示例#1
0
    def __init__(self, tag, field='Br', precision='Float32', avg=False):
        """
        :param tag: if you specify a pattern, it tries to read the corresponding 
                    files and stack them.
        :type tag: str
        :param field: nature of the radial spectra. Possible choices are
                      'Bt' or 'Bp'
        :type field: str
        :param precision: single or double precision (default single, i.e. 'Float32')
        :type precision: str
        :param avg: when set to True, display time averaged quantities
        :type avg: bool
        """

        logFiles = scanDir('log.*')
        if len(logFiles) != 0:
            MagicSetup.__init__(self, quiet=True, nml=logFiles[-1])
            self.n_r_max = int(self.n_r_max)
            self.n_r_ic_max = int(self.n_r_ic_max)
        else:
            n_r_max = 'n_r_max ?\n'
            self.n_r_max = int(input(str1))
            n_r_ic_max = 'n_r_ic_max ?\n'
            self.n_r_ic_max = int(input(str1))
            str1 = 'Aspect ratio ?\n'
            self.radratio = float(input(str1))

        self.n_r_tot = self.n_r_max+self.n_r_ic_max

        self.ricb = self.radratio/(1.-self.radratio)
        self.rcmb = 1./(1.-self.radratio)
        outerCoreGrid = chebgrid(self.n_r_max-1, self.rcmb, self.ricb)
        n_r_ic_tot = 2*self.n_r_ic_max-1
        innerCoreGrid = chebgrid(n_r_ic_tot-1, self.ricb, -self.ricb)

        self.radius = np.zeros((self.n_r_tot-1), dtype=precision)

        self.radius[:self.n_r_max] = outerCoreGrid
        self.radius[self.n_r_max-1:] = innerCoreGrid[:self.n_r_ic_max]

        pattern = 'r%s' % field +'Spec'
        files = scanDir('%s.%s' % (pattern, tag))

        # Read the rB[rp]Spec.TAG files (stack them)
        data = []
        for k, file in enumerate(files):
            print('Reading %s' % file)
            f = npfile(file, endian='B')

            while 1:
                try:
                    data.append(f.fort_read(precision))
                except TypeError:
                    break
        data = np.array(data, dtype=precision)

        # Time (every two lines only)
        self.time = data[::2, 0]

        # Poloidal/Toroidal energy for all radii for the 6 first spherical harmonic
        # degrees
        self.e_pol = np.zeros((len(self.time), self.n_r_tot-1, 6), dtype=precision)
        self.e_pol_axi = np.zeros_like(self.e_pol)

        self.e_pol[:, :, 0] = data[::2, 1:self.n_r_tot]
        self.e_pol[:, :, 1] = data[::2, self.n_r_tot-1:2*(self.n_r_tot-1)]
        self.e_pol[:, :, 2] = data[::2, 2*(self.n_r_tot-1):3*(self.n_r_tot-1)]
        self.e_pol[:, :, 3] = data[::2, 3*(self.n_r_tot-1):4*(self.n_r_tot-1)]
        self.e_pol[:, :, 4] = data[::2, 4*(self.n_r_tot-1):5*(self.n_r_tot-1)]
        self.e_pol[:, :, 5] = data[::2, 5*(self.n_r_tot-1):6*(self.n_r_tot-1)]

        self.e_pol_axi[:, :, 0] = data[1::2, 1:self.n_r_tot]
        self.e_pol_axi[:, :, 1] = data[1::2, self.n_r_tot-1:2*(self.n_r_tot-1)]
        self.e_pol_axi[:, :, 2] = data[1::2, 2*(self.n_r_tot-1):3*(self.n_r_tot-1)]
        self.e_pol_axi[:, :, 3] = data[1::2, 3*(self.n_r_tot-1):4*(self.n_r_tot-1)]
        self.e_pol_axi[:, :, 4] = data[1::2, 4*(self.n_r_tot-1):5*(self.n_r_tot-1)]
        self.e_pol_axi[:, :, 5] = data[1::2, 5*(self.n_r_tot-1):6*(self.n_r_tot-1)]

        if avg:
            self.plotAvg()
示例#2
0
文件: coeff.py 项目: nschaeff/magic
    def __init__(self,
                 tag,
                 ratio_cmb_surface=1,
                 scale_b=1,
                 iplot=True,
                 field='B',
                 r=1,
                 precision='Float64',
                 lCut=None,
                 quiet=False):
        """
        :param tag: if you specify a pattern, it tries to read the corresponding files
        :type tag: str
        :param ratio_cmb_surface: ratio of surface ratio to CMB radius (default is 1)
        :type ratio_cmb_surface: float
        :param scale_b: magnetic field unit (default is 1)
        :type scale_b: float
        :param iplot: a logical to toggle the plot (default is True)
        :type iplot: bool
        :param field: 'B', 'V' or 'T' (magnetic field, velocity field or temperature)
        :type field: str
        :param r: an integer to characterise which file we want to plot
        :type r: int
        :param precision: single or double precision
        :type precision: str
        :param lCut: reduce the spherical harmonic truncation to l <= lCut
        :type lCut: int
        :param quiet: verbose when toggled to True (default is True)
        :type quiet: bool
        """

        logFiles = scanDir('log.*')
        if len(logFiles) != 0:
            MagicSetup.__init__(self, quiet=True, nml=logFiles[-1])
        else:
            str1 = 'Aspect ratio ?\n'
            self.radratio = float(input(str1))

        self.rcmb = 1. / (1. - self.radratio)
        ricb = self.radratio / (1. - self.radratio)

        files = scanDir('%s_coeff_r%i.%s' % (field, r, tag))

        # Read the B_coeff files (by stacking the different tags)
        data = []
        for k, file in enumerate(files):
            if not quiet: print('Reading %s' % file)
            f = npfile(file, endian='B')
            out = f.fort_read('3i4,%s' % precision)[0]
            self.l_max_r, self.minc, n_data = out[0]
            self.m_max_r = int((self.l_max_r / self.minc) * self.minc)
            self.radius = out[1]

            while 1:
                try:
                    data.append(f.fort_read(precision))
                except TypeError:
                    break
        self.lm_max_r = self.m_max_r*(self.l_max_r+1)//self.minc - \
                        self.m_max_r*(self.m_max_r-self.minc)//(2*self.minc) + \
                        self.l_max_r-self.m_max_r+1

