def _save_example(mlflow_model: Model, input_example: ModelInputExample, path: str): """ Save example to a file on the given path and updates passed Model with example metadata. The metadata is a dictionary with the following fields: - 'artifact_path': example path relative to the model directory. - 'type': Type of example. Currently the only supported value is 'dataframe' - 'pandas_orient': Determines the json encoding for dataframe examples in terms of pandas orient convention. Defaults to 'split'. :param mlflow_model: Model metadata that will get updated with the example metadata. :param path: Where to store the example file. Should be model the model directory. """ example = _Example(input_example) example.save(path) mlflow_model.saved_input_example_info = example.info
def _save_example(mlflow_model: Model, input_example: ModelInputExample, path: str): """ Save example to a file on the given path and updates passed Model with example metadata. The metadata is a dictionary with the following fields: - 'artifact_path': example path relative to the model directory. - 'type': Type of example. Currently the supported values are 'dataframe' and 'ndarray' - One of the following metadata based on the `type`: - 'pandas_orient': Used to store dataframes. Determines the json encoding for dataframe examples in terms of pandas orient convention. Defaults to 'split'. - 'format: Used to store tensors. Determines the standard used to store a tensor input example. MLflow uses a JSON-formatted string representation of TF serving input. :param mlflow_model: Model metadata that will get updated with the example metadata. :param path: Where to store the example file. Should be model the model directory. """ example = _Example(input_example) example.save(path) mlflow_model.saved_input_example_info = example.info