"{:.3f}".format(average_latent_loss0), "latent1=", "{:.3f}".format(average_latent_loss1)) if (epoch % save_epoch == 0) or (epoch == training_epochs - 1): torch.save(scan.state_dict(), '{}/scan_epoch_{}.pth'.format(exp, epoch)) data_manager = DataManager() data_manager.prepare() dae = DAE() vae = VAE() scan = SCAN() if use_cuda: dae.load_state_dict(torch.load('save/dae/dae_epoch_2999.pth')) vae.load_state_dict(torch.load('save/vae/vae_epoch_2999.pth')) scan.load_state_dict(torch.load('save/scan/scan_epoch_1499.pth')) dae, vae, scan = dae.cuda(), vae.cuda(), scan.cuda() else: dae.load_state_dict( torch.load('save/dae/dae_epoch_2999.pth', map_location=lambda storage, loc: storage)) vae.load_state_dict( torch.load('save/vae/vae_epoch_2999.pth', map_location=lambda storage, loc: storage)) scan.load_state_dict( torch.load(exp + '/' + opt.load, map_location=lambda storage, loc: storage)) if opt.train:
target = torch.transpose(target, 1, 3) if use_cuda: hsv_image_t = target.data.cpu().numpy() else: hsv_image_t = target.data.numpy() rgb_image_t = utils.convert_hsv_to_rgb(hsv_image_t[0]) utils.save_image(rgb_image_t, "{}/target_epoch_{}.png".format(exp, epoch)) # Save to checkpoint if (epoch % save_epoch == 0) or (epoch == training_epochs - 1): torch.save(dae.state_dict(), '{}/dae_epoch_{}.pth'.format(exp, epoch)) data_manager = DataManager() data_manager.prepare() dae = DAE() if opt.load != '': print('loading {}'.format(opt.load)) if use_cuda: dae.load_state_dict(torch.load()) else: dae.load_state_dict( torch.load(exp + '/' + opt.load, map_location=lambda storage, loc: storage)) if use_cuda: dae = dae.cuda() if opt.train: dae_optimizer = optim.Adam(dae.parameters(), lr=1e-4, eps=1e-8) train_dae(dae, data_manager, dae_optimizer)
parser.add_argument('--output-path', default=None, type=str, help="Where to save raw acoustic output") parser = add_decoder_args(parser) parser.add_argument('--save-output', action="store_true", help="Saves output of model from test") args = parser.parse_args() if __name__ == '__main__': torch.set_grad_enabled(False) device = torch.device("cuda" if args.cuda else "cpu") model = load_model(device, args.model_path, args.cuda) denoiser = DAE() denoiser.load_state_dict( torch.load('./models/denoiser_deepspeech_final.pth')) denoiser = denoiser.to(device) denoiser.eval() if args.decoder == "beam": from decoder import BeamCTCDecoder decoder = BeamCTCDecoder(model.labels, lm_path=args.lm_path, alpha=args.alpha, beta=args.beta, cutoff_top_n=args.cutoff_top_n, cutoff_prob=args.cutoff_prob, beam_width=args.beam_width, num_processes=args.lm_workers) elif args.decoder == "greedy":