        # Get indices location
        self.idx = np.zeros((self.l_max_r + 1, self.m_max_r + 1), 'i')
        self.ell = np.zeros(self.lm_max_r, 'i')
        self.ms = np.zeros(self.lm_max_r, 'i')
        self.idx[0:self.l_max_r + 2, 0] = np.arange(self.l_max_r + 1)
        self.ell[0:self.l_max_r + 2] = np.arange(self.l_max_r + 2)
        k = self.l_max_r + 1
        for m in range(self.minc, self.l_max_r + 1, self.minc):
            for l in range(m, self.l_max_r + 1):
                self.idx[l, m] = k
                self.ell[self.idx[l, m]] = l
                self.ms[self.idx[l, m]] = m
                k += 1

        # Rearange data
        data = np.array(data, dtype=precision)
        self.nstep = data.shape[0]
        self.wlm = np.zeros((self.nstep, self.lm_max_r), 'Complex64')
        self.dwlm = np.zeros((self.nstep, self.lm_max_r), 'Complex64')
        self.zlm = np.zeros((self.nstep, self.lm_max_r), 'Complex64')

        # Get time
        self.time = np.zeros(self.nstep, dtype=precision)
        self.time = data[:, 0]

        # wlm
        self.wlm[:, 1:self.l_max_r + 1] = data[:, 1:self.l_max_r + 1]
        k = self.l_max_r + 1
        for m in range(self.minc, self.l_max_r + 1, self.minc):
            for l in range(m, self.l_max_r + 1):
                self.wlm[:, self.idx[l, m]] = data[:, k] + 1j * data[:, k + 1]
                k += 2

        # dwlm
        self.dwlm[:, 1:self.l_max_r + 1] = data[:, k:k + self.l_max_r]
        k += self.l_max_r
        for m in range(self.minc, self.l_max_r + 1, self.minc):
            for l in range(m, self.l_max_r + 1):
                self.dwlm[:, self.idx[l, m]] = data[:, k] + 1j * data[:, k + 1]
                k += 2
        # zlm
        self.zlm[:, 1:self.l_max_r + 1] = data[:, k:k + self.l_max_r]
        k += self.l_max_r
        for m in range(self.minc, self.l_max_r + 1, self.minc):
            for l in range(m, self.l_max_r + 1):
                self.zlm[:, self.idx[l, m]] = data[:, k] + 1j * data[:, k + 1]
                k += 2

        # ddw in case B is stored
        if field == 'B':
            self.ddwlm = np.zeros((self.nstep, self.lm_max_r), 'Complex64')
            self.ddwlm[:, 1:self.l_max_r + 1] = data[:, k:k + self.l_max_r]
            k += self.l_max_r
            for m in range(self.minc, self.l_max_r + 1, self.minc):
                for l in range(m, self.l_max_r + 1):
                    self.ddwlm[:,
                               self.idx[l,
                                        m]] = data[:, k] + 1j * data[:, k + 1]
                    k += 2

        # Truncate!
        if lCut is not None:
            if lCut < self.l_max_r:
                self.truncate(lCut, field=field)

        self.e_pol_axi_l = np.zeros((self.nstep, self.l_max_r + 1), precision)
        self.e_tor_axi_l = np.zeros((self.nstep, self.l_max_r + 1), precision)
        self.e_pol_l = np.zeros((self.nstep, self.l_max_r + 1), precision)
        self.e_tor_l = np.zeros((self.nstep, self.l_max_r + 1), precision)

        for l in range(1, self.l_max_r + 1):
            self.e_pol_l[:, l] = 0.
            self.e_tor_l[:, l] = 0.
            self.e_pol_axi_l[:, l] = 0.
            self.e_tor_axi_l[:, l] = 0.
            for m in range(0, l + 1, self.minc):
                lm = self.idx[l, m]

                if m == 0:
                    epol = 0.5*self.ell[lm]*(self.ell[lm]+1)*( \
                           self.ell[lm]*(self.ell[lm]+1)/self.radius**2* \
                           abs(self.wlm[:,lm])**2+ abs(self.dwlm[:,lm])**2 )
                    etor = 0.5 * self.ell[lm] * (self.ell[lm] + 1) * abs(
                        self.zlm[:, lm])**2

                    self.e_pol_axi_l[:, l] += epol
                    self.e_tor_axi_l[:, l] += etor
                else:
                    epol = self.ell[lm]*(self.ell[lm]+1)*( \
                           self.ell[lm]*(self.ell[lm]+1)/self.radius**2* \
                           abs(self.wlm[:,lm])**2+ abs(self.dwlm[:,lm])**2 )
                    etor = self.ell[lm] * (self.ell[lm] + 1) * abs(
                        self.zlm[:, lm])**2

                self.e_pol_l[:, l] += epol
                self.e_tor_l[:, l] += etor

        # Time-averaged energy
        facT = 1. / (self.time[-1] - self.time[0])

        self.e_pol_lM = facT * np.trapz(self.e_pol_l, self.time, axis=0)
        self.e_tor_lM = facT * np.trapz(self.e_tor_l, self.time, axis=0)
        self.e_pol_axi_lM = facT * np.trapz(
            self.e_pol_axi_l, self.time, axis=0)
        self.e_tor_axi_lM = facT * np.trapz(
            self.e_tor_axi_l, self.time, axis=0)
示例#3
0
文件: coeff.py 项目: nschaeff/magic
    def __init__(self,
                 tag=None,
                 datadir='.',
                 ratio_cmb_surface=1,
                 scale_b=1,
                 iplot=True,
                 lCut=None,
                 precision='Float64',
                 ave=False,
                 sv=False,
                 quiet=False):
        """
        A class to read the B_coeff_cmb files

