mags1 = {}
for f in filterlist:
    mags1[f] = numpy.zeros(num_gal, dtype='float')
# For each galaxy (in num_gal's), apply internal dust, redshift, apply MW dust, fluxnorm & calculate mags.
for i in range(num_gal):
    galname = gallist[gal_name[i]]
    tmpgal = Sed(wavelen=gals[galname].wavelen, flambda=gals[galname].flambda)
    tmpgal.addCCMDust(a_int, b_int, ebv=ebv_int[i])
    tmpgal.redshiftSED(redshifts[i])
    a_mw, b_mw = tmpgal.setupCCMab()
    tmpgal.addCCMDust(a_mw, b_mw, ebv=ebv_mw[i])
    tmpgal.multiplyFluxNorm(fluxnorm[i])
    # If you comment out the synchronize sed here, then the difference between this method and the optimized
    # version increases to a 2.5 times difference.  (i.e. this 'synchronizeSED' buys you 1.6x faster, by itself.)
    tmpgal.synchronizeSED(wavelen_min=wavelen_min,
                          wavelen_max=wavelen_max,
                          wavelen_step=wavelen_step)
    for f in filterlist:
        mags1[f][i] = tmpgal.calcMag(lsstbp[f])
dt, t = dtime(t)
print "Calculating dust/redshift/dust/fluxnorm/%d magnitudes for %d galaxies took %f s" \
      %(len(filterlist), num_gal, dt)

# For next test: want to also do all the same steps, but in an optimized form. This means
# doing some things that Sed does 'behind the scenes' explicitly, but also means the code may be a little
# harder to read at first.
# First: calculate internal a/b on wavelength range required for internal dust extinction.
a_int, b_int = gals[
    gallist[0]].setupCCMab()  # this is a/b on native galaxy sed range.
# Next: calculate milky way a/b on wavelength range required for calculating magnitudes - i.e. 300 to 1200 nm.
tmpgal = Sed()
mags1 = {}
for f in filterlist:
    mags1[f] = numpy.zeros(num_gal, dtype='float')
# For each galaxy (in num_gal's), apply internal dust, redshift, apply MW dust, fluxnorm & calculate mags. 
for i in range(num_gal):
    galname = gallist[gal_name[i]]
    tmpgal = Sed(wavelen=gals[galname].wavelen, flambda=gals[galname].flambda)
    tmpgal.addCCMDust(a_int, b_int, ebv=ebv_int[i])
    tmpgal.redshiftSED(redshifts[i])
    a_mw, b_mw = tmpgal.setupCCMab()
    tmpgal.addCCMDust(a_mw, b_mw, ebv=ebv_mw[i])
    tmpgal.multiplyFluxNorm(fluxnorm[i])
    # If you comment out the synchronize sed here, then the difference between this method and the optimized
    # version increases to a 2.5 times difference.  (i.e. this 'synchronizeSED' buys you 1.6x faster, by itself.)
    tmpgal.synchronizeSED(wavelen_min=wavelen_min,
                          wavelen_max=wavelen_max,
                          wavelen_step = wavelen_step)
    for f in filterlist:
        mags1[f][i] = tmpgal.calcMag(lsstbp[f])
dt, t = dtime(t)
print "Calculating dust/redshift/dust/fluxnorm/%d magnitudes for %d galaxies took %f s" \
      %(len(filterlist), num_gal, dt)

# For next test: want to also do all the same steps, but in an optimized form. This means
# doing some things that Sed does 'behind the scenes' explicitly, but also means the code may be a little
# harder to read at first.
# First: calculate internal a/b on wavelength range required for internal dust extinction.
a_int, b_int = gals[gallist[0]].setupCCMab()  # this is a/b on native galaxy sed range. 
# Next: calculate milky way a/b on wavelength range required for calculating magnitudes - i.e. 300 to 1200 nm.
tmpgal = Sed()
tmpgal.setFlatSED(wavelen_min=wavelen_min, wavelen_max=wavelen_max, wavelen_step = wavelen_step)