示例#1
0
文件: dmc.py 项目: hakillha/dmc
def main(train, test, out):
  
  TRAIN_FILE = train
  TEST_FILE  = test
  OUT_FILE   = out
  
  img = Image.open(TRAIN_FILE) # read double moons image from .png file
  pixels = img.load()          # generate pixel map
  width = img.size[0]
  height = img.size[1]
  
  training_set = dict()
  
  for i in range(width):
    for j in range(height):
      if pixels[i,j] == BLUE:   # if pixel is blue
        training_set[i,j] = BOT # set value to bottom
      elif pixels[i,j] == RED:  # if pixel is red
        training_set[i,j] = TOP # set value to top
  
  
  # create neuron with 2 input nodes
  n = Neuron(2) # x-input, y-input
  print "Neuron created."
  # training
  print "Training..."
  counter = 0
  while True:
    errors = 0
    for p in training_set:
      errors += n.train_step(p, training_set[p])
      counter += 1
      print "====="
      
    if errors < n.get_margin() * len(training_set):
      break
  
  print "Length of training set: " + str(len(training_set))
  print "Iterations: " + str(counter)
  
  # test cases
  img = Image.open(TEST_FILE)
  pixels = img.load()
  width = img.size[0]
  height = img.size[1]
  
  for i in range(width):
    for j in range(height):
      if pixels[i,j] == BLACK:
        n.set_input(0, i)
        n.set_input(1, j)
        n.activate()
        ans = n.get_output()
        if ans == TOP:
          pixels[i,j] = RED
        elif ans == BOT:
          pixels[i,j] = BLUE
  
  img.save(OUT_FILE, "PNG")
示例#2
0
文件: dmc.py 项目: hakillha/dmc
def main(train, test, out):

    TRAIN_FILE = train
    TEST_FILE = test
    OUT_FILE = out

    img = Image.open(TRAIN_FILE)  # read double moons image from .png file
    pixels = img.load()  # generate pixel map
    width = img.size[0]
    height = img.size[1]

    training_set = dict()

    for i in range(width):
        for j in range(height):
            if pixels[i, j] == BLUE:  # if pixel is blue
                training_set[i, j] = BOT  # set value to bottom
            elif pixels[i, j] == RED:  # if pixel is red
                training_set[i, j] = TOP  # set value to top

    # create neuron with 2 input nodes
    n = Neuron(2)  # x-input, y-input
    print "Neuron created."
    # training
    print "Training..."
    counter = 0
    while True:
        errors = 0
        for p in training_set:
            errors += n.train_step(p, training_set[p])
            counter += 1
            print "====="

        if errors < n.get_margin() * len(training_set):
            break

    print "Length of training set: " + str(len(training_set))
    print "Iterations: " + str(counter)

    # test cases
    img = Image.open(TEST_FILE)
    pixels = img.load()
    width = img.size[0]
    height = img.size[1]

    for i in range(width):
        for j in range(height):
            if pixels[i, j] == BLACK:
                n.set_input(0, i)
                n.set_input(1, j)
                n.activate()
                ans = n.get_output()
                if ans == TOP:
                    pixels[i, j] = RED
                elif ans == BOT:
                    pixels[i, j] = BLUE

    img.save(OUT_FILE, "PNG")
示例#3
0
class OutputLayer:
    """
    Represents the output layer of the network.
    """
    def __init__(self, inputLayer):
        """"
        Constructor for OutputLayer class.

        :param inputLayer: the input layer in the network.
        """
        self.inputLayer = inputLayer

        # Initialize weights as zeros
        weights = const.INIT_WEIGHTS
        if self.inputLayer.bias:
            weights.append(0)

        # Create output neuron
        self.neuron = Neuron(neighbors=inputLayer.neurons,
                             weights=weights,
                             output=True)

    def add_vector_to_weights(self, vector):
        """
        Changes the weights of a neuron by adding a vector to the weights vector.

        :param vector: vector to add to the weights
        :returns: None
        """
        for index in range(len(vector)):
            self.neuron.weights[index] += vector[index]

    def get_output(self, inputs):
        """
        Feeds the inputs to the input layer and then its output to the output layer.

        :param inputs: the inputs to the network.
        :returns: Returns the networks output.
        """
        output = self.inputLayer.get_outputs(inputs)
        return self.neuron.get_output(output)