        :param tag: if you specify a pattern, it tries to read the corresponding files
        :type tag: str
        :param ratio_cmb_surface: ratio of surface ratio to CMB radius (default is 1)
        :type ratio_cmb_surface: float
        :param scale_b: magnetic field unit (default is 1)
        :type scale_b: float
        :param iplot: a logical to toggle the plot (default is True)
        :type iplot: int
        :param precision: single or double precision
        :type precision: char
        :param ave: load a time-averaged CMB file when set to True
        :type ave: bool
        :param sv: load a dt_b CMB file when set to True
        :type sv: bool
        :param quiet: verbose when toggled to True (default is True)
        :type quiet: bool
        :param lCut: reduce the spherical harmonic truncation to l <= lCut
        :type lCut: int
        :param datadir: working directory
        :type datadir: str
        """
        pattern = os.path.join(datadir, 'log.*')
        logFiles = scanDir(pattern)

        if ave:
            self.name = 'B_coeff_cmb_ave'
        elif sv:
            self.name = 'B_coeff_dt_cmb'
        else:
            self.name = 'B_coeff_cmb'

        if tag is not None:
            pattern = os.path.join(datadir, '%s.%s' % (self.name, tag))
            files = scanDir(pattern)

            # Either the log.tag directly exists and the setup is easy to obtain
            if os.path.exists(os.path.join(datadir, 'log.%s' % tag)):
                MagicSetup.__init__(self,
                                    datadir=datadir,
                                    quiet=True,
                                    nml='log.%s' % tag)
            # Or the tag is a bit more complicated and we need to find
            # the corresponding log file
            else:
                pattern = os.path.join(datadir, '%s' % self.name)
                mask = re.compile(r'%s\.(.*)' % pattern)
                if mask.match(files[-1]):
                    ending = mask.search(files[-1]).groups(0)[0]
                    pattern = os.path.join(datadir, 'log.%s' % ending)
                    if logFiles.__contains__(pattern):
                        MagicSetup.__init__(self,
                                            datadir=datadir,
                                            quiet=True,
                                            nml='log.%s' % ending)
        else:
            pattern = os.path.join(datadir, '%s.*' % self.name)
            files = scanDir(pattern)
            filename = files[-1]
            # Determine the setup
            mask = re.compile(r'%s\.(.*)' % self.name)
            ending = mask.search(files[-1]).groups(0)[0]
            if os.path.exists('log.%s' % ending):
                try:
                    MagicSetup.__init__(self,
                                        datadir=datadir,
                                        quiet=True,
                                        nml='log.%s' % ending)
                except AttributeError:
                    pass

        self.rcmb = 1. / (1. - self.radratio)
        ricb = self.radratio / (1. - self.radratio)

        # Read the B_coeff files (by stacking the different tags)
        data = []
        for k, file in enumerate(files):
            if not quiet: print('Reading %s' % file)
            f = npfile(file, endian='B')
            self.l_max_cmb, self.minc, n_data = f.fort_read('i')
            self.m_max_cmb = int((self.l_max_cmb / self.minc) * self.minc)

            while 1:
                try:
                    data.append(f.fort_read(precision))
                except TypeError:
                    break
        self.lm_max_cmb = self.m_max_cmb*(self.l_max_cmb+1)//self.minc - \
                          self.m_max_cmb*(self.m_max_cmb-self.minc)//(2*self.minc) + \
                          self.l_max_cmb-self.m_max_cmb+1

        # Get indices location
        self.idx = np.zeros((self.l_max_cmb + 1, self.m_max_cmb + 1), 'i')
        self.ell = np.zeros(self.lm_max_cmb, 'i')
        self.ms = np.zeros(self.lm_max_cmb, 'i')
        self.idx[0:self.l_max_cmb + 2, 0] = np.arange(self.l_max_cmb + 1)
        self.ell[0:self.l_max_cmb + 2] = np.arange(self.l_max_cmb + 2)
        k = self.l_max_cmb + 1
        for m in range(self.minc, self.l_max_cmb + 1, self.minc):
            for l in range(m, self.l_max_cmb + 1):
                self.idx[l, m] = k
                self.ell[self.idx[l, m]] = l
                self.ms[self.idx[l, m]] = m
                k += 1

        # Rearange data
        data = np.array(data, dtype=precision)
        self.nstep = data.shape[0]
        self.blm = np.zeros((self.nstep, self.lm_max_cmb), 'Complex64')
        self.blm[:, 1:self.l_max_cmb + 1] = data[:, 1:self.l_max_cmb + 1]
        self.blm[:, self.l_max_cmb+1:] = data[:, self.l_max_cmb+1::2]+\
                                         1j*data[:, self.l_max_cmb+2::2]

        # Truncate!
        if lCut is not None:
            if lCut < self.l_max_cmb:
                self.truncate(lCut)

        # Get time
        self.time = np.zeros(self.nstep, precision)
        self.time = data[:, 0]

        # Get Gauss coefficients
        self.glm = np.zeros((self.nstep, self.lm_max_cmb), precision)
        self.hlm = np.zeros((self.nstep, self.lm_max_cmb), precision)

        self.glm, self.hlm = getGauss(self.blm.real, self.blm.imag, self.ell,
                                      self.ms, scale_b, ratio_cmb_surface,
                                      self.rcmb)

        # Time-averaged Gauss coefficient
        if not ave:
            facT = 1. / (self.time[-1] - self.time[0])
            self.glmM = facT * np.trapz(self.glm, self.time, axis=0)
            self.hlmM = facT * np.trapz(self.hlm, self.time, axis=0)

            if len(self.time) > 3:
                self.dglmdt = deriv(self.time, self.glm.T, axis=1)
                self.dhlmdt = deriv(self.time, self.hlm.T, axis=1)
                self.dglmdt = self.dglmdt.T
                self.dhlmdt = self.dhlmdt.T

            else:
                self.dglmdt = np.zeros_like(self.glm)
                self.dhlmdt = np.zeros_like(self.hlm)

