示例#1
0
class Reprojection:
    def __init__(self, path, elev):
        if not os.path.exists(DATA_DIR):
            raise NameError(
                "Path %s is not specified. Is the docker file set up properly?"
                % DATA_DIR)
        table_file = DATA_DIR + '/meshes/table.obj'
        self.table_mesh = ObjFile(table_file).read()
        self.data_dir = DATA_DIR + '/meshes/dexnet/'
        self.output_dir = DATA_DIR + '/reprojections/'
        self.config = YamlConfig(
            './cfg/tools/generate_projected_gqcnn_dataset.yaml')

        self.random_positions = 1
        self.image_size = (300, 300)
        self.elev = 0
        self.show_images = False

        self.cur_obj_label = 0
        self.cur_image_label = 0
        self.cur_pose_label = 0

        if path is not None:
            self.output_dir = DATA_DIR + '/reprojections/' + path

        if elev is not None:
            print("Elevation angle is being set to %d" % elev)
            self.config['env_rv_params']['min_elev'] = elev
            self.config['env_rv_params']['max_elev'] = elev
            self.elev = elev

        tensor_config = self.config['tensors']
        tensor_config['fields']['depth_ims_tf_table']['height'] = 32
        tensor_config['fields']['depth_ims_tf_table']['width'] = 32
        tensor_config['fields']['robust_ferrari_canny'] = {}
        tensor_config['fields']['robust_ferrari_canny']['dtype'] = 'float32'
        tensor_config['fields']['ferrari_canny'] = {}
        tensor_config['fields']['ferrari_canny']['dtype'] = 'float32'
        tensor_config['fields']['force_closure'] = {}
        tensor_config['fields']['force_closure']['dtype'] = 'float32'

        self.tensor_dataset = TensorDataset(self.output_dir, tensor_config)
        self.tensor_datapoint = self.tensor_dataset.datapoint_template
        if not os.path.exists(self.output_dir + '/images'):
            os.makedirs(self.output_dir + '/images')
        if not os.path.exists(self.output_dir + '/meshes'):
            os.makedirs(self.output_dir + '/meshes')

    def _load_file_ids(self):
        dtype = [('Obj_id', (np.str_, 40)), ('Tensor', int), ('Array', int),
                 ('Depth', float)]

        with open(self.data_dir + 'files.csv', 'r') as csv_file:
            data = []
            csv_reader = csv.reader(csv_file, delimiter=',')
            for row in csv_reader:
                data.append(
                    tuple([
                        int(value) if value.isdigit() else value
                        for value in row
                    ]))
            self.file_arr = np.array(data, dtype=dtype)
        files = os.listdir(self.data_dir)
        files = [name.split('.')[0] for name in files]
        files.remove('files')
        self.all_objects = list(set(files))

    def _load_data(self, obj_id):
        self.grasp_metrics = json.load(
            open(self.data_dir + obj_id + '.json', 'r'))
        self.candidate_grasps_dict = pkl.load(
            open(self.data_dir + obj_id + '.pkl', 'rb'))

        self.object_mesh = ObjFile(self.data_dir + obj_id + '.obj').read()
        self.stable_poses = StablePoseFile(self.data_dir + obj_id +
                                           '.stp').read()
        self.tensor = self.file_arr['Tensor'][np.where(
            self.file_arr['Obj_id'] == obj_id)][0]
        self.array = self.file_arr['Array'][np.where(
            self.file_arr['Obj_id'] == obj_id)][0]
        depth = self.file_arr['Depth'][np.where(
            self.file_arr['Obj_id'] == obj_id)][0]
        self.config['env_rv_params']['min_radius'] = depth
        self.config['env_rv_params']['max_radius'] = depth

    def start_rendering(self):
        self._load_file_ids()

        for object_id in self.all_objects:
            self._load_data(object_id)

            for i, stable_pose in enumerate(self.stable_poses):
                try:
                    candidate_grasp_info = self.candidate_grasps_dict[
                        stable_pose.id]
                except KeyError:
                    continue

                if not candidate_grasp_info:
                    Warning("Candidate grasp info of object id %s empty" %
                            object_id)
                    Warning("Continue.")
                    continue
                T_obj_stp = stable_pose.T_obj_table.as_frames('obj', 'stp')
                T_obj_stp = self.object_mesh.get_T_surface_obj(T_obj_stp)

