right_gripper.calibrate() listener = tf.TransformListener() from_frame = 'base' time.sleep(1) # Main Code br = tf.TransformBroadcaster() # SETUP mesh = trimesh.load(MESH_FILENAME) vertices = mesh.vertices triangles = mesh.triangles normals = mesh.vertex_normals of = ObjFile(MESH_FILENAME) mesh = of.read() ar_tag = lookup_tag(TAG) # find the transformation from the object coordinates to world coordinates... somehow grasp_indices, best_metric_indices = sorted_contacts( vertices, normals, T_ar_object) for indices in best_metric_indices[0:5]: a = grasp_indices[indices][0] b = grasp_indices[indices][1] normal1, normal2 = normals[a], normals[b] contact1, contact2 = vertices[a], vertices[b] # visualize the mesh and contacts vis.figure() vis.mesh(mesh) vis.normals(
os.makedirs(output_path) output_filename = os.path.join( output_path, '{0}_to_world.tf'.format(T_world_obj.from_frame)) print T_world_obj T_world_obj.save(output_filename) if config['vis'] and VIS_SUPPORTED: _, depth_im, _ = sensor.frames() pc_cam = ir_intrinsics.deproject(depth_im) pc_world = T_world_cam * pc_cam mesh_file = ObjFile( os.path.join(object_path, '{0}.obj'.format(args.object_name))) mesh = mesh_file.read() vis.figure(bgcolor=(0.7, 0.7, 0.7)) vis.mesh(mesh, T_world_obj.as_frames('obj', 'world'), style='surface') vis.pose(T_world_obj, alpha=0.04, tube_radius=0.002, center_scale=0.01) vis.pose(RigidTransform(from_frame='origin'), alpha=0.04, tube_radius=0.002, center_scale=0.01) vis.pose(T_world_cam, alpha=0.04, tube_radius=0.002, center_scale=0.01) vis.pose(T_world_cam * T_cb_cam.inverse(), alpha=0.04, tube_radius=0.002, center_scale=0.01) vis.points(pc_world, subsample=20) vis.show()
from perception import CameraIntrinsics from visualization import Visualizer2D from core import RigidTransform import numpy as np from matplotlib import pyplot as plt from perception.object_render import RenderMode dexnet_path = "/home/chris/optimal_manipulation_simulator/dex-net-new-api" if __name__ == "__main__": print "\n\n\n\n" camera_intr = CameraIntrinsics.load("../config/primesense_overhead.intr") camera = VirtualCamera(camera_intr) of = ObjFile(dexnet_path + "/data/meshes/chess_pieces/WizRook.obj") rook1 = of.read() T_world_camera = RigidTransform(rotation=np.array([[-1, 0, 0], [0, 1, 0], [0, 0, -1]]), translation=np.array([0, 0, .2]).T, from_frame="world", to_frame="primesense_overhead") # T_world_camera = RigidTransform(rotation = np.array([[1,0,0],[0,1,0],[0,0,1]]), # translation=np.array([-.2,0,0]).T, # from_frame="world", # to_frame="primesense_overhead") # squares = [(-1,-1), (-1,0), (-1,1), (0,-1), (0,1), (1,-1), (1,0), (1,1)] # for i, square in enumerate(squares): T_rook2_world = RigidTransform(rotation=np.eye(3),
y_axis = y_axis / np.linalg.norm(y_axis) z_axis = np.array([y_axis[1], -y_axis[0], 0]) # the z axis will always be in the table plane for now z_axis = z_axis / np.linalg.norm(z_axis) x_axis = np.cross(y_axis, z_axis) # convert to hand pose R_obj_gripper = np.array([x_axis, y_axis, z_axis]).T t_obj_gripper = center return RigidTransform(rotation=R_obj_gripper, translation=t_obj_gripper, from_frame='gripper', to_frame='obj') if __name__ == '__main__': of = ObjFile(SPRAY_BOTTLE_MESH_FILENAME) mesh = of.read() vertices = mesh.vertices triangles = mesh.triangles normals = mesh.normals print 'Num vertices:', len(vertices) print 'Num triangles:', len(triangles) print 'Num normals:', len(normals) # 1. Generate candidate pairs of contact points # 2. Check for force closure # 3. Convert each grasp to a hand pose contact1 = vertices[500]