        # Magnetic energy (Lowes)
        self.El = np.zeros((self.nstep, self.l_max_cmb + 1), precision)
        self.Em = np.zeros((self.nstep, self.m_max_cmb + 1), precision)
        self.ESVl = np.zeros((self.nstep, self.l_max_cmb + 1), precision)
        E = 0.
        for l in range(1, self.l_max_cmb + 1):
            self.El[:, l] = 0.
            self.ESVl[:, l] = 0.
            for m in range(0, l + 1, self.minc):
                lm = self.idx[l, m]
                self.El[:, l] += (self.ell[lm]+1)*\
                                (self.glm[:,lm]**2+self.hlm[:,lm]**2)
                self.Em[:, m] += (self.ell[lm]+1)*\
                                (self.glm[:,lm]**2+self.hlm[:,lm]**2)
                if not ave:
                    self.ESVl[:, l] += (self.ell[lm]+1)*\
                                      (self.dglmdt[:, lm]**2+self.dhlmdt[:, lm]**2)

        if not ave:
            # Time-averaged energy
            self.ElM = facT * np.trapz(self.El, self.time, axis=0)
            self.EmM = facT * np.trapz(self.Em, self.time, axis=0)

            # Secular variation
            self.ESVlM = facT * np.trapz(self.ESVl, self.time, axis=0)
            self.taul = np.sqrt(self.ElM[1:] / self.ESVlM[1:])

        if iplot:
            self.plot()
示例#4
0
    def __init__(self, tag, field='Br', precision=np.float32, avg=False):
        """
        :param tag: if you specify a pattern, it tries to read the corresponding
                    files and stack them.
        :type tag: str
        :param field: nature of the radial spectra. Possible choices are
                      'Bt' or 'Bp'
        :type field: str
        :param precision: single or double precision (default single, i.e.
                          np.float32)
        :type precision: str
        :param avg: when set to True, display time averaged quantities
        :type avg: bool
        """

        logFiles = scanDir('log.*')
        if len(logFiles) != 0:
            MagicSetup.__init__(self, quiet=True, nml=logFiles[-1])
            self.n_r_max = int(self.n_r_max)
            self.n_r_ic_max = int(self.n_r_ic_max)
        else:
            n_r_max = 'n_r_max ?\n'
            self.n_r_max = int(input(str1))
            n_r_ic_max = 'n_r_ic_max ?\n'
            self.n_r_ic_max = int(input(str1))
            str1 = 'Aspect ratio ?\n'
            self.radratio = float(input(str1))

        self.n_r_tot = self.n_r_max + self.n_r_ic_max

        self.ricb = self.radratio / (1. - self.radratio)
        self.rcmb = 1. / (1. - self.radratio)
        outerCoreGrid = chebgrid(self.n_r_max - 1, self.rcmb, self.ricb)
        n_r_ic_tot = 2 * self.n_r_ic_max - 1
        innerCoreGrid = chebgrid(n_r_ic_tot - 1, self.ricb, -self.ricb)

        self.radius = np.zeros((self.n_r_tot - 1), dtype=precision)

        self.radius[:self.n_r_max] = outerCoreGrid
        self.radius[self.n_r_max - 1:] = innerCoreGrid[:self.n_r_ic_max]

        pattern = 'r{}'.format(field) + 'Spec'
        files = scanDir('{}.{}'.format(pattern, tag))

        # Read the rB[rp]Spec.TAG files (stack them)
        data = []
        for k, file in enumerate(files):
            print('Reading {}'.format(file))
            f = npfile(file, endian='B')

            while 1:
                try:
                    data.append(f.fort_read(precision))
                except TypeError:
                    break
        data = np.array(data, dtype=precision)

        # Time (every two lines only)
        self.time = data[::2, 0]

        # Poloidal/Toroidal energy for all radii for the 6 first spherical harmonic
        # degrees
        self.e_pol = np.zeros((len(self.time), self.n_r_tot - 1, 6),
                              dtype=precision)
        self.e_pol_axi = np.zeros_like(self.e_pol)

        self.e_pol[:, :, 0] = data[::2, 1:self.n_r_tot]
        self.e_pol[:, :, 1] = data[::2,
                                   self.n_r_tot - 1:2 * (self.n_r_tot - 1)]
        self.e_pol[:, :,
                   2] = data[::2,
                             2 * (self.n_r_tot - 1):3 * (self.n_r_tot - 1)]
        self.e_pol[:, :,
                   3] = data[::2,
                             3 * (self.n_r_tot - 1):4 * (self.n_r_tot - 1)]
        self.e_pol[:, :,
                   4] = data[::2,
                             4 * (self.n_r_tot - 1):5 * (self.n_r_tot - 1)]
        self.e_pol[:, :,
                   5] = data[::2,
                             5 * (self.n_r_tot - 1):6 * (self.n_r_tot - 1)]

        self.e_pol_axi[:, :, 0] = data[1::2, 1:self.n_r_tot]
        self.e_pol_axi[:, :, 1] = data[1::2,
                                       self.n_r_tot - 1:2 * (self.n_r_tot - 1)]
        self.e_pol_axi[:, :,
                       2] = data[1::2,
                                 2 * (self.n_r_tot - 1):3 * (self.n_r_tot - 1)]
        self.e_pol_axi[:, :,
                       3] = data[1::2,
                                 3 * (self.n_r_tot - 1):4 * (self.n_r_tot - 1)]
        self.e_pol_axi[:, :,
                       4] = data[1::2,
                                 4 * (self.n_r_tot - 1):5 * (self.n_r_tot - 1)]
        self.e_pol_axi[:, :,
                       5] = data[1::2,
                                 5 * (self.n_r_tot - 1):6 * (self.n_r_tot - 1)]

        if avg:
            self.plotAvg()
示例#5
0
文件: coeff.py 项目: leloulight/magic
    def __init__(self, tag, ratio_cmb_surface=1, scale_b=1, iplot=True,
                 precision='Float64', ave=False, sv=False):
        """
        A class to read the B_coeff_cmb files