                T_table_obj = RigidTransform(from_frame='table',
                                             to_frame='obj')
                scene_objs = {
                    'table': SceneObject(self.table_mesh, T_table_obj)
                }

                urv = UniformPlanarWorksurfaceImageRandomVariable(
                    self.object_mesh,
                    [RenderMode.DEPTH_SCENE, RenderMode.SEGMASK],
                    'camera',
                    self.config['env_rv_params'],
                    scene_objs=scene_objs,
                    stable_pose=stable_pose)
                render_sample = urv.rvs(size=self.random_positions)
                # for render_sample in render_samples:

                binary_im = render_sample.renders[RenderMode.SEGMASK].image
                depth_im = render_sample.renders[
                    RenderMode.DEPTH_SCENE].image.crop(300, 300)
                orig_im = Image.fromarray(self._scale_image(depth_im.data))
                if self.show_images:
                    orig_im.show()
                orig_im.convert('RGB').save(self.output_dir + '/images/' +
                                            object_id + '_elev_' +
                                            str(self.elev) + '_original.png')
                print("Saved original")

                T_stp_camera = render_sample.camera.object_to_camera_pose
                shifted_camera_intr = render_sample.camera.camera_intr.crop(
                    300, 300, 240, 320)
                depth_points = self._reproject_to_3D(depth_im,
                                                     shifted_camera_intr)

                transformed_points, T_camera = self._transformation(
                    depth_points)

                camera_dir = np.dot(T_camera.rotation,
                                    np.array([0.0, 0.0, -1.0]))

                pcd = o3d.geometry.PointCloud()
                # print(camera_dir)
                pcd.points = o3d.utility.Vector3dVector(transformed_points.T)
                # TODO check normals!!
                #  pcd.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.1, max_nn=30))
                #  pcd.normals = o3d.utility.Vector3dVector(-np.asarray(pcd.normals))
                normals = np.repeat([camera_dir],
                                    len(transformed_points.T),
                                    axis=0)
                pcd.normals = o3d.utility.Vector3dVector(normals)

                # cs_points = [[0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1]]
                # cs_lines = [[0, 1], [0, 2], [0, 3]]
                # colors = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
                # cs = o3d.geometry.LineSet(points=o3d.utility.Vector3dVector(cs_points),
                #                           lines=o3d.utility.Vector2iVector(cs_lines))
                # cs.colors = o3d.utility.Vector3dVector(colors)
                # o3d.visualization.draw_geometries([pcd])

                depth = self._o3d_meshing(pcd)

                # projected_depth_im,new_camera_intr,table_height = self._projection(new_points,shifted_camera_intr)
                new_camera_intr = shifted_camera_intr
                new_camera_intr.cx = 150
                new_camera_intr.cy = 150
                projected_depth_im = np.asarray(depth)
                projected_depth_im[projected_depth_im == 0.0] = -1.0
                table_height = np.median(
                    projected_depth_im[projected_depth_im != -1.0].flatten())
                print("Minimum depth:", min(projected_depth_im.flatten()))
                print("Maximum depth:", max(projected_depth_im.flatten()))

                im = Image.fromarray(self._scale_image(projected_depth_im))

                projected_depth_im = DepthImage(projected_depth_im,
                                                frame='new_camera')

                cx = projected_depth_im.center[1]
                cy = projected_depth_im.center[0]

                # Grasp conversion
                T_obj_old_camera = T_stp_camera * T_obj_stp.as_frames(
                    'obj', T_stp_camera.from_frame)
                T_obj_camera = T_camera.dot(T_obj_old_camera)
                for grasp_info in candidate_grasp_info:
                    grasp = grasp_info.grasp
                    collision_free = grasp_info.collision_free

                    grasp_2d = grasp.project_camera(T_obj_camera,
                                                    new_camera_intr)
                    dx = cx - grasp_2d.center.x
                    dy = cy - grasp_2d.center.y
                    translation = np.array([dy, dx])

