示例#1
0
    def d2psi(x, c):
        """Second derivative of psi"""
        from numpy.polynomial.hermite import hermval, hermder

        yp = hermval(x, hermder(hermder(c))) * np.exp(-x**2 / 2)
        yp += -x * hermval(x, hermder(c)) * np.exp(-x**2 / 2)
        yp += -psi(x, c) - x * dpsi(x, c)
        return yp
示例#2
0
    def test_hermder_axis(self):
        # get_inds that axis keyword works
        c2d = np.random.random((3, 4))

        tgt = np.vstack([herm.hermder(c) for c in c2d.T]).T
        res = herm.hermder(c2d, axis=0)
        assert_almost_equal(res, tgt)

        tgt = np.vstack([herm.hermder(c) for c in c2d])
        res = herm.hermder(c2d, axis=1)
        assert_almost_equal(res, tgt)
示例#3
0
    def test_hermder_axis(self):
        # check that axis keyword works
        c2d = np.random.random((3, 4))

        tgt = np.vstack([herm.hermder(c) for c in c2d.T]).T
        res = herm.hermder(c2d, axis=0)
        assert_almost_equal(res, tgt)

        tgt = np.vstack([herm.hermder(c) for c in c2d])
        res = herm.hermder(c2d, axis=1)
        assert_almost_equal(res, tgt)
示例#4
0
    def evaluate_basis_derivative_all(self, x=None, k=0):
        if x is None:
            x = self.mesh(False, False)
        V = self.vandermonde(x)
        M = V.shape[1]
        X = x[:, np.newaxis]
        if k == 1:
            D = np.zeros((M, M))
            D[:-1, :] = hermite.hermder(np.eye(M), 1)
            W = np.dot(V, D)
            W -= V*X
            V = W*np.exp(-X**2/2)
            V *= self.factor(np.arange(M))[np.newaxis, :]

        elif k == 2:
            W = (X**2 - 1 - 2*np.arange(M)[np.newaxis, :])*V
            V = W*self.factor(np.arange(M))[np.newaxis, :]*np.exp(-X**2/2)
            #D = np.zeros((M, M))
            #D[:-1, :] = hermite.hermder(np.eye(M), 1)
            #W = np.dot(V, D)
            #W = -2*X*W
            #D[-2:] = 0
            #D[:-2, :] = hermite.hermder(np.eye(M), 2)
            #W += np.dot(V, D)
            #W += (X**2-1)*V
            #W *= np.exp(-X**2/2)*self.factor(np.arange(M))[np.newaxis, :]
            #V[:] = W

        elif k == 0:
            V *= np.exp(-X**2/2)*self.factor(np.arange(M))[np.newaxis, :]

        else:
            raise NotImplementedError

        return V
示例#5
0
    def test_hermder(self):
        # get_inds exceptions
        assert_raises(TypeError, herm.hermder, [0], .5)
        assert_raises(ValueError, herm.hermder, [0], -1)

        # get_inds that zeroth derivative does nothing
        for i in range(5):
            tgt = [0] * i + [1]
            res = herm.hermder(tgt, m=0)
            assert_equal(trim(res), trim(tgt))

        # get_inds that derivation is the inverse of integration
        for i in range(5):
            for j in range(2, 5):
                tgt = [0] * i + [1]
                res = herm.hermder(herm.hermint(tgt, m=j), m=j)
                assert_almost_equal(trim(res), trim(tgt))

        # get_inds derivation with scaling
        for i in range(5):
            for j in range(2, 5):
                tgt = [0] * i + [1]
                res = herm.hermder(herm.hermint(tgt, m=j, scl=2), m=j, scl=.5)
                assert_almost_equal(trim(res), trim(tgt))
示例#6
0
    def test_hermder(self) :
        # check exceptions
        assert_raises(ValueError, herm.hermder, [0], .5)
        assert_raises(ValueError, herm.hermder, [0], -1)

        # check that zeroth deriviative does nothing
        for i in range(5) :
            tgt = [0]*i + [1]
            res = herm.hermder(tgt, m=0)
            assert_equal(trim(res), trim(tgt))

        # check that derivation is the inverse of integration
        for i in range(5) :
            for j in range(2,5) :
                tgt = [0]*i + [1]
                res = herm.hermder(herm.hermint(tgt, m=j), m=j)
                assert_almost_equal(trim(res), trim(tgt))

        # check derivation with scaling
        for i in range(5) :
            for j in range(2,5) :
                tgt = [0]*i + [1]
                res = herm.hermder(herm.hermint(tgt, m=j, scl=2), m=j, scl=.5)
                assert_almost_equal(trim(res), trim(tgt))
示例#7
0
    def evaluate_basis_derivative(self, x=None, i=0, k=0, output_array=None):
        if x is None:
            x = self.mesh(False, False)
        x = np.atleast_1d(x)
        v = eval_hermite(i, x, out=output_array)
        if k == 1:
            D = np.zeros((self.N, self.N))
            D[:-1, :] = hermite.hermder(np.eye(self.N), 1)
            V = np.dot(v, D)
            V -= v*x[:, np.newaxis]
            V *= np.exp(-x**2/2)[:, np.newaxis]*self.factor(i)
            v[:] = V

        elif k == 2:
            W = (x[:, np.newaxis]**2 - 1 - 2*i)*V
            v[:] = W*self.factor(i)*np.exp(-x**2/2)[:, np.newaxis]

        elif k == 0:
            v *= np.exp(-x**2/2)[:, np.newaxis]*self.factor(i)

        else:
            raise NotImplementedError

        return v
示例#8
0
    def dpsi(x, c):
        from numpy.polynomial.hermite import hermval, hermder

        yp = hermval(x, hermder(c)) * np.exp(-x**2 / 2) - x * psi(x, c)
        return yp