        :param tag: if you specify a pattern, it tries to read the corresponding files
        :type tag: str
        :param ratio_cmb_surface: ratio of surface ratio to CMB radius (default is 1)
        :type ratio_cmb_surface: float
        :param scale_b: magnetic field unit (default is 1)
        :type scale_b: float
        :param iplot: a logical to toggle the plot (default is True)
        :type iplot: int
        :param precision: single or double precision
        :type precision: char
        :param ave: load a time-averaged CMB file when set to True
        :type ave: bool
        :param sv: load a dt_b CMB file when set to True
        :type sv: bool
        """

        logFiles = scanDir('log.*')
        if len(logFiles) != 0:
            MagicSetup.__init__(self, quiet=True, nml=logFiles[-1])
        else:
            str1 = 'Aspect ratio ?\n'
            self.radratio = float(input(str1))

        rcmb = 1./(1.-self.radratio)
        ricb = self.radratio/(1.-self.radratio)

        if ave:
            files = scanDir('B_coeff_cmb_ave.%s' % tag)
        elif sv:
            files = scanDir('B_coeff_dt_cmb.%s' % tag)
        else:
            files = scanDir('B_coeff_cmb.%s' % tag)

        # Read the B_coeff files (by stacking the different tags)
        data = []
        for k, file in enumerate(files):
            print('Reading %s' % file)
            f = npfile(file, endian='B')
            self.l_max_cmb, self.minc, n_data = f.fort_read('i')
            self.m_max_cmb = int((self.l_max_cmb/self.minc)*self.minc)

            while 1:
                try:
                    data.append(f.fort_read(precision))
                except TypeError:
                    break
        data = N.array(data, dtype=precision)

        self.ell = N.arange(self.l_max_cmb+1)
        self.nstep = data.shape[0]

        # Get time
        self.time = N.zeros(self.nstep, precision)
        self.time = data[:, 0]

        # Rearange and get Gauss coefficients
        self.alm = N.zeros((self.nstep, self.l_max_cmb+1, self.m_max_cmb+1), precision)
        self.blm = N.zeros((self.nstep, self.l_max_cmb+1, self.m_max_cmb+1), precision)
        self.glm = N.zeros((self.nstep, self.l_max_cmb+1, self.m_max_cmb+1), precision)
        self.hlm = N.zeros((self.nstep, self.l_max_cmb+1, self.m_max_cmb+1), precision)

        # Axisymmetric coefficients (m=0)
        self.alm[:, 1:, 0] = data[:, 1:self.l_max_cmb+1]
        self.glm[:, 1:, 0], self.hlm[:, 1:, 0] = getGauss(self.alm[:, 1:, 0], 
                     self.blm[:, 1:, 0], self.ell[1:], 0, scale_b, 
                     ratio_cmb_surface, rcmb)
        # Other coefficients (m!=0)
        k = self.l_max_cmb+1
        for m in range(self.minc, self.l_max_cmb+1, self.minc):
            for l in range(m, self.l_max_cmb+1):
                self.alm[:, l, m] = data[:, k]
                self.blm[:, l, m] = data[:, k+1]
                self.glm[:, l, m], self.hlm[:, l, m] = getGauss(self.alm[:, l, m], 
                                    self.blm[:, l, m], l, m,
                                    scale_b, ratio_cmb_surface, rcmb)
                k += 2

        # Time-averaged Gauss coefficient
        facT = 1./(self.time[-1]-self.time[0])
        self.glmM = facT * N.trapz(self.glm, self.time, axis=0)
        self.hlmM = facT * N.trapz(self.hlm, self.time, axis=0)

        if len(self.time) > 3:
            self.dglmdt = deriv(self.time, self.glm.T, axis=2)
            self.dhlmdt = deriv(self.time, self.hlm.T, axis=2)
            self.dglmdt = self.dglmdt.T
            self.dhlmdt = self.dhlmdt.T

        else:
            self.dglmdt = N.zeros_like(self.glm)
            self.dhlmdt = N.zeros_like(self.hlm)

        # Magnetic energy (Lowes)
        self.El = (self.ell+1)*(self.glm**2+self.hlm**2).sum(axis=2)
        self.Em = N.zeros((self.nstep, self.m_max_cmb+1), precision)
        # For m, we need to unfold the loop in case of minc != 1
        for m in range(0, self.m_max_cmb+1, self.minc):
            self.Em[:,m] = ((self.ell+1)*(self.glm[:, :, m]**2+self.hlm[:, :, m]**2)).sum(axis=1)
        #self.Em = ((self.ell+1)*(self.glm**2+self.hlm**2)).sum(axis=1)

        # Time-averaged energy
        self.ElM = facT * N.trapz(self.El, self.time, axis=0)
        self.EmM = facT * N.trapz(self.Em, self.time, axis=0)

        # Secular variation
        self.ESVl = (self.ell+1)*(self.dglmdt**2+self.dhlmdt**2).sum(axis=2)
        self.ESVlM = facT * N.trapz(self.ESVl, self.time, axis=0)
        self.taul = N.sqrt(self.ElM[1:]/self.ESVlM[1:])

        if iplot:
            self.plot()
示例#6
0
文件: coeff.py 项目: leloulight/magic
    def __init__(self, tag, ratio_cmb_surface=1, scale_b=1, iplot=True,
                 field='B', r=1, precision='Float64'):
        """
        :param tag: if you specify a pattern, it tries to read the corresponding files
        :type tag: str
        :param ratio_cmb_surface: ratio of surface ratio to CMB radius (default is 1)
        :type ratio_cmb_surface: float
        :param scale_b: magnetic field unit (default is 1)
        :type scale_b: float
        :param iplot: a logical to toggle the plot (default is True)
        :type iplot: bool
        :param field: 'B', 'V' or 'T' (magnetic field, velocity field or temperature)
        :type field: str
        :param r: an integer to characterise which file we want to plot
        :type r: int
        :param precision: single or double precision
        :type precision: str
        """

        logFiles = scanDir('log.*')
        if len(logFiles) != 0:
            MagicSetup.__init__(self, quiet=True, nml=logFiles[-1])
        else:
            str1 = 'Aspect ratio ?\n'
            self.radratio = float(input(str1))

        rcmb = 1./(1.-self.radratio)
        ricb = self.radratio/(1.-self.radratio)

        files = scanDir('%s_coeff_r%i.%s' % (field,r,tag))