                    # Project 3D old_camera_cs contact points into new camera cs

                    contact_points = np.append(grasp_info.contact_point1, 1).T
                    new_cam = np.dot(T_obj_camera.matrix, contact_points)
                    c1 = new_camera_intr.project(
                        Point(new_cam[0:3], frame=new_camera_intr.frame))
                    contact_points = np.append(grasp_info.contact_point2, 1).T
                    new_cam = np.dot(T_obj_camera.matrix, contact_points)
                    c2 = new_camera_intr.project(
                        Point(new_cam[0:3], frame=new_camera_intr.frame))

                    # Check if there are occlusions at contact points
                    if projected_depth_im.data[
                            c1.x, c1.y] == -1.0 or projected_depth_im.data[
                                c2.x, c2.y] == -1.0:
                        print("Contact point at occlusion")
                        contact_occlusion = True
                    else:
                        contact_occlusion = False
                    # Mark contact points in image
                    im = im.convert('RGB')
                    if False:
                        im_draw = ImageDraw.Draw(im)
                        im_draw.line([(c1[0], c1[1] - 10),
                                      (c1[0], c1[1] + 10)],
                                     fill=(255, 0, 0, 255))
                        im_draw.line([(c1[0] - 10, c1[1]),
                                      (c1[0] + 10, c1[1])],
                                     fill=(255, 0, 0, 255))
                        im_draw.line([(c2[0], c2[1] - 10),
                                      (c2[0], c2[1] + 10)],
                                     fill=(255, 0, 0, 255))
                        im_draw.line([(c2[0] - 10, c2[1]),
                                      (c2[0] + 10, c2[1])],
                                     fill=(255, 0, 0, 255))
                    if self.show_images:
                        im.show()
                    im.save(self.output_dir + '/images/' + object_id +
                            '_elev_' + str(self.elev) + '_reprojected.png')

                    # Transform and crop image

                    depth_im_tf = projected_depth_im.transform(
                        translation, grasp_2d.angle)
                    depth_im_tf = depth_im_tf.crop(96, 96)

                    # Apply transformation to contact points
                    trans_map = np.array([[1, 0, dx], [0, 1, dy]])
                    rot_map = cv2.getRotationMatrix2D(
                        (cx, cy), np.rad2deg(grasp_2d.angle), 1)
                    trans_map_aff = np.r_[trans_map, [[0, 0, 1]]]
                    rot_map_aff = np.r_[rot_map, [[0, 0, 1]]]
                    full_map = rot_map_aff.dot(trans_map_aff)
                    # print("Full map",full_map)
                    c1_rotated = (np.dot(full_map, np.r_[c1.vector, [1]]) -
                                  np.array([150 - 48, 150 - 48, 0])) / 3
                    c2_rotated = (np.dot(full_map, np.r_[c2.vector, [1]]) -
                                  np.array([150 - 48, 150 - 48, 0])) / 3

                    grasp_line = depth_im_tf.data[48]
                    occlusions = len(np.where(np.squeeze(grasp_line) == -1)[0])

                    # Set occlusions to table height for resizing image
                    depth_im_tf.data[depth_im_tf.data == -1.0] = table_height

                    depth_image = Image.fromarray(np.asarray(depth_im_tf.data))\
                        .resize((32, 32), resample=Image.BILINEAR)
                    depth_im_tf_table = np.asarray(depth_image).reshape(
                        32, 32, 1)

                    # depth_im_tf_table = depth_im_tf.resize((32, 32,), interp='bilinear')

                    im = Image.fromarray(
                        self._scale_image(depth_im_tf_table.reshape(
                            32, 32))).convert('RGB')
                    draw = ImageDraw.Draw(im)
                    draw.line([(c1_rotated[0], c1_rotated[1] - 3),
                               (c1_rotated[0], c1_rotated[1] + 3)],
                              fill=(255, 0, 0, 255))
                    draw.line([(c1_rotated[0] - 3, c1_rotated[1]),
                               (c1_rotated[0] + 3, c1_rotated[1])],
                              fill=(255, 0, 0, 255))
                    draw.line([(c2_rotated[0], c2_rotated[1] - 3),
                               (c2_rotated[0], c2_rotated[1] + 3)],
                              fill=(255, 0, 0, 255))
                    draw.line([(c2_rotated[0] - 3, c2_rotated[1]),
                               (c2_rotated[0] + 3, c2_rotated[1])],
                              fill=(255, 0, 0, 255))
                    if self.show_images:
                        im.show()
                    im.save(self.output_dir + '/images/' + object_id +
                            '_elev_' + str(self.elev) + '_transformed.png')

