def boreali_processing(obj, final_path): wavelen = [412, 443, 469, 488, 531, 547, 555, 645, 667, 678] cpa_limits = [0.01, 2, 0.01, 1, 0.01, 1, 10] b = Boreali('michigan', wavelen) n = Nansat(obj) dom = Domain('+proj=latlong +datum=WGS84 +ellps=WGS84 +no_defs', '-lle -86.3 44.6 -85.2 45.3 -ts 300 200') n.reproject(dom) theta = numpy.zeros_like(n[2]) custom_n = Nansat(domain=n) band_rrs_numbers = list(map(lambda x: n._get_band_number('Rrs_' + str(x)), wavelen)) for index in range(0, len(wavelen)): # Преобразуем в Rrsw rrsw = n[band_rrs_numbers[index]] / (0.52 + 1.7 * n[band_rrs_numbers[index]]) custom_n.add_band(rrsw, parameters={'name': 'Rrsw_' + str(wavelen[index]), 'units': 'sr-1', 'wavelength': wavelen[index]}) custom_n = create_mask(custom_n) cpa = b.process(custom_n, cpa_limits, mask=custom_n['mask'], theta=theta, threads=4) custom_n.add_band(array=cpa[0], parameters={'name': 'chl', 'long_name': 'Chlorophyl-a', 'units': 'mg m-3'}) custom_n.add_band(array=cpa[1], parameters={'name': 'tsm', 'long_name': 'Total suspended matter', 'units': 'g m-3'}) custom_n.add_band(array=cpa[2], parameters={'name': 'doc', 'long_name': 'Dissolved organic carbon', 'units': 'gC m-3'}) custom_n.add_band(array=cpa[3], parameters={'name': 'mse', 'long_name': 'Root Mean Square Error', 'units': 'sr-1'}) custom_n.add_band(array=cpa[4], parameters={'name': 'mask', 'long_name': 'L2 Boreali mask', 'units': '1'}) custom_n.export(final_path + obj.split('/')[-1] + 'cpa_deep.nc') fig_params = {'legend': True, 'LEGEND_HEIGHT': 0.5, 'NAME_LOCATION_Y': 0, 'mask_array': cpa[4], 'mask_lut': {1: [255, 255, 255], 2: [128, 128, 128], 4: [200, 200, 255]}} custom_n.write_figure(final_path + obj.split('/')[-1] + 'chl_deep.png', 'chl', clim=[0, 1.], **fig_params) custom_n.write_figure(final_path + obj.split('/')[-1] + 'tsm_deep.png', 'tsm', clim=[0, 1.], **fig_params) custom_n.write_figure(final_path + obj.split('/')[-1] + 'doc_deep.png', 'doc', clim=[0, .2], **fig_params) custom_n.write_figure(final_path + obj.split('/')[-1] + 'mse_deep.png', 'mse', clim=[1e-5, 1e-2], logarithm=True, **fig_params) n.write_figure(final_path + obj.split('/')[-1] + 'rgb_deep.png', [16, 14, 6], clim=[[0, 0, 0], [0.006, 0.04, 0.024]], mask_array=cpa[4], mask_lut={2: [128, 128, 128]})
def _get_masked_windspeed(self, landmask=True, icemask=True): try: sar_windspeed = self['windspeed'] except: raise ValueError('SAR wind has not been calculated, ' \ 'execute calculate_wind(winddir) first.') sar_windspeed[sar_windspeed<0] = 0 palette = jet if landmask: try: # Land mask sar_windspeed = np.ma.masked_where( self.watermask()[1]==2, sar_windspeed) palette.set_bad([.3, .3, .3], 1.0) # Land is masked (bad) except: print 'Land mask not available' if icemask: try: # Ice mask try: # first try local file ice = Nansat('metno_local_hires_seaice_' + self.SAR_image_time.strftime('%Y%m%d'), mapperName='metno_local_hires_seaice') except: # otherwise Thredds ice = Nansat('metno_hires_seaice:' + self.SAR_image_time.strftime('%Y%m%d')) ice.reproject(self) iceBandNo = ice._get_band_number( {'standard_name': 'sea_ice_area_fraction'}) sar_windspeed[ice[iceBandNo]>0] = -1 palette.set_under('w', 1.0) # Ice is 'under' (-1) except: print 'Ice mask not available' return sar_windspeed, palette
def _get_masked_windspeed(self, landmask=True, icemask=True): try: sar_windspeed = self['windspeed'] except: raise ValueError('SAR wind has not been calculated, ' \ 'execute calculate_wind(winddir) first.') sar_windspeed[sar_windspeed < 0] = 0 palette = jet if landmask: try: # Land mask sar_windspeed = np.ma.masked_where(self.watermask()[1] == 2, sar_windspeed) palette.set_bad([.3, .3, .3], 1.0) # Land is masked (bad) except: print 'Land mask not available' if icemask: try: # Ice mask try: # first try local file ice = Nansat('metno_local_hires_seaice_' + self.SAR_image_time.strftime('%Y%m%d'), mapperName='metno_local_hires_seaice') except: # otherwise Thredds ice = Nansat('metno_hires_seaice:' + self.SAR_image_time.strftime('%Y%m%d')) ice.reproject(self) iceBandNo = ice._get_band_number( {'standard_name': 'sea_ice_area_fraction'}) sar_windspeed[ice[iceBandNo] > 0] = -1 palette.set_under('w', 1.0) # Ice is 'under' (-1) except: print 'Ice mask not available' return sar_windspeed, palette