        # Read the B_coeff files (by stacking the different tags)
        data = []
        for k, file in enumerate(files):
            print('Reading %s' % file)
            f = npfile(file, endian='B')
            out = f.fort_read('3i4,%s' % precision)[0]
            self.l_max_cmb, self.minc, n_data = out[0]
            self.m_max_cmb = int((self.l_max_cmb/self.minc)*self.minc)
            self.radius = out[1]

            while 1:
                try:
                    data.append(f.fort_read(precision))
                except TypeError:
                    break
        data = N.array(data, dtype=precision)

        self.ell = N.arange(self.l_max_cmb+1)
        self.nstep = data.shape[0]

        # Get time
        self.time = N.zeros(self.nstep, dtype=precision)
        self.time = data[:, 0]

        # Rearange and get Gauss coefficients
        self.wlm = N.zeros((self.nstep, self.l_max_cmb+1, self.m_max_cmb+1), 'Complex64')
        self.dwlm = N.zeros((self.nstep, self.l_max_cmb+1, self.m_max_cmb+1), 'Complex64')
        self.zlm = N.zeros((self.nstep, self.l_max_cmb+1, self.m_max_cmb+1), 'Complex64')

        # wlm
        # Axisymmetric coefficients (m=0)
        self.wlm[:, 1:, 0] = data[:, 1:self.l_max_cmb+1]
        # Other coefficients (m!=0)
        k = self.l_max_cmb+1
        for m in range(self.minc, self.l_max_cmb+1, self.minc):
            for l in range(m, self.l_max_cmb+1):
                self.wlm[:, l, m] = data[:, k]+1j*data[:, k+1]
                k += 2

        # dwlm
        self.dwlm[:, 1:, 0] = data[:, k:k+self.l_max_cmb]
        k += self.l_max_cmb
        for m in range(self.minc, self.l_max_cmb+1, self.minc):
            for l in range(m, self.l_max_cmb+1):
                self.dwlm[:, l, m] = data[:, k]+1j*data[:, k+1]
                k += 2
        # zlm
        self.zlm[:, 1:, 0] = data[:, k:k+self.l_max_cmb]
        k += self.l_max_cmb
        for m in range(self.minc, self.l_max_cmb+1, self.minc):
            for l in range(m, self.l_max_cmb+1):
                self.zlm[:, l, m] = data[:, k]+1j*data[:, k+1]
                k += 2

        # ddw in case B is stored
        if field == 'B':
            self.ddwlm = N.zeros((self.nstep, self.l_max_cmb+1, self.m_max_cmb+1), 'Complex64')
            self.ddwlm[:, 1:, 0] = data[:, k:k+self.l_max_cmb]
            k += self.l_max_cmb
            for m in range(self.minc, self.l_max_cmb+1, self.minc):
                for l in range(m, self.l_max_cmb+1):
                    self.ddwlm[:, l, m] = data[:, k]+1j*data[:, k+1]
                    k += 2

        #self.epolLM = 0.5*self.ell*(self.ell+1)* (self.ell*(self.ell+1)* \
        #                            abs(self.wlm)**2+abs(self.dwlm)**2)
        self.epolAxiL = 0.5*self.ell*(self.ell+1)*(self.ell*(self.ell+1)* \
                                    abs(self.wlm[:,:,0])**2+abs(self.dwlm[:,:,0])**2)
        #self.etorLM = 0.5*self.ell*(self.ell+1)*abs(self.zlm)**2
        self.etorAxiL = 0.5*self.ell*(self.ell+1)*abs(self.zlm[:,:,0])**2

        #epolTot = self.epolLM.sum(axis=1).sum(axis=1)
        #etorTot = self.etorLM.sum(axis=1).sum(axis=1)
        etorAxiTot = self.etorAxiL.sum(axis=1)
        epolAxiTot = self.epolAxiL.sum(axis=1)
        
        if iplot:
            P.plot(self.time, epolTot)
            P.plot(self.time, etorTot)
            P.plot(self.time, epolAxiTot)
            P.plot(self.time, etorAxiTot)
        
        """
示例#7
0
文件: coeff.py 项目: magic-sph/magic
    def __init__(self, tag, ratio_cmb_surface=1, scale_b=1, iplot=True,
                 precision='Float64', ave=False, sv=False, quiet=False):
        """
        A class to read the B_coeff_cmb files

        :param tag: if you specify a pattern, it tries to read the corresponding files
        :type tag: str
        :param ratio_cmb_surface: ratio of surface ratio to CMB radius (default is 1)
        :type ratio_cmb_surface: float
        :param scale_b: magnetic field unit (default is 1)
        :type scale_b: float
        :param iplot: a logical to toggle the plot (default is True)
        :type iplot: int
        :param precision: single or double precision
        :type precision: char
        :param ave: load a time-averaged CMB file when set to True
        :type ave: bool
        :param sv: load a dt_b CMB file when set to True
        :type sv: bool
        :param quiet: verbose when toggled to True (default is True)
        :type quiet: bool
        """

        logFiles = scanDir('log.*')
        if len(logFiles) != 0:
            MagicSetup.__init__(self, quiet=True, nml=logFiles[-1])
        else:
            str1 = 'Aspect ratio ?\n'
            self.radratio = float(input(str1))

        self.rcmb = 1./(1.-self.radratio)
        ricb = self.radratio/(1.-self.radratio)

        if ave:
            files = scanDir('B_coeff_cmb_ave.%s' % tag)
        elif sv:
            files = scanDir('B_coeff_dt_cmb.%s' % tag)
        else:
            files = scanDir('B_coeff_cmb.%s' % tag)