                    hand_pose = np.r_[grasp_2d.center.y, grasp_2d.center.x,
                                      grasp_2d.depth, grasp_2d.angle,
                                      grasp_2d.center.y - new_camera_intr.cy,
                                      grasp_2d.center.x - new_camera_intr.cx,
                                      grasp_2d.width_px / 3]

                    self.tensor_datapoint[
                        'depth_ims_tf_table'] = depth_im_tf_table
                    self.tensor_datapoint['hand_poses'] = hand_pose
                    self.tensor_datapoint['obj_labels'] = self.cur_obj_label
                    self.tensor_datapoint['collision_free'] = collision_free
                    self.tensor_datapoint['pose_labels'] = self.cur_pose_label
                    self.tensor_datapoint[
                        'image_labels'] = self.cur_image_label
                    self.tensor_datapoint['files'] = [self.tensor, self.array]
                    self.tensor_datapoint['occlusions'] = occlusions
                    self.tensor_datapoint[
                        'contact_occlusion'] = contact_occlusion

                    for metric_name, metric_val in self.grasp_metrics[str(
                            grasp.id)].iteritems():
                        coll_free_metric = (1 * collision_free) * metric_val
                        self.tensor_datapoint[metric_name] = coll_free_metric
                    self.tensor_dataset.add(self.tensor_datapoint)
                    print("Saved dataset point")
                    self.cur_image_label += 1
                self.cur_pose_label += 1
                gc.collect()
            self.cur_obj_label += 1

        self.tensor_dataset.flush()

    def _o3d_meshing(self, pcd):
        mesh, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
            pcd, depth=15)
        densities = np.asarray(densities)

        # print('visualize densities')
        # densities = np.asarray(densities)
        # density_colors = plt.get_cmap('plasma')(
        #     (densities - densities.min()) / (densities.max() - densities.min()))
        # density_colors = density_colors[:, :3]
        # density_mesh = o3d.geometry.TriangleMesh()
        # density_mesh.vertices = mesh.vertices
        # density_mesh.triangles = mesh.triangles
        # density_mesh.triangle_normals = mesh.triangle_normals
        # density_mesh.vertex_colors = o3d.utility.Vector3dVector(density_colors)
        # o3d.visualization.draw_geometries([density_mesh])

        vertices_to_remove = densities < 7.0  # np.quantile(densities, 0.01)
        mesh.remove_vertices_by_mask(vertices_to_remove)
        mesh.compute_vertex_normals()
        mesh.paint_uniform_color([0.6, 0.6, 0.6])
        o3d.io.write_triangle_mesh(
            self.output_dir + '/meshes/' + "%05d_%03d.ply" %
            (self.tensor, self.array), mesh)

        if visualise_mesh:
            o3d.visualization.draw_geometries([mesh])
        vis = o3d.visualization.Visualizer()
        vis.create_window(height=300, width=300, visible=False)
        vis.get_render_option().load_from_json("./data/renderconfig.json")
        vis.add_geometry(mesh)
        vic = vis.get_view_control()
        params = vic.convert_to_pinhole_camera_parameters()
        (fx, fy) = params.intrinsic.get_focal_length()
        (cx, cy) = params.intrinsic.get_principal_point()
        params.intrinsic.set_intrinsics(300, 300, 525, 525, cx, cy)
        params.extrinsic = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0],
                                     [0, 0, 0, 1]])
        vic.convert_from_pinhole_camera_parameters(params)
        vis.poll_events()
        vis.update_renderer()
        depth = vis.capture_depth_float_buffer(do_render=True)
        # vis.destroy_window()
        # del vis
        return depth

    def _projection(self, transformed_points, camera_intr):
        # Use Camera intrinsics
        new_camera_intr = camera_intr
        new_camera_intr.cx = 150
        new_camera_intr.cy = 150
        K = new_camera_intr.proj_matrix

        projected_points = np.dot(K, transformed_points)

        point_depths = projected_points[2, :]
        table = np.median(point_depths)
        point_z = np.tile(point_depths, [3, 1])
        points_proj = np.divide(projected_points, point_z)

