def test_set_cob(network, model_name, input_shape=(1, 1, 28, 28), verbose=False): """ Test if the set_change_of_basis method works. Args: network (nn.Module): Network to be tested model_name (str): The name or label assigned to differentiate the model input_shape (tuple): Input shape of network verbose (bool): Flag to print comparision between network and a teleportation """ x = torch.rand(input_shape) model = NeuralTeleportationModel(network, input_shape=input_shape) model.random_teleport() w1 = model.get_weights() t1 = model.get_cob() pred1 = model(x) model.reset_weights() pred2 = model(x) model.set_weights(w1) model.teleport_activations(t1) pred3 = model(x) if verbose: print("Diff prediction average: ", (pred1 - pred3).mean()) print("Pre teleportation: ", pred1.flatten()[:10]) print("Post teleportation: ", pred3.flatten()[:10]) assert not np.allclose(pred1.detach().numpy(), pred2.detach().numpy(), atol=1e-5) assert np.allclose(pred1.detach().numpy(), pred3.detach().numpy(), atol=1e-5), "Set cob/weights did not work." print("Set cob successful for " + model_name + " model.")
def generate_teleportation_training_weights( model: NeuralTeleportationModel, trainset: Dataset, metric: TrainingMetrics, config: LandscapeConfig) -> Tuple[List[torch.Tensor], torch.Tensor]: """ This will generate a list of weights at a given epoch while training the passed model. If teleport_every is different than 0, the model will teleport every time. """ w = [model.get_weights().clone().detach().cpu()] trainloader = torch.utils.data.DataLoader(trainset, batch_size=config.batch_size, drop_last=True) optim = get_optimizer_from_model_and_config(model, config) for e in range(config.epochs): if e in config.teleport_at and config.teleport_at != 0: print("Teleporting Model...") model.random_teleport(cob_range=config.cob_range, sampling_type=config.cob_sampling) w.append(model.get_weights().clone().detach().cpu()) optim = get_optimizer_from_model_and_config(model, config) train_epoch(model, metrics=metric, config=config, train_loader=trainloader, optimizer=optim, epoch=e, device=config.device) w.append(model.get_weights().clone().detach().cpu()) final = w[-1::][0] return w, final
def test_model_without_set_get_weights( model: nn.Module, testset: Dataset, metric: TrainingMetrics, config: TrainingConfig, rept: int = 1) -> Tuple[np.ndarray, np.ndarray]: """ Test if the model is coequal before and after using model.teleport """ loss_diff_avg = [] acc_diff_avg = [] for _ in range(rept): m = NeuralTeleportationModel(model, input_shape=(config.batch_size, 3, 32, 32)).to(device) res = test(m, testset, metric, config) loss1, acc1 = res['loss'], res['accuracy'] m.random_teleport() res = test(m, testset, metric, config) loss2, acc2 = res['loss'], res['accuracy'] loss_diff_avg.append(np.abs(loss1 - loss2)) acc_diff_avg.append(np.abs(acc1 - acc2)) print("==========================================") print("Loss and accuracy diff without set/get was") print("Loss diff was: {:.6e}".format(np.abs(loss1 - loss2))) print("Acc diff was: {:.6e}".format(np.abs(acc1 - acc2))) print("==========================================") return np.mean(loss_diff_avg), np.mean(acc_diff_avg)
