items.size))
         items.ravel()[:] = [
             Rational(int(n), int(d)) for n, d in zip(ns, ds)
         ]
         return items
示例#21
0
    def get_item(self, index, rng=None):
        """
        Loads from positives and then negatives.
        """
        if index is None:
            rng = kwarray.ensure_rng(rng)
            index = rng.randint(0, self.n_samples)

        if index < self.n_positives:
            sample = self.get_positive(index, rng=rng)
        else:
            index = index - self.n_positives
            sample = self.get_negative(index, rng=rng)
        return sample
示例#22
0
def select_positive_regions(targets, window_dims=(300, 300), thresh=0.0,
                            rng=None, verbose=0):
    """
    Reduce positive example redundency by selecting disparate positive samples

    Example:
        >>> from ndsampler.coco_regions import *
        >>> import kwcoco
        >>> dset = kwcoco.CocoDataset.demo('shapes8')
        >>> targets = tabular_coco_targets(dset)
        >>> window_dims = (300, 300)
        >>> selected = select_positive_regions(targets, window_dims)
        >>> print(len(selected))
        >>> print(len(dset.anns))
    """
    unique_gids, groupxs = kwarray.group_indices(targets['gid'])
    gid_to_groupx = dict(zip(unique_gids, groupxs))
    wh, ww = window_dims
    rng = kwarray.ensure_rng(rng)
    selection = []

    # Get all the bounding boxes
    cxs, cys = ub.take(targets, ['cx', 'cy'])
    n = len(targets)
    cxs = cxs.astype(np.float32)
    cys = cys.astype(np.float32)
    wws = np.full(n, ww, dtype=np.float32)
    whs = np.full(n, wh, dtype=np.float32)
    cxywh = np.hstack([a[:, None] for a in [cxs, cys, wws, whs]])
    boxes = kwimage.Boxes(cxywh, 'cxywh').to_tlbr()

    iter_ = ub.ProgIter(gid_to_groupx.items(),
                        enabled=verbose,
                        label='select positive regions',
                        total=len(gid_to_groupx), adjust=0, freq=32)

    for gid, groupx in iter_:
        # Select all candiate windows in this image
        cand_windows = boxes.take(groupx, axis=0)
        # Randomize which candidate windows have the highest scores so the
        # selection can vary each epoch.
        cand_scores = rng.rand(len(cand_windows))
        cand_dets = kwimage.Detections(boxes=cand_windows, scores=cand_scores)
        # Non-max supresssion is really similar to set-cover
        keep = cand_dets.non_max_supression(thresh=thresh)
        selection.extend(groupx[keep])

    selection = np.array(sorted(selection))
    return selection
示例#23
0
    def main(cls, cmdline=True, **kw):
        """
        Example:
            >>> kw = {'src': 'special:shapes8',
            >>>       'dst1': 'train.json', 'dst2': 'test.json'}
            >>> cmdline = False
            >>> cls = CocoSplitCLI
            >>> cls.main(cmdline, **kw)
        """
        import kwcoco
        import kwarray
        from kwcoco.util import util_sklearn

        config = cls.CLIConfig(kw, cmdline=cmdline)
        print('config = {}'.format(ub.repr2(dict(config), nl=1)))

        if config['src'] is None:
            raise Exception('must specify source: {}'.format(config['src']))

        print('reading fpath = {!r}'.format(config['src']))
        dset = kwcoco.CocoDataset.coerce(config['src'])
        annots = dset.annots()
        gids = annots.gids
        cids = annots.cids

        # Balanced category split
        rng = kwarray.ensure_rng(config['rng'])

        shuffle = rng is not None
        self = util_sklearn.StratifiedGroupKFold(n_splits=config['factor'],
                                                 random_state=rng,
                                                 shuffle=shuffle)
        split_idxs = list(self.split(X=gids, y=cids, groups=gids))
        idxs1, idxs2 = split_idxs[0]

        gids1 = sorted(ub.unique(ub.take(gids, idxs1)))
        gids2 = sorted(ub.unique(ub.take(gids, idxs2)))

        dset1 = dset.subset(gids1)
        dset2 = dset.subset(gids2)

        dset1.fpath = config['dst1']
        print('Writing dset1 = {!r}'.format(dset1.fpath))
        dset1.dump(dset1.fpath, newlines=True)

        dset2.fpath = config['dst2']
        print('Writing dset2 = {!r}'.format(dset2.fpath))
        dset2.dump(dset2.fpath, newlines=True)
示例#24
0
    def _stratified_split(gids, cids, n_splits=2, rng=None):
        """ helper to split while trying to maintain class balance within images """
        rng = kwarray.ensure_rng(rng)
        from ndsampler.utils import util_sklearn
        selector = util_sklearn.StratifiedGroupKFold(n_splits=n_splits,
                                                     random_state=rng,
                                                     shuffle=True)

