def test_calculate_cob_weights(network, model_name=None, input_shape=(1, 1, 28, 28), noise=False, verbose=True): """ Test if a cob can be calculated and applied to a network to teleport the network from the initial weights to the targets weights. Args: network (nn.Module): Network to be tested model_name (str): The name or label assigned to differentiate the model input_shape (tuple): Input shape of network noise (bool): whether to add noise to the target weights before optimisation. verbose (bool): whether to display sample ouputs during the test """ model_name = model_name or network.__class__.__name__ model = NeuralTeleportationModel(network=network, input_shape=input_shape) initial_weights = model.get_weights() w1 = model.get_weights(concat=False, flatten=False, bias=False) model.random_teleport() c1 = model.get_cob() model.random_teleport() c2 = model.get_cob() target_weights = model.get_weights() w2 = model.get_weights(concat=False, flatten=False, bias=False) if noise: for w in w2: w += torch.rand(w.shape) * 0.001 calculated_cob = model.calculate_cob(w1, w2) model.initialize_cob() model.set_weights(initial_weights) model.teleport(calculated_cob, reset_teleportation=True) calculated_weights = model.get_weights() error = (calculated_weights - initial_weights).abs().mean() if verbose: print("weights: ", target_weights.flatten()) print("Calculated cob weights: ", calculated_weights.flatten()) print("Weight error ", error) print("C1: ", c1.flatten()[:10]) print("C2: ", c2.flatten()[:10]) print("C1 * C2: ", (c1 * c2).flatten()[:10]) print("Calculated cob: ", calculated_cob.flatten()[:10]) assert np.allclose(calculated_weights.detach().numpy(), target_weights.detach().numpy()), \ "Calculate cob and weights FAILED for " + model_name + " model with error: " + str(error.item()) print("Calculate cob and weights successful for " + model_name + " model.")
def test_calculate_ones(network, model_name=None, input_shape=(1, 1, 28, 28), noise=False, verbose=False): """ Test if the correct change of basis can be calculated for a cob of ones. Args: network (nn.Module): Network to be tested model_name (str): The name or label assigned to differentiate the model input_shape (tuple): Input shape of network noise (bool): whether to add noise to the target weights before optimisation. verbose (bool): whether to display sample ouputs during the test """ model_name = model_name or network.__class__.__name__ model = NeuralTeleportationModel(network=network, input_shape=input_shape) model.initialize_cob() w1 = model.get_weights(concat=False, flatten=False, bias=False) _w1 = model.get_weights(concat=False, flatten=False, bias=False) if noise: for w in _w1: w += torch.rand(w.shape) * 0.001 cob = model.get_cob() calculated_cob = model.calculate_cob(w1, _w1) error = (cob - calculated_cob).abs().mean() if verbose: print("Cob: ", cob.flatten()[:10]) print("Calculated cob: ", calculated_cob.flatten()[:10]) print("cob error ", (calculated_cob - cob).flatten()[:10]) print("cob error : ", error) assert np.allclose( cob, calculated_cob ), "Calculate cob (ones) FAILED for " + model_name + " model." print("Calculate cob (ones) successful for " + model_name + " model.")