def test_model_with_set_get_weights( model: nn.Module, testset: Dataset, metric: TrainingMetrics, config: TrainingConfig, rept: int = 1) -> Tuple[np.ndarray, np.ndarray]: loss_diff_avg = [] acc_diff_avg = [] for _ in range(rept): m = NeuralTeleportationModel(model, input_shape=(config.batch_size, 3, 32, 32)).to(device) w_o, cob_o = m.get_params() m.random_teleport() w_t, cob_t = m.get_params() m.set_params(weights=w_o, cob=cob_o) res = test(m, testset, metric, config) loss1, acc1 = res['loss'], res['accuracy'] m.set_params(weights=w_t, cob=cob_t) res = test(m, testset, metric, config) loss2, acc2 = res['loss'], res['accuracy'] loss_diff_avg.append(np.abs(loss1 - loss2)) acc_diff_avg.append(np.abs(acc1 - acc2)) print("==========================================") print("Loss and accuracy diff with set/get was") print("Loss diff was: {:.6e}".format(np.abs(loss1 - loss2))) print("Acc diff was: {:.6e}".format(np.abs(acc1 - acc2))) print("==========================================") return np.mean(loss_diff_avg), np.mean(acc_diff_avg)
def test_calculate_cob_weights(network, model_name=None, input_shape=(1, 1, 28, 28), noise=False, verbose=True): """ Test if a cob can be calculated and applied to a network to teleport the network from the initial weights to the targets weights. Args: network (nn.Module): Network to be tested model_name (str): The name or label assigned to differentiate the model input_shape (tuple): Input shape of network noise (bool): whether to add noise to the target weights before optimisation. verbose (bool): whether to display sample ouputs during the test """ model_name = model_name or network.__class__.__name__ model = NeuralTeleportationModel(network=network, input_shape=input_shape) initial_weights = model.get_weights() w1 = model.get_weights(concat=False, flatten=False, bias=False) model.random_teleport() c1 = model.get_cob() model.random_teleport() c2 = model.get_cob() target_weights = model.get_weights() w2 = model.get_weights(concat=False, flatten=False, bias=False) if noise: for w in w2: w += torch.rand(w.shape) * 0.001 calculated_cob = model.calculate_cob(w1, w2) model.initialize_cob() model.set_weights(initial_weights) model.teleport(calculated_cob, reset_teleportation=True) calculated_weights = model.get_weights() error = (calculated_weights - initial_weights).abs().mean() if verbose: print("weights: ", target_weights.flatten()) print("Calculated cob weights: ", calculated_weights.flatten()) print("Weight error ", error) print("C1: ", c1.flatten()[:10]) print("C2: ", c2.flatten()[:10]) print("C1 * C2: ", (c1 * c2).flatten()[:10]) print("Calculated cob: ", calculated_cob.flatten()[:10]) assert np.allclose(calculated_weights.detach().numpy(), target_weights.detach().numpy()), \ "Calculate cob and weights FAILED for " + model_name + " model with error: " + str(error.item()) print("Calculate cob and weights successful for " + model_name + " model.")
def teleport_model_randomly(model: NeuralTeleportationModel, config: "RandomTeleportationTrainingConfig", **kwargs) \ -> NeuralTeleportationModel: if random.random() < config.teleport_prob: print("Applying random COB to model in training") model.random_teleport(cob_range=config.cob_range, sampling_type=config.cob_sampling) else: print("Skipping COB") return model
def test_teleport(network: nn.Module, input_shape: Tuple = (1, 1, 28, 28), verbose: bool = False, atol: float = 1e-5, model_name: str = None): """ Return mean of the difference between the weights of network and a random teleportation, and checks if teleportation has the same network function Args: network (nn.Module): Network to be tested input_shape (tuple): Input shape of network verbose (bool): Flag to print comparision between network and a teleportation atol (float): Absolute tolerance allowed between outputs to pass the test model_name (str): The name or label assigned to differentiate the model Returns: float with the average of the difference between the weights of the network and a teleportation """ model_name = model_name or network.__class__.