        # from sklearn import model_selection
        # selector = model_selection.StratifiedKFold(
        #     n_splits=n_splits, random_state=rng, shuffle=True)
        skf_list = list(selector.split(X=gids, y=cids, groups=gids))
        trainx, testx = skf_list[0]

        if 0:
            _train_gids = set(ub.take(gids, trainx))
            _test_gids = set(ub.take(gids, testx))
            print('_train_gids = {!r}'.format(_train_gids))
            print('_test_gids = {!r}'.format(_test_gids))
        return trainx, testx
示例#25
0
    def random(cls, rng=None):
        """
        Example:
            >>> self = Segmentation.random()
            >>> print('self = {!r}'.format(self))
            >>> # xdoc: +REQUIRES(--show)
            >>> import kwplot
            >>> kwplot.autompl()
            >>> kwplot.figure(fnum=1, doclf=True)
            >>> self.draw()
            >>> kwplot.show_if_requested()
        """

        import kwarray
        import kwimage
        rng = kwarray.ensure_rng(rng)
        if rng.rand() > 0.5:
            data = kwimage.Polygon.random()
        else:
            data = kwimage.Mask.random()
        return cls.coerce(data)
示例#26
0
文件: boids.py 项目: Kitware/kwcoco
    def __init__(self, num, dims=2, rng=None, **kwargs):
        self.rng = kwarray.ensure_rng(rng)
        self.num = num
        self.dims = dims

        # self.config = {
        #     'perception_thresh': 0.08,
        #     'max_speed': 0.005,
        #     'max_force': 0.0003,
        # }
        self.config = {
            'perception_thresh': 0.2,
            'max_speed': 0.01,
            'max_force': 0.001,
            'damping': 0.99,
        }
        self.config.update(ub.dict_isect(kwargs, self.config))

        self.pos = None
        self.vel = None
        self.acc = None
示例#27
0
    def random(cls, num_parts=3, rng=None):
        """
        CommandLine:
            xdoctest -m ndsampler.delayed DelayedWarp.random

        Example:
            >>> self = DelayedChannelConcat.random()
            >>> print('self = {!r}'.format(self))
            >>> print(ub.repr2(self.nesting(), nl=-1, sort=0))
        """
        rng = kwarray.ensure_rng(rng)
        self_w = rng.randint(8, 64)
        self_h = rng.randint(8, 64)
        components = []
        for _ in range(num_parts):
            subcomp = DelayedWarp.random(rng=rng)
            tf = Affine.random(rng=rng).matrix
            comp = subcomp.delayed_warp(tf, dsize=(self_w, self_h))
            components.append(comp)
        self = DelayedChannelConcat(components)
        return self
示例#28
0
    def random(Points, num=1, classes=None, rng=None):
        """
        Makes random points; typically for testing purposes

        Example:
            >>> import kwimage
            >>> self = kwimage.Points.random(classes=[1, 2, 3])
            >>> self.data
            >>> print('self.data = {!r}'.format(self.data))
        """
        rng = kwarray.ensure_rng(rng)
        if ub.iterable(num):
            shape = tuple(num) + (2,)
        else:
            shape = (num, 2)
        self = Points(xy=rng.rand(*shape))
        self.data['visible'] = np.full(len(self), fill_value=2)
        if classes is not None:
            class_idxs = (rng.rand(len(self)) * len(classes)).astype(np.int)
            self.data['class_idxs'] = class_idxs
            self.meta['classes'] = classes
        return self
示例#29
0
def _gen_cluttered_func(n=100):
    lines = []
    import ubelt as ub
    import kwarray
    rng = kwarray.ensure_rng(0)

    varnames = []
    for i in range(n):
        mode = rng.choice(['int', 'float', 'str'])
        if mode == 'int':
            value = rng.randint(0, 100000)
        if mode == 'str':
            value = ub.hash_data(rng.randint(0, 100000))[0:10]
        if mode == 'float':
            value = rng.randn() * 1000
        varname = 'var{:03d}'.format(i)
        line = '{} = {!r}'.format(varname, value)
        lines.append(line)
        varnames.append(varname)

    clutter_vars = ub.indent('\n'.join(lines))

    template = ub.codeblock('''
        def {FUNCNAME}():
        {CLUTTER}
            ignore_inf_loss_parts = d['ignore_inf_loss_parts']
            for i in range(num_inner_loops):
                if ignore_inf_loss_parts:
                    pass
            # return {RETVAL}
        ''')

    retval = '[{}]'.format(','.join(varnames))
    funcname = 'clutter_{}'.format(n)

    text = template.format(FUNCNAME=funcname,
                           CLUTTER=clutter_vars,
                           RETVAL=retval)
    return text, funcname
示例#30
0
def _make_intmask_demodata(rng=None):
    """
    Creates demo data to test the script
    """
    import kwarray

    rng = kwarray.ensure_rng(rng)  # seeded random number generator

    dpath = ub.ensure_app_cache_dir('kwcoco/tests/masks')
    shape = (128, 128)
    num_masks = 10

    def _random_multi_obj_mask(shape, rng):
        """
        Create random int mask objects that can contain multiple objects.
        Each object is a different positive integer

        Ignore:
            kwplot.imshow(kwimage.normalize(data))
            kwplot.imshow(data)
        """
        num_objects = rng.randint(0, 5)
        data = np.zeros(shape, dtype=np.uint8)
        for obj_idx in range(0, num_objects + 1):
            # Make a binay mask and add it as a new objct
            binmask = kwimage.Mask.random(shape=shape, rng=rng).data
            data[binmask > 0] = obj_idx
        return data

    fpaths = [
        join(dpath, 'mask_{:04d}.png'.format(mask_idx))
        for mask_idx in range(num_masks)
    ]
    for fpath in fpaths:
        data = _random_multi_obj_mask(shape, rng=rng)
        kwimage.imwrite(fpath, data)
    return dpath