        # Rounding
        points_proj = np.round(points_proj)
        points_proj = points_proj[:2, :].astype(np.int16)

        valid_ind = np.where((points_proj[0, :] >= 0)
                             & (points_proj[0, :] < self.image_size[0])
                             & (points_proj[1, :] >= 0)
                             & (points_proj[1, :] < self.image_size[0]))[0]
        # Fill new image with NaN's
        fill_value = -1.0
        depth_data = np.full([self.image_size[0], self.image_size[1]],
                             fill_value)
        for ind in valid_ind:
            prev_depth = depth_data[points_proj[1, ind], points_proj[0, ind]]
            if prev_depth == fill_value or prev_depth >= point_depths[ind]:
                depth_data[points_proj[1, ind],
                           points_proj[0, ind]] = point_depths[ind]

        return depth_data, new_camera_intr, table

    def _transformation(self, points):
        # Points are given in camera frame. Transform to new camera frame!
        camera_new_position = np.array([[0], [0], [0]])

        ang = np.deg2rad(self.elev)
        Rot = np.array([[1, 0, 0], [0, np.cos(ang), -np.sin(ang)],
                        [0, np.sin(ang), np.cos(ang)]])
        dist = self.config['env_rv_params']['min_radius'] * np.sin(ang)
        height = self.config['env_rv_params']['min_radius'] - self.config[
            'env_rv_params']['min_radius'] * np.cos(ang)
        # Rotation around x axis, therefore translation back to object center alongside y axis
        trans = np.array([0, dist, height])
        Rt = np.column_stack((Rot, trans))
        # Apply transformation to homogeneous coordinates of the points
        homogeneous_points = np.append(np.transpose(points),
                                       np.ones((1, len(points))),
                                       axis=0)
        transformed_points = np.dot(Rt, homogeneous_points)
        return transformed_points, RigidTransform(rotation=Rot,
                                                  translation=trans,
                                                  from_frame='camera',
                                                  to_frame='new_camera')

    # def _PCA(self, points, sorting=True):
    #     mean = np.mean(points, axis=0)
    #     data_adjusted = points - mean
    #
    #     matrix = np.cov(data_adjusted.T)
    #     eigenvalues, eigenvectors = np.linalg.eig(matrix)
    #
    #     if sorting:
    #         sort = eigenvalues.argsort()[::-1]
    #         eigenvalues = eigenvalues[sort]
    #         eigenvectors = eigenvectors[:, sort]
    #     return eigenvalues, eigenvectors

    def _reproject_to_3D(self, depth_im, camera_intr):
        # depth points will be given in camera frame!
        depth_points = camera_intr.deproject(depth_im).data.T
        return depth_points

    def _scale_image(self, depth):
        size = depth.shape
        flattend = depth.flatten()
        scaled = np.interp(flattend, (0.5, 0.75), (0, 255))
        integ = scaled.astype(np.uint8)
        integ.resize(size)
        return integ
    mesh.vertices_ = np.load('../dex-net/data/meshes/lego_vertices.npy')
    mesh.center_of_mass = np.load('../dex-net/data/meshes/lego_com.npy')

    #T_obj_table = RigidTransform(rotation=[0.92275663,  0.13768089,  0.35600924, -0.05311874],
    #                             from_frame='obj', to_frame='table')
    T_obj_table = RigidTransform(
        rotation=[-0.1335021, 0.87671711, 0.41438141, 0.20452958],
        from_frame='obj',
        to_frame='table')

    stable_pose = mesh.resting_pose(T_obj_table)
    #print stable_pose.r

    table_dim = 0.3
    T_obj_table_plot = mesh.get_T_surface_obj(T_obj_table)
    T_obj_table_plot.translation[0] += 0.1
    vis.figure()
    vis.mesh(mesh, T_obj_table_plot, color=(1, 0, 0), style='wireframe')
    vis.points(Point(mesh.center_of_mass, 'obj'),
               T_obj_table_plot,
               color=(1, 0, 1),
               scale=0.01)
    vis.pose(T_obj_table_plot, alpha=0.1)
    vis.mesh_stable_pose(mesh,
                         stable_pose,
                         dim=table_dim,
                         color=(0, 1, 0),
                         style='surface')
    vis.pose(stable_pose.T_obj_table, alpha=0.1)
    vis.show()