class SARWind(Nansat, object): ''' A class for calculating wind speed from SAR images using CMOD ''' def __init__(self, sar_image, winddir=None, pixelsize=500): ''' Parameters ----------- sar_image : string or Nansat object SAR image filename (original, raw file) winddir : int, string, Nansat, None Auxiliary wind field information needed to calculate SAR wind (must be or have wind direction) ''' if isinstance(sar_image, str) or isinstance(sar_image, unicode): super(SARWind, self).__init__(sar_image) elif isinstance(sar_image, Nansat): super(SARWind, self).__init__(domain=sar_image) self.vrt = sar_image.vrt # Check that this is a SAR image with VV pol NRCS try: self.sigma0_bandNo = self._get_band_number( {'standard_name': 'surface_backwards_scattering_coefficient_of_radar_wave', 'polarization': 'VV'}) except: raise TypeError(self.fileName + ' does not have SAR NRCS in VV polarization') self.SAR_image_time = self.get_time( self.sigma0_bandNo).replace(tzinfo=None) if pixelsize != 'fullres': print 'Resizing SAR image to ' + str(pixelsize) + ' m pixel size' self.resize(pixelsize=pixelsize) self.winddir = winddir if winddir is not None: self.calculate_wind() def calculate_wind(self, winddir=None, storeModelSpeed=True): # Calculate wind speed from SAR sigma0 in VV polarization if winddir: self.winddir = winddir if self.winddir is None or self.winddir == 'online': self.winddir = 'ncep_wind_online' # default source if isinstance(self.winddir, int): # Constant wind direction is input print 'Using constant wind (from) direction: ' + str(self.winddir) + \ ' degrees clockwise from North' winddirArray = np.ones(self.shape())*self.winddir winddir_time = None storeModelSpeed = False # Not relevant if direction given as number else: # Nansat readable file if isinstance(self.winddir, str): try: self.winddir = Nansat(self.winddir) except: try: self.winddir = Nansat(self.winddir + datetime.strftime( self.SAR_image_time, ':%Y%m%d%H%M')) except: pass if not isinstance(self.winddir, Nansat): raise ValueError('Wind direction not available') winddir_time = self.winddir.get_time()[0] # Bi-linear interpolation onto SAR image self.winddir.reproject(self, eResampleAlg=1) # Check time difference between SAR image and wind direction object timediff = self.SAR_image_time - winddir_time hoursDiff = np.abs(timediff.total_seconds()/3600.) print 'Time difference between SAR image and wind direction: ' \ + '%.2f' % hoursDiff + ' hours' print 'SAR image time: ' + str(self.SAR_image_time) print 'Wind dir time: ' + str(winddir_time) if hoursDiff > 3: print '#########################################' print 'WARNING: time difference exceeds 3 hours!' print '#########################################' wind_u_bandNo = self.winddir._get_band_number({ 'standard_name': 'eastward_wind', }) wind_v_bandNo = self.winddir._get_band_number({ 'standard_name': 'northward_wind', }) # Get wind direction u_array = self.winddir[wind_u_bandNo] v_array = self.winddir[wind_v_bandNo] winddirArray = np.degrees( np.arctan2(-u_array, -v_array)) # 0 from North, 90 from East # Calculate SAR wind with CMOD # TODO: # - add other CMOD versions than CMOD5 print 'Calculating SAR wind with CMOD...' startTime = datetime.now() windspeed = cmod5n_inverse(self[self.sigma0_bandNo], np.mod(winddirArray - self['SAR_look_direction'], 360), self['incidence_angle']) print 'Calculation time: ' + str(datetime.now() - startTime) windspeed[np.where(np.isnan(windspeed))] = np.nan windspeed[np.where(np.isinf(windspeed))] = np.nan # Add wind speed and direction as bands # TODO: make it possible to update existing bands... See # https://github.com/nansencenter/nansat/issues/58 self.add_band(array=windspeed, parameters={ 'wkv': 'wind_speed', 'name': 'windspeed', 'time': self.get_time(self.sigma0_bandNo), 'winddir_time': winddir_time }) self.add_band(array=winddirArray, parameters={ 'wkv': 'wind_from_direction', 'name': 'winddirection', 'time': winddir_time }) if storeModelSpeed: self.add_band(array=self.winddir['windspeed'], parameters={ 'wkv': 'wind_speed', 'name': 'model_windspeed', 'time': winddir_time, }) # TODO: Replace U and V bands with pixelfunctions u = -windspeed*np.sin((180.0 - winddirArray)*np.pi/180.0) v = windspeed*np.cos((180.0 - winddirArray)*np.pi/180.0) self.add_band(array=u, parameters={ 'wkv': 'eastward_wind', }) self.add_band(array=v, parameters={ 'wkv': 'northward_wind', }) def _get_masked_windspeed(self, landmask=True, icemask=True): try: sar_windspeed = self['windspeed'] except: raise ValueError('SAR wind has not been calculated, ' \ 'execute calculate_wind(winddir) first.') sar_windspeed[sar_windspeed<0] = 0 palette = jet if landmask: try: # Land mask sar_windspeed = np.ma.masked_where( self.watermask()[1]==2, sar_windspeed) palette.set_bad([.3, .3, .3], 1.0) # Land is masked (bad) except: print 'Land mask not available' if icemask: try: # Ice mask try: # first try local file ice = Nansat('metno_local_hires_seaice_' + self.SAR_image_time.strftime('%Y%m%d'), mapperName='metno_local_hires_seaice') except: # otherwise Thredds ice = Nansat('metno_hires_seaice:' + self.SAR_image_time.strftime('%Y%m%d')) ice.reproject(self) iceBandNo = ice._get_band_number( {'standard_name': 'sea_ice_area_fraction'}) sar_windspeed[ice[iceBandNo]>0] = -1 palette.set_under('w', 1.0) # Ice is 'under' (-1) except: print 'Ice mask not available' return sar_windspeed, palette def write_geotiff(self, filename, landmask=True, icemask=True): sar_windspeed, palette = self._get_masked_windspeed(landmask, icemask) nansat_geotiff = Nansat(array=sar_windspeed, domain=self, parameters = {'name': 'masked_windspeed', 'minmax': '0 20'}) nansat_geotiff.write_geotiffimage(filename) def plot(self, filename=None, numVectorsX = 16, show=True, landmask=True, icemask=True, flip=True, maskWindAbove=35): ''' Basic plotting function showing CMOD wind speed overlaid vectors in SAR image projection''' try: sar_windspeed, palette = self._get_masked_windspeed(landmask, icemask) except: raise ValueError('SAR wind has not been calculated, ' \ 'execute calculate_wind(winddir) before plotting.') sar_windspeed[sar_windspeed>maskWindAbove] = np.nan winddirReductionFactor = np.round( self.vrt.dataset.RasterXSize/numVectorsX) # model_winddir is direction from which wind is blowing winddir_relative_up = 360 - self['winddirection'] + \ self.azimuth_up() indX = range(0, self.vrt.dataset.RasterXSize, winddirReductionFactor) indY = range(0, self.vrt.dataset.RasterYSize, winddirReductionFactor) X, Y = np.meshgrid(indX, indY) try: # scaling of wind vector length, if model wind is available model_windspeed = self['model_windspeed'] model_windspeed = model_windspeed[Y, X] except: model_windspeed = 8*np.ones(X.shape) Ux = np.sin(np.radians(winddir_relative_up[Y, X]))*model_windspeed Vx = np.cos(np.radians(winddir_relative_up[Y, X]))*model_windspeed # Make sure North is up, and east is right if flip == True: lon, lat = self.get_corners() if lat[0] < lat[1]: sar_windspeed = np.flipud(sar_windspeed) Ux = -np.flipud(Ux) Vx = -np.flipud(Vx) if lon[0] > lon[2]: sar_windspeed = np.fliplr(sar_windspeed) Ux = np.fliplr(Ux) Vx = np.fliplr(Vx) # Plotting figSize = sar_windspeed.shape legendPixels = 60.0 legendPadPixels = 5.0 legendFraction = legendPixels/figSize[0] legendPadFraction = legendPadPixels/figSize[0] dpi=100.0 fig = plt.figure() fig.set_size_inches((figSize[1]/dpi, (figSize[0]/dpi)* (1+legendFraction+legendPadFraction))) ax = fig.add_axes([0,0,1,1+legendFraction]) ax.set_axis_off() plt.imshow(sar_windspeed, cmap=palette, interpolation='nearest') plt.clim([0, 20]) cbar = plt.colorbar(orientation='horizontal', shrink=.80, aspect=40, fraction=legendFraction, pad=legendPadFraction) cbar.ax.set_ylabel('[m/s]', rotation=0) cbar.ax.yaxis.set_label_position('right') ax.quiver(X, Y, Ux, Vx, angles='xy', width=0.004, scale=200, scale_units='width', color=[.0, .0, .0], headaxislength=4) if filename is not None: fig.savefig(filename, pad_inches=0, dpi=dpi) if show: plt.show() return fig
def boreali_osw_processing(obj, final_path): """ Мой код в данной функции основан на tutorial.py который я нашел в репозитории boreali. :param obj: путь до изображения :param final_path: Путь для сохранения файлов :return: """ wavelen = [412, 443, 469, 488, 531, 547, 555, 645, 667, 678] cpa_limits = [0.01, 2, 0.01, 1, 0.01, 1, 10] h = get_deph() # Глубина исследуемого района по батиметрии b = Boreali('michigan', wavelen) n = Nansat(obj) dom = Domain('+proj=latlong +datum=WGS84 +ellps=WGS84 +no_defs', '-lle -86.3 44.6 -85.2 45.3 -ts 300 200') n.reproject(dom) theta = numpy.zeros_like(n[2]) custom_n = Nansat(domain=n) band_rrs_numbers = list(map(lambda x: n._get_band_number('Rrs_' + str(x)), wavelen)) # Получаем список номеров бандов в которых лежат значения Rrs # для корректной работы складываем в custom_n значения и Rrs и Rrsw for index in range(0, len(wavelen)): rrsw = n[band_rrs_numbers[index]] / (0.52 + 1.7 * n[band_rrs_numbers[index]]) # Пересчитываем Rrs в Rrsw custom_n.add_band(rrsw, parameters={'name': 'Rrsw_' + str(wavelen[index]), # Складываем в новый объект Rrsw 'units': 'sr-1', 'wavelength': wavelen[index]}) # Складываем в новый объект значения Rrs custom_n.add_band(n[band_rrs_numbers[index]], parameters={'name': 'Rrs_' + str(wavelen[index]), 'units': 'sr-1', 'wavelength': wavelen[index]}) custom_n = create_mask(custom_n) cpa = b.process(custom_n, cpa_limits, mask=custom_n['mask'], depth=h, theta=theta, threads=4) custom_n.add_band(array=cpa[0], parameters={'name': 'chl', 'long_name': 'Chlorophyl-a', 'units': 'mg m-3'}) custom_n.add_band(array=cpa[1], parameters={'name': 'tsm', 'long_name': 'Total suspended matter', 'units': 'g m-3'}) custom_n.add_band(array=cpa[2], parameters={'name': 'doc', 'long_name': 'Dissolved organic carbon', 'units': 'gC m-3'}) custom_n.add_band(array=cpa[3], parameters={'name': 'mse', 'long_name': 'Root Mean Square Error', 'units': 'sr-1'}) custom_n.add_band(array=cpa[4], parameters={'name': 'mask', 'long_name': 'L2 Boreali mask', 'units': '1'}) custom_n.export(final_path + obj.split('/')[-1] + 'cpa_OSW.nc') fig_params = {'legend': True, 'LEGEND_HEIGHT': 0.5, 'NAME_LOCATION_Y': 0, 'mask_array': cpa[4], 'mask_lut': {1: [255, 255, 255], 2: [128, 128, 128], 4: [200, 200, 255]}} custom_n.write_figure(final_path + obj.split('/')[-1] + 'chl_OSW.png', 'chl', clim=[0, 1.], **fig_params) custom_n.write_figure(final_path + obj.split('/')[-1] + 'tsm_OSW.png', 'tsm', clim=[0, 1.], **fig_params) custom_n.write_figure(final_path + obj.split('/')[-1] + 'doc_OSW.png', 'doc', clim=[0, .2], **fig_params) custom_n.write_figure(final_path + obj.split('/')[-1] + 'mse_OSW.png', 'mse', clim=[1e-5, 1e-2], logarithm=True, **fig_params) n.write_figure(final_path + obj.split('/')[-1] + 'rgb_OSW.png', [16, 14, 6], clim=[[0, 0, 0], [0.006, 0.04, 0.024]], mask_array=cpa[4], mask_lut={2: [128, 128, 128]})