def __init__(self, size, dt=0.001, t_rc=0.02, t_ref=0.002): Neuron.__init__(self, size, dt) self.t_rc = t_rc self.t_ref = t_ref self.voltage = theano.shared( numpy.zeros(size).astype('float32')) # internal variables self.refractory_time = theano.shared( numpy.zeros(size).astype('float32')) # internal variables
def __init__(self, inputs, weights, bias): Neuron.__init__(self, inputs) # NOTE: The weights and bias properties here are not # numbers, but rather references to other neurons. # The weight and bias values are stored within the # respective neurons. self.weights = weights self.bias = bias
def __init__(self, size, dt=0.001, tau_rc=0.02, tau_ref=0.002): """Constructor for a set of LIF rate neuron :param int size: number of neurons in set :param float dt: timestep for neuron update function :param float t_rc: the RC time constant :param float tau_ref: refractory period length (s) """ Neuron.__init__(self, size, dt) self.tau_rc = tau_rc self.tau_ref = tau_ref
def __init__(self, size, dt=0.001, tau_rc=0.02, tau_ref=0.002): """ Constructor for a set of LIF rate neuron :param int size: number of neurons in set :param float dt: timestep for neuron update function :param float tau_rc: the RC time constant :param float tau_ref: refractory period length (s) """ Neuron.__init__(self, size, dt) self.tau_rc = tau_rc self.tau_ref = tau_ref self.voltage = theano.shared(numpy.zeros(size).astype('float32')) # internal variables self.refractory_time = theano.shared(numpy.zeros(size).astype('float32')) # internal variables
def __init__(self, size, dt=0.001, tau_rc=0.02, tau_ref=0.002): """ Constructor for a set of LIF rate neuron :param int size: number of neurons in set :param float dt: timestep for neuron update function :param float tau_rc: the RC time constant :param float tau_ref: refractory period length (s) """ Neuron.__init__(self, size, dt) self.tau_rc = tau_rc self.tau_ref = tau_ref self.voltage = theano.shared( numpy.zeros(size).astype('float32')) # internal variables self.refractory_time = theano.shared( numpy.zeros(size).astype('float32')) # internal variables
def __init__(self, pos, value=False): super().__init__() self.setPos(pos) Neuron.__init__(self, NEURONTYPEIN) self.value = value
def __init__(self,size,dt=0.001,t_rc=0.02,t_ref=0.002): Neuron.__init__(self,size,dt) self.t_rc=t_rc self.t_ref=t_ref self.voltage=theano.shared(numpy.zeros(size).astype('float32')) # internal variables self.refractory_time=theano.shared(numpy.zeros(size).astype('float32')) # internal variables
def __init__(self, *inputs): Neuron.__init__(self, inputs)
def __init__(self): # An Input neuron has no inbound neurons, # so no need to pass anything to the Neuron instantiator. Neuron.__init__(self)
def __init__(self,size,dt=0.001,t_rc=0.02,t_ref=0.002): Neuron.__init__(self,size,dt) self.t_rc=t_rc self.t_ref=t_ref
def __init__(self, size, dt=0.001, t_rc=0.02, t_ref=0.002): Neuron.__init__(self, size, dt) self.t_rc = t_rc self.t_ref = t_ref
def __init__(self, alpha=0.01, epochs=10, seed=2): Neuron.__init__(self, alpha, epochs, seed)