        # Read the B_coeff files (by stacking the different tags)
        data = []
        for k, file in enumerate(files):
            if not quiet: print('Reading %s' % file)
            f = npfile(file, endian='B')
            self.l_max_cmb, self.minc, n_data = f.fort_read('i')
            self.m_max_cmb = int((self.l_max_cmb/self.minc)*self.minc)

            while 1:
                try:
                    data.append(f.fort_read(precision))
                except TypeError:
                    break
        self.lm_max_cmb = self.m_max_cmb*(self.l_max_cmb+1)//self.minc - \
                          self.m_max_cmb*(self.m_max_cmb-self.minc)//(2*self.minc) + \
                          self.l_max_cmb-self.m_max_cmb+1

        # Get indices location
        self.idx = np.zeros((self.l_max_cmb+1, self.m_max_cmb+1), 'i')
        self.ell = np.zeros(self.lm_max_cmb, 'i')
        self.ms = np.zeros(self.lm_max_cmb, 'i')
        self.idx[0:self.l_max_cmb+2, 0] = np.arange(self.l_max_cmb+1)
        self.ell[0:self.l_max_cmb+2] = np.arange(self.l_max_cmb+2)
        k = self.l_max_cmb+1
        for m in range(self.minc, self.l_max_cmb+1, self.minc):
            for l in range(m, self.l_max_cmb+1):
                self.idx[l, m] = k
                self.ell[self.idx[l,m]] = l
                self.ms[self.idx[l,m]] = m
                k +=1

        # Rearange data
        data = np.array(data, dtype=precision)
        self.nstep = data.shape[0]
        self.blm = np.zeros((self.nstep, self.lm_max_cmb), 'Complex64')
        self.blm[:, 1:self.l_max_cmb+1] = data[:, 1:self.l_max_cmb+1]
        self.blm[:, self.l_max_cmb+1:] = data[:, self.l_max_cmb+1::2]+\
                                         1j*data[:, self.l_max_cmb+2::2]

        # Get time
        self.time = np.zeros(self.nstep, precision)
        self.time = data[:, 0]

        # Get Gauss coefficients
        self.glm = np.zeros((self.nstep, self.lm_max_cmb), precision)
        self.hlm = np.zeros((self.nstep, self.lm_max_cmb), precision)

        self.glm, self.hlm = getGauss(self.blm.real, self.blm.imag, 
                                      self.ell, self.ms, scale_b, 
                                      ratio_cmb_surface, self.rcmb)

        # Time-averaged Gauss coefficient
        if not ave:
            facT = 1./(self.time[-1]-self.time[0])
            self.glmM = facT * np.trapz(self.glm, self.time, axis=0)
            self.hlmM = facT * np.trapz(self.hlm, self.time, axis=0)

            if len(self.time) > 3:
                self.dglmdt = deriv(self.time, self.glm.T, axis=1)
                self.dhlmdt = deriv(self.time, self.hlm.T, axis=1)
                self.dglmdt = self.dglmdt.T
                self.dhlmdt = self.dhlmdt.T

            else:
                self.dglmdt = np.zeros_like(self.glm)
                self.dhlmdt = np.zeros_like(self.hlm)

        # Magnetic energy (Lowes)
        self.El = np.zeros((self.nstep, self.l_max_cmb+1), precision)
        self.Em = np.zeros((self.nstep, self.m_max_cmb+1), precision)
        self.ESVl = np.zeros((self.nstep, self.l_max_cmb+1), precision)
        E = 0.
        for l in range(1, self.l_max_cmb+1):
            self.El[:, l] = 0.
            self.ESVl[:, l] = 0.
            for m in range(0, l+1, self.minc):
                lm = self.idx[l, m]
                self.El[:, l] += (self.ell[lm]+1)*\
                                (self.glm[:,lm]**2+self.hlm[:,lm]**2)
                self.Em[:, m] += (self.ell[lm]+1)*\
                                (self.glm[:,lm]**2+self.hlm[:,lm]**2)
                if not ave:
                    self.ESVl[:, l] += (self.ell[lm]+1)*\
                                      (self.dglmdt[:, lm]**2+self.dhlmdt[:, lm]**2)

        if not ave:
            # Time-averaged energy
            self.ElM = facT * np.trapz(self.El, self.time, axis=0)
            self.EmM = facT * np.trapz(self.Em, self.time, axis=0)

            # Secular variation
            self.ESVlM = facT * np.trapz(self.ESVl, self.time, axis=0)
            self.taul = np.sqrt(self.ElM[1:]/self.ESVlM[1:])

        if iplot:
            self.plot()
示例#8
0
文件: coeff.py 项目: magic-sph/magic
    def __init__(self, tag, ratio_cmb_surface=1, scale_b=1, iplot=True,
                 field='B', r=1, precision='Float64', lCut=None, quiet=False):
        """
        :param tag: if you specify a pattern, it tries to read the corresponding files
        :type tag: str
        :param ratio_cmb_surface: ratio of surface ratio to CMB radius (default is 1)
        :type ratio_cmb_surface: float
        :param scale_b: magnetic field unit (default is 1)
        :type scale_b: float
        :param iplot: a logical to toggle the plot (default is True)
        :type iplot: bool
        :param field: 'B', 'V' or 'T' (magnetic field, velocity field or temperature)
        :type field: str
        :param r: an integer to characterise which file we want to plot
        :type r: int
        :param precision: single or double precision
        :type precision: str
        :param lCut: reduce the spherical harmonic truncation to l <= lCut
        :type lCut: int
        :param quiet: verbose when toggled to True (default is True)
        :type quiet: bool
        """

        logFiles = scanDir('log.*')
        if len(logFiles) != 0:
            MagicSetup.__init__(self, quiet=True, nml=logFiles[-1])
        else:
            str1 = 'Aspect ratio ?\n'
            self.radratio = float(input(str1))

        self.rcmb = 1./(1.-self.radratio)
        ricb = self.radratio/(1.-self.radratio)

        files = scanDir('%s_coeff_r%i.%s' % (field,r,tag))