__name__ model = NeuralTeleportationModel(network=network, input_shape=input_shape) model.eval() # model must be set to eval because of dropout x = torch.rand(input_shape) pred1 = model(x).detach().numpy() w1 = model.get_weights().detach().numpy() model.random_teleport() pred2 = model(x).detach().numpy() w2 = model.get_weights().detach().numpy() diff_average = np.mean(np.abs((pred1 - pred2))) if verbose: print("Sample outputs: ") print("Pre teleportation: ", pred1.flatten()[:10]) print("Post teleportation: ", pred2.flatten()[:10]) print("Diff weight average: ", np.mean(np.abs((w1 - w2)))) print("Diff prediction average: ", diff_average) assert not np.allclose(w1, w2) assert np.allclose(pred1, pred2, atol=atol), "Teleporation did not work for model {}. Average difference: {}". \ format(model_name, diff_average) print("Teleportation successful for " + model_name + " model.") return diff_average
def test_multiple_teleport(network: nn.Module, input_shape: Tuple = (1, 1, 28, 28), verbose: bool = False, atol: float = 1e-5, model_name: str = None): """ Test multiple successive teleporations. Args: network (nn.Module): Network to be tested input_shape (tuple): Input shape of network verbose (bool): Flag to print comparision between network and a teleportation atol (float): Absolute tolerance allowed between outputs to pass the test model_name (str): The name or label assigned to differentiate the model """ model_name = model_name or network.__class__.__name__ model = NeuralTeleportationModel(network=network, input_shape=input_shape) model.eval() # model must be set to eval because of dropout x = torch.rand(input_shape) pred1 = model(x).detach().numpy() for _ in range(10): model.random_teleport(cob_range=10, sampling_type='inter_landscape') pred2 = model(x).detach().numpy() diff_average = np.mean(np.abs((pred1 - pred2))) assert np.allclose(pred1, pred2, atol=atol), "Multiple Teleporation did not work for model {}. Average difference: {}".format( model_name, diff_average) for _ in range(10): model.random_teleport(cob_range=10, sampling_type='inter_landscape', reset_teleportation=False) pred2 = model(x).detach().numpy() diff_average = np.mean(np.abs((pred1 - pred2))) assert np.allclose(pred1, pred2, atol=atol), "Multiple Teleporation did not work for model {}. Average difference: {}".format( model_name, diff_average) print("Multiple Teleportations successful for " + model_name + " model.")
def test_calculate_cob(network, model_name=None, input_shape=(1, 1, 28, 28), noise=False, verbose=False): """ Test if the correct change of basis can be calculated for a random teleportation. Args: network (nn.Module): Network to be tested model_name (str): The name or label assigned to differentiate the model input_shape (tuple): Input shape of network noise (bool): whether to add noise to the target weights before optimisation. verbose (bool): whether to display sample ouputs during the test """ model_name = model_name or network.__class__.__name__ model = NeuralTeleportationModel(network=network, input_shape=input_shape) w1 = model.get_weights(concat=False, flatten=False, bias=False) model.random_teleport() w2 = model.get_weights(concat=False, flatten=False, bias=False) if noise: for w in w2: w += torch.rand(w.shape) * 0.001 cob = model.get_cob() calculated_cob = model.calculate_cob(w1, w2) error = (cob - calculated_cob).abs().mean() if verbose: print("Cob: ", cob.flatten()[:10]) print("Calculated cob: ", calculated_cob.flatten()[:10]) print("cob error ", (calculated_cob - cob).flatten()[:10]) print("cob error : ", error) assert np.allclose(cob.detach().numpy(), calculated_cob.detach().numpy(), atol=1e-6),\ "Calculate cob FAILED for " + model_name + " model." print("Calculate cob successful for " + model_name + " model.")
