out_data[:, col] /= max_values[col] - min_values[col] np.place(out_data[:, col], max_mask, 1.0) np.place(out_data[:, col], min_mask, 0.0) return out_data if __name__ == "__main__": epochs = 5000 batch_size = 128 input_size = 34 latent_size = 8 model = DAE(input_size, latent_size) model.to('cuda') torch.backends.cudnn.benchmark = True loss_fn = nn.MSELoss() optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9) DECAY = 0.95 scheduler = LambdaLR(optimizer, lr_lambda=lambda t: DECAY**t) data = pd.read_csv("model/training_test_data.csv") data.sample(frac=1, random_state=200) data = data.to_numpy() size = data.shape[0] training_data = data[:int(0.7 * size)] validation_data = data[int(0.7 * size):int(0.9 * size)] test_data = data[int(0.9 * size):]
type=str, help="Where to save raw acoustic output") parser = add_decoder_args(parser) parser.add_argument('--save-output', action="store_true", help="Saves output of model from test") args = parser.parse_args() if __name__ == '__main__': torch.set_grad_enabled(False) device = torch.device("cuda" if args.cuda else "cpu") model = load_model(device, args.model_path, args.cuda) denoiser = DAE() denoiser.load_state_dict( torch.load('./models/denoiser_deepspeech_final.pth')) denoiser = denoiser.to(device) denoiser.eval() if args.decoder == "beam": from decoder import BeamCTCDecoder decoder = BeamCTCDecoder(model.labels, lm_path=args.lm_path, alpha=args.alpha, beta=args.beta, cutoff_top_n=args.cutoff_top_n, cutoff_prob=args.cutoff_prob, beam_width=args.beam_width, num_processes=args.lm_workers) elif args.decoder == "greedy": decoder = GreedyDecoder(model.labels,