def test_to_numpy_recarray(self):
     G=nx.Graph()
     G.add_edge(1,2,weight=7.0,cost=5)
     A=nx.to_numpy_recarray(G,dtype=[('weight',float),('cost',int)])
     assert_equal(sorted(A.dtype.names),['cost','weight'])
     assert_equal(A.weight[0,1],7.0)
     assert_equal(A.weight[0,0],0.0)
     assert_equal(A.cost[0,1],5)
     assert_equal(A.cost[0,0],0)
 def test_to_numpy_recarray(self):
     G = nx.Graph()
     G.add_edge(1, 2, weight=7.0, cost=5)
     A = nx.to_numpy_recarray(G, dtype=[('weight', float), ('cost', int)])
     assert_equal(sorted(A.dtype.names), ['cost', 'weight'])
     assert_equal(A.weight[0, 1], 7.0)
     assert_equal(A.weight[0, 0], 0.0)
     assert_equal(A.cost[0, 1], 5)
     assert_equal(A.cost[0, 0], 0)
示例#3
0
 def test_to_numpy_recarray(self):
     G = nx.Graph()
     G.add_edge(1, 2, weight=7.0, cost=5)
     A = nx.to_numpy_recarray(G, dtype=[("weight", float), ("cost", int)])
     assert sorted(A.dtype.names) == ["cost", "weight"]
     assert A.weight[0, 1] == 7.0
     assert A.weight[0, 0] == 0.0
     assert A.cost[0, 1] == 5
     assert A.cost[0, 0] == 0
示例#4
0
def test_to_numpy_recarray(recarray_test_graph):
    A = nx.to_numpy_recarray(recarray_test_graph,
                             dtype=[("weight", float), ("cost", int)])
    assert sorted(A.dtype.names) == ["cost", "weight"]
    assert A.weight[0, 1] == 7.0
    assert A.weight[0, 0] == 0.0
    assert A.cost[0, 1] == 5
    assert A.cost[0, 0] == 0
    with pytest.raises(AttributeError, match="has no attribute"):
        A.color[0, 1]
示例#5
0
 def _get_matdict(self):
     if not self.loaded:
         self.load()
     import networkx as nx
     matdict = {}
     g = self._relabel_to_int(self.graph)
     # grab keys from the first edge, discarding id
     dl = self._get_edge_values()
             
     # create numpy matrix for each key using recarray
     matrec = nx.to_numpy_recarray(g, dtype=zip(dl, [float]*len(dl)) )
     for k in dl:
         matdict[k] = matrec[k]
     return matdict
示例#6
0
    def nx_to_weighted_array(self, G):
        labels=G.nodes()
        matrix=nx.to_numpy_recarray(G)
        distances=numpy.zeros((len(G),len(G)))
        i=0
        for x in matrix:
            j=0
            for y in x:
                distances[i][j]=y[0]
                distances[j][i]=y[0]
                if i==j: distances[i][j]=0
                j+=1
            i+=1

        return distances
示例#7
0
def test_to_numpy_recarray_bad_nodelist(recarray_nodelist_test_graph, nodelist,
                                        errmsg):
    with pytest.raises(nx.NetworkXError, match=errmsg):
        A = nx.to_numpy_recarray(recarray_nodelist_test_graph,
                                 nodelist=nodelist)
示例#8
0
def test_to_numpy_recarray_nodelist(recarray_nodelist_test_graph):
    A = nx.to_numpy_recarray(recarray_nodelist_test_graph, nodelist=[0, 1])
    np.testing.assert_array_equal(A.weight, np.array([[0, 1], [1, 0]]))
示例#9
0
def test_to_numpy_recarray_directed(recarray_test_graph):
    G = recarray_test_graph.to_directed()
    G.remove_edge(2, 1)
    A = nx.to_numpy_recarray(G, dtype=[("weight", float), ("cost", int)])
    np.testing.assert_array_equal(A.weight, np.array([[0, 7.0], [0, 0]]))
    np.testing.assert_array_equal(A.cost, np.array([[0, 5], [0, 0]]))
示例#10
0
    def __init__(
            self,
            num_nodes=None,  # Number of nodes
            num_items=None,  # Number of items
            item_distribution='uniform',  # Different item distributions
            # 1. uniform
            # 2. direct
            # 3. inverse
            # 4. ego
            # 5. custom
        initial_item_distribution=None,  # Initial item distribution for custom
            ego_graph_radius=1,  # Radius of the ego graph
            current_time=1,  # Total time
            G=None):  # Networkx DiGraph such that:
        # 1. Each node has an attribute 'num_items'
        # 2. Each edge has an attribute 'weight'

        self.num_nodes = num_nodes
        self.num_items = num_items
        self.current_time = current_time
        self.item_distribution = item_distribution
        self.ego_graph_radius = ego_graph_radius

        # self.initial_transition_matrix = np.array([[ 0.,          1.,          0.        ],
        #                                            [ 0.21128204,  0.,          0.78871796],
        #                                            [ 0.,          1.,          0.        ]]
        # self.initial_item_distribution =  {0: 1, 1:1, 2:1}
        # self.G = nx.from_numpy_matrix(self.initial_transition_matrix, create_using=nx.DiGraph())
        # nx.set_node_attributes(self.G, 'num_items', self.initial_item_distribution)

        if G is None:  # No networkx graph provided
            while True:
                try:
                    self.initial_transition_matrix = self.initialize_transition_matrix(
                    )
                except:
                    continue
                break
            self.G = nx.from_numpy_matrix(self.initial_transition_matrix,
                                          create_using=nx.DiGraph())

            self.initial_item_distribution = self.initialize_item_distribution(
                initial_item_distribution)
            nx.set_node_attributes(self.G, 'num_items',
                                   self.initial_item_distribution)
        else:
            self.G = G
            self.initial_transition_matrix = nx.to_numpy_recarray(
                self.G, dtype=[('weight', float)]).weight

            # Test that resultant transition matrix is row stochastic
            absdiff = np.abs(
                self.initial_transition_matrix.sum(axis=1)) - np.ones(
                    (self.num_nodes))
            assert absdiff.max() <= 10 * np.spacing(
                np.float64(1)), "Not row stochastic"

            # self.initial_item_distribution = nx.get_node_attributes(self.G, 'num_items')
            self.initial_item_distribution = self.initialize_item_distribution(
                initial_item_distribution)
            nx.set_node_attributes(self.G, 'num_items',
                                   self.initial_item_distribution)