def test_cuda_teleport(network, input_shape=(1, 1, 28, 28), verbose=False): """ Test if a model can be teleported successfully on cuda. Args: network (nn.Module): Model to test input_shape (tuple): Input shape for the model verbose (bool): if True samples of predictions are printed Returns: Average difference between elements of prediction before and after teleportation. """ network = network.cuda() model = NeuralTeleportationModel(network=network, input_shape=input_shape) x = torch.rand(input_shape).cuda() pred1 = model(x).cpu().detach().numpy() w1 = model.get_weights().cpu().detach().numpy() model.random_teleport() pred2 = model(x).cpu().detach().numpy() w2 = model.get_weights().cpu().detach().numpy() diff_average = (w1 - w2).mean() if verbose: print("Model on device: {}".format(next(network.parameters()).device)) print("Sample outputs: ") print("Pre teleportation: ", pred1.flatten()[:10]) print("Post teleportation: ", pred2.flatten()[:10]) assert not np.allclose(w1, w2) assert np.allclose( pred1, pred2), "Teleporation did not work. Average difference: {}".format( diff_average) print("Teleportation successful.") return diff_average
def start_training(model: NeuralTeleportationModel, trainloader: DataLoader, valset: VisionDataset, metric: TrainingMetrics, config: CompareTrainingConfig, teleport_chance: float) -> np.ndarray: """ This function starts a model training with a specific Scenario configuration. Scenario 1: train the model without using teleportation (teleportation_chance = 0.0) Scenario 2: train the model using a probability of teleporting every Xth epochs (0 < teleportation_chance < 1.0) Scenario 3: train the model using teleportation every Xth epochs (teleportation_chance = 1.0) returns: np.array containing the validation accuracy results of every epochs. """ model.to(config.device) optimizer = get_optimizer_from_model_and_config(model, config) results = [] for e in np.arange(1, args.epochs + 1): train_epoch(model=model, metrics=metric, optimizer=optimizer, train_loader=trainloader, epoch=e, device=config.device) results.append(test(model=model, dataset=valset, metrics=metric, config=config)['accuracy']) model.train() if e % config.every_n_epochs == 0 and random.random() <= teleport_chance: print("teleported model") if config.targeted_teleportation: # TODO: use teleportation function here when they are available. raise NotImplementedError else: model.random_teleport(cob_range=config.cob_range, sampling_type=config.cob_sampling) optimizer = get_optimizer_from_model_and_config(model, config) model.cpu() # Force the network to go out of the cuda mem. return np.array(results)
def micro_teleportation_dot_product(network, dataset, nb_teleport=100, network_descriptor='', sampling_types=['intra_landscape'], batch_sizes=[8, 64], criterion=None, device='cpu', verbose=False, random_data=False, number_classes=10) -> None: """ This method tests the scalar product between the teleporation line and the gradient, as well as between a random vector and the gradient for nullity. It then displays the histograms of the calculated scalar products. The method also aggregates all relevant micro teleportation data in a dataframe. Args: network : the model which we wish to use to compute the micro-teleporations dataset: the dataset that will be used to calculate the gradient and get dimensions for the neural teleportation model nb_teleport: The number of time the network is teleported and the scalar product calculated. An average is then calculated. network_descriptor: String describing the content of the network sampling_types : Teleportation sampling types, governs how the change of basis is computed batch_sizes: Size of the minibatch used to perform gradient calculation criterion: the loss function used to compute the gradient device: Device used to compute the network operations ('cpu' or 'cuda') verbose: If true, the method will output extensive details about the calculated vectors and aggregated data (mainly for debugging purposes) random_data: If True, random data with random labels is used for computing the gradient. If False, the dataset is used for computing the gradient. number_classes: Number of classes of the classification problem. """ # Arbitrary precision threshold for nullity comparison torch.set_printoptions(precision=10, sci_mode=True) tol = 1e-2 cobs = [0.001] hist_dir = f'images/histograms/{network_descriptor}' if torch.cuda.is_available(): print(f'{green}Using CUDA{reset}') network = network.cuda() if (criterion is None): loss_func = torch.nn.CrossEntropyLoss() else: loss_func = criterion # Initialize the dataframe for data aggregation aggregator = pd.DataFrame(columns=[ 'model name', 'sampling type', 'batch size', 'COB range', 'weights vector length', 'Micro-teleportation vs Gradient', 'Micro-teleportation vs Gradient std', 'Gradient vs Random Vector', 'Gradient vs Random Vector std', 'Random Vector vs Random Vector', 'Random Vector vs Random Vector std', 'Micro-teleportation vs Random Vector', 'Micro-teleportation vs Random Vector std' ]) for sampling_type in sampling_types: for batch_size in batch_sizes: dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size) data, target = next(iter(dataloader)) # save the initial weights for further reset model = NeuralTeleportationModel(network=network, input_shape=data.shape) if torch.cuda.is_available(): model = model.cuda() else: model = model.cpu() if torch.cuda.is_available(): w1 = model.get_weights().detach() else: w1 = model.get_weights().detach().numpy() for cob in cobs: angle_results = [] rand_angle_results = [] rand_rand_angle_results = [] rand_micro_angle_results = [] iterations = min( int(len(dataloader.dataset) / dataloader.batch_size), nb_teleport) for _ in tqdm(range(0, iterations)): # Get next data batch data, target = next(iter(dataloader)) if random_data: data, target = torch.rand(data.shape), torch.randint( 0, number_classes, target.shape) data, target = data.to(device), target.to(device) grad = model.get_grad(data, target, loss_func, zero_grad=False) # reset the weights for next teleportation model.set_weights(torch.tensor(w1)) # teleport and get the new weights model = model.random_teleport(cob_range=cob, sampling_type=sampling_type) if torch.cuda.is_available(): w2 = model.get_weights().detach() else: w2 = model.get_weights().detach().numpy() # get teleportation vector micro_teleport_vec = (w2 - w1) random_vector = torch.rand(grad.shape, dtype=torch.float) - 0.5 random_vector2 = torch.rand(grad.shape, dtype=torch.float) - 0.5 random_vector = random_vector.to(device) random_vector2 = random_vector2.to(device) # Normalized scalar products & angles calculations dot_prod = normalized_dot_product(grad, micro_teleport_vec) angle = np.degrees(torch.acos(dot_prod).cpu()) rand_dot_prod = normalized_dot_product(grad, random_vector) rand_angle = np.degrees(torch.acos(rand_dot_prod).cpu()) rand_rand_dot_prod = normalized_dot_product( random_vector2, random_vector) rand_rand_angle = np.degrees( torch.acos(rand_rand_dot_prod).cpu()) rand_micro_dot_prod = normalized_dot_product( random_vector2, micro_teleport_vec) rand_micro_angle = np.degrees( torch.acos(rand_micro_dot_prod).cpu()) # Perpendicularity assertion failed = (not torch.allclose( dot_prod, torch.tensor([0.0]).to(device), atol=tol)) rand_failed = (not torch.allclose(rand_dot_prod, torch.tensor( [0.0]).to(device), atol=tol)) target_angle = 90.0 angle_results.append(angle) rand_angle_results.append(rand_angle) rand_rand_angle_results.append(rand_rand_angle) rand_micro_angle_results.append(rand_micro_angle) angle_results = np.array(angle_results) rand_angle_results = np.array(rand_angle_results) rand_rand_angle_results = np.array(rand_rand_angle_results) rand_micro_angle_results = np.array(rand_micro_angle_results) # Append resuslts to dataframe for further ploting aggregator = aggregator.append( { 'model name': network_descriptor, 'sampling type': sampling_type, 'batch size': batch_size, 'COB range': cob, 'weights vector length': len(w1), 'Micro-teleportation vs Gradient': angle_results.mean(), 'Micro-teleportation vs Gradient std': angle_results.std(), 'Gradient vs Random Vector': rand_angle_results.mean(), 'Gradient vs Random Vector std': rand_angle_results.std(), 'Random Vector vs Random Vector': rand_rand_angle_results.mean(), 'Random Vector vs Random Vector std': rand_rand_angle_results.std(), 'Micro-teleportation vs Random Vector': rand_micro_angle_results.mean(), 'Micro-teleportation vs Random Vector std': rand_micro_angle_results.std() }, ignore_index=True) print( f'The angle between the gradient and a micro-teleporation vector is: ' f'{red * failed}' f'{np.round(angle_results.mean(), abs(int(np.log10(tol))))}', f' (!=0 => FAILED!)' * failed, f'{reset}', f' using {sampling_type} sampling type', f', the delta in angle is {angle - target_angle}°\n', f'The angle between the gradient and a random vector is: ', f'{red * rand_failed}{rand_angle_results.mean()}', f' (FAILED!)' * rand_failed, f'{reset}', f', the delta in angle is {rand_angle - target_angle}°\n', sep='') if verbose: print(aggregator.iloc[aggregator.last_valid_index()]) if torch.cuda.is_available(): print(f'w1: {w1}', f'nans: {torch.sum(torch.isnan(w1))}', f'max: {torch.max(w1)}', f'min: {torch.min(w1)}', sep='\n') print(f'w2: {w2}', f' nans: {torch.sum(torch.isnan(w2))}', f'max: {torch.max(w2)}', f'min: {torch.min(w2)}', sep='\n') else: print(f'w1: {w1}', f'nans: {np.sum(np.isnan(w1))}', f'max: {np.max(w1)}', f'min: {np.min(w1)}', sep='\n') print(f'w2: {w2}', f' nans: {np.sum(np.isnan(w2))}', f'max: {np.max(w2)}', f'min: {np.min(w2)}', sep='\n') if not np.isnan( aggregator.loc[aggregator.last_valid_index(), 'Micro-teleportation vs Gradient']): delta = 0.25 x_min = 90 - delta x_max = 90 + delta figsize = (10.0, 10.0) fig, (ax0, ax1, ax2, ax3) = plt.subplots(4, 1, figsize=figsize) if random_data: fig.suptitle( f'{network_descriptor} on Random Data and batch size of {batch_size}' ) else: fig.suptitle( f'{network_descriptor} on CIFAR-10 and batch size of {batch_size}' ) bin_height, bin_boundary = np.histogram( np.array(angle_results)) width = bin_boundary[1] - bin_boundary[0] bin_height = bin_height / float(max(bin_height)) ax0.bar(bin_boundary[:-1], bin_height, width=np.maximum(width, 0.01)) ax0.legend(['Micro-teleportation\n vs \n Gradient']) ax0.set_xlim(x_min, x_max) ax0.set_yticks([]) bin_height, bin_boundary = np.histogram( np.array(rand_micro_angle_results)) width = bin_boundary[1] - bin_boundary[0] bin_height = bin_height / float(max(bin_height)) ax1.bar(bin_boundary[:-1], bin_height, width=np.maximum(width, 0.1), color='g') ax1.set_xlim(x_min, x_max) ax1.legend(['Micro-teleportation\n vs \n Random Vector']) ax1.set_yticks([]) bin_height, bin_boundary = np.histogram( np.array(rand_angle_results)) width = bin_boundary[1] - bin_boundary[0] bin_height = bin_height / float(max(bin_height)) ax2.bar(bin_boundary[:-1], bin_height, width=np.maximum(width, 0.1), color='g') ax2.set_xlim(x_min, x_max) ax2.legend(['Gradient\n vs \n Random Vector']) ax2.set_yticks([]) bin_height, bin_boundary = np.histogram( np.array(rand_rand_angle_results)) width = bin_boundary[1] - bin_boundary[0] bin_height = bin_height / float(max(bin_height)) ax3.bar(bin_boundary[:-1], bin_height, width=np.maximum(width, 0.1), color='g') ax3.set_xlim(x_min, x_max) ax3.legend(['Random Vector\n vs \n Random Vector']) ax3.set_yticks([]) plt.xlabel('Angle in degrees') Path(hist_dir).mkdir(parents=True, exist_ok=True) plt.savefig( f'{hist_dir}/{network_descriptor}_' f'_cob_{cob}_iter_{iterations}_batch_size_{batch_size}.png' ) plt.show() if random_data: fig.savefig( f"{network_descriptor}-RandomData-batchsize_{batch_size}.pdf", bbox_inches='tight') else: fig.savefig( f"{network_descriptor}-cifar10-batchsize_{batch_size}.pdf", bbox_inches='tight') else: print(red) print(aggregator.iloc[aggregator.last_valid_index()]) print(reset)