        # Read the B_coeff files (by stacking the different tags)
        data = []
        for k, file in enumerate(files):
            if not quiet: print('Reading %s' % file)
            f = npfile(file, endian='B')
            out = f.fort_read('3i4,%s' % precision)[0]
            self.l_max_r, self.minc, n_data = out[0]
            self.m_max_r = int((self.l_max_r/self.minc)*self.minc)
            self.radius = out[1]

            while 1:
                try:
                    data.append(f.fort_read(precision))
                except TypeError:
                    break
        self.lm_max_r = self.m_max_r*(self.l_max_r+1)//self.minc - \
                        self.m_max_r*(self.m_max_r-self.minc)//(2*self.minc) + \
                        self.l_max_r-self.m_max_r+1

        # Get indices location
        self.idx = np.zeros((self.l_max_r+1, self.m_max_r+1), 'i')
        self.ell = np.zeros(self.lm_max_r, 'i')
        self.ms = np.zeros(self.lm_max_r, 'i')
        self.idx[0:self.l_max_r+2, 0] = np.arange(self.l_max_r+1)
        self.ell[0:self.l_max_r+2] = np.arange(self.l_max_r+2)
        k = self.l_max_r+1
        for m in range(self.minc, self.l_max_r+1, self.minc):
            for l in range(m, self.l_max_r+1):
                self.idx[l, m] = k
                self.ell[self.idx[l,m]] = l
                self.ms[self.idx[l,m]] = m
                k +=1


        # Rearange data
        data = np.array(data, dtype=precision)
        self.nstep = data.shape[0]
        self.wlm = np.zeros((self.nstep, self.lm_max_r), 'Complex64')
        self.dwlm = np.zeros((self.nstep, self.lm_max_r), 'Complex64')
        self.zlm = np.zeros((self.nstep, self.lm_max_r), 'Complex64')

        # Get time
        self.time = np.zeros(self.nstep, dtype=precision)
        self.time = data[:, 0]

        # wlm
        self.wlm[:, 1:self.l_max_r+1] = data[:, 1:self.l_max_r+1]
        k = self.l_max_r+1
        for m in range(self.minc, self.l_max_r+1, self.minc):
            for l in range(m, self.l_max_r+1):
                self.wlm[:, self.idx[l, m]] = data[:, k]+1j*data[:, k+1]
                k += 2

        # dwlm
        self.dwlm[:, 1:self.l_max_r+1] = data[:, k:k+self.l_max_r]
        k += self.l_max_r
        for m in range(self.minc, self.l_max_r+1, self.minc):
            for l in range(m, self.l_max_r+1):
                self.dwlm[:, self.idx[l, m]] = data[:, k]+1j*data[:, k+1]
                k += 2
        # zlm
        self.zlm[:, 1:self.l_max_r+1] = data[:, k:k+self.l_max_r]
        k += self.l_max_r
        for m in range(self.minc, self.l_max_r+1, self.minc):
            for l in range(m, self.l_max_r+1):
                self.zlm[:, self.idx[l, m]] = data[:, k]+1j*data[:, k+1]
                k += 2

        # ddw in case B is stored
        if field == 'B':
            self.ddwlm = np.zeros((self.nstep, self.lm_max_r), 'Complex64')
            self.ddwlm[:, 1:self.l_max_r+1] = data[:, k:k+self.l_max_r]
            k += self.l_max_r
            for m in range(self.minc, self.l_max_r+1, self.minc):
                for l in range(m, self.l_max_r+1):
                    self.ddwlm[:, self.idx[l, m]] = data[:, k]+1j*data[:, k+1]
                    k += 2

        # Truncate!
        if lCut is not None:
            if lCut < self.l_max_r:
                self.truncate(lCut, field=field)

        self.e_pol_axi_l = np.zeros((self.nstep, self.l_max_r+1), precision)
        self.e_tor_axi_l = np.zeros((self.nstep, self.l_max_r+1), precision)
        self.e_pol_l = np.zeros((self.nstep, self.l_max_r+1), precision)
        self.e_tor_l = np.zeros((self.nstep, self.l_max_r+1), precision)

        for l in range(1, self.l_max_r+1):
            self.e_pol_l[:, l] = 0.
            self.e_tor_l[:, l] = 0.
            self.e_pol_axi_l[:, l] = 0.
            self.e_tor_axi_l[:, l] = 0.
            for m in range(0, l+1, self.minc):
                lm = self.idx[l, m]

                if m == 0:
                    epol = 0.5*self.ell[lm]*(self.ell[lm]+1)*( \
                           self.ell[lm]*(self.ell[lm]+1)/self.radius**2* \
                           abs(self.wlm[:,lm])**2+ abs(self.dwlm[:,lm])**2 ) 
                    etor = 0.5*self.ell[lm]*(self.ell[lm]+1)*abs(self.zlm[:, lm])**2

                    self.e_pol_axi_l[:, l] += epol
                    self.e_tor_axi_l[:, l] += etor
                else:
                    epol = self.ell[lm]*(self.ell[lm]+1)*( \
                           self.ell[lm]*(self.ell[lm]+1)/self.radius**2* \
                           abs(self.wlm[:,lm])**2+ abs(self.dwlm[:,lm])**2 ) 
                    etor = self.ell[lm]*(self.ell[lm]+1)*abs(self.zlm[:, lm])**2

                self.e_pol_l[:, l] += epol
                self.e_tor_l[:, l] += etor
        

        # Time-averaged energy
        facT = 1./(self.time[-1]-self.time[0])

        self.e_pol_lM = facT * np.trapz(self.e_pol_l, self.time, axis=0)
        self.e_tor_lM = facT * np.trapz(self.e_tor_l, self.time, axis=0)
        self.e_pol_axi_lM = facT * np.trapz(self.e_pol_axi_l, self.time, axis=0)
        self.e_tor_axi_lM = facT * np.trapz(self.e_tor_axi_l, self.time, axis=0)