def dot_product_between_teleportation(network, dataset, network_descriptor=None, nb_teleport=100, device='cpu') -> None: """ This method tests the scalar product between the initial and teleported set of weights and plots the results with respect to the order of magnitude of the change of basis of the teleportation Args: network : the model which we want to use to compute the teleportations dataset : the model which we want to use to size the teleportation model network_descriptor: String describing the content of the network nb_teleport: Number of times the micro-teleportation for statistical (mean, variance, etc) calculation device: Device used to compute the network operations ('cpu' or 'cuda') """ series_dir = f'images/series_dot_prod_vs_cob/{network_descriptor}' if torch.cuda.is_available(): print(f'{green}Using CUDA{reset}') network = network.cuda() if network_descriptor is None: network_descriptor = network.__name__ # Prepare the range of COB to test cobs = np.linspace(0.00001, 0.999, 40) dataloader = torch.utils.data.DataLoader(dataset, batch_size=16) data, target = next(iter(dataloader)) model = NeuralTeleportationModel(network=network, input_shape=data.shape) if torch.cuda.is_available(): model = model.cuda() else: model = model.cpu() w1 = model.get_weights().detach().to(device) dot_product_results = [] angles = [] for cob in cobs: dot_product_result = 0 angle = 0 for _ in tqdm(range(0, nb_teleport)): # reset the weights model.set_weights(w1) # teleport and get the new weights model.random_teleport(cob_range=cob, sampling_type='intra_landscape') w2 = model.get_weights().detach().to(device) # cos(theta) = (w1 w2)/(||w1|| ||w2||) dot_product_result += normalized_dot_product(w1, w2) angle += np.degrees( torch.acos(normalized_dot_product(w1, w2)).cpu()) dot_product_result /= nb_teleport angle /= nb_teleport dot_product_results.append(dot_product_result.item()) angles.append(angle.item()) plt.plot(cobs, dot_product_results) plt.title(f'Scalar product between original and \nteleported weights with ' f'respect to COB\'s order of magnitude\n{network_descriptor}') plt.ylabel('Scalar product') plt.xlabel('change of basis') Path(series_dir).mkdir(parents=True, exist_ok=True) plt.savefig( f'{series_dir}/dot_product_vs_cob_{network_descriptor}_Samp_type_intra_landscape' ) plt.show() plt.plot(cobs, angles) plt.title(f'Angle between original and \nteleported weights with ' f'respect to COB\'s order of magnitude\n{network_descriptor}') plt.ylabel('Theta') plt.xlabel('change of basis') Path(series_dir).mkdir(parents=True, exist_ok=True) plt.savefig( f'{series_dir}/angle_vs_cob_{network_descriptor}_Samp_type_intra_landscape' ) plt.show()
return parser.parse_args() if __name__ == '__main__': args = argument_parser() torch.manual_seed(args.seed) model = NeuralTeleportationModel(network=MLPCOB(input_shape=(1, 28, 28), num_classes=10), input_shape=(1, 1, 28, 28)) # Get the initial set of weights and teleport. initial_weights = model.get_weights() model.random_teleport(cob_range=args.cob_range) # Get second set of weights (target weights) target_weights = model.get_weights() # Get the change of basis that created this set of weights. target_cob = model.get_cob(concat=True) # Generate a new random cob cob = model.generate_random_cob(cob_range=args.cob_range, requires_grad=True) history = [] cob_error_history = [] print("Initial error: ", (cob - target_cob).abs().mean().item()) print("Target cob sample: ", target_cob[0:10].data)