示例#1
0
    def test_flow_count_limit(self):
        """
        """
        bel = solph.Bus(label='electricityBus')

        solph.Source(label='source1',
                     outputs={
                         bel:
                         solph.Flow(nonconvex=solph.NonConvex(),
                                    nominal_value=100,
                                    emission_factor=[0.5, -1.0, 2.0])
                     })
        solph.Source(label='source2',
                     outputs={
                         bel:
                         solph.Flow(nonconvex=solph.NonConvex(),
                                    nominal_value=100,
                                    emission_factor=3.5)
                     })

        # Should be ignored because emission_factor is not defined.
        solph.Source(label='source3',
                     outputs={
                         bel:
                         solph.Flow(nonconvex=solph.NonConvex(),
                                    nominal_value=100)
                     })

        # Should be ignored because it is not NonConvex.
        solph.Source(label='source4',
                     outputs={
                         bel:
                         solph.Flow(emission_factor=1.5,
                                    min=0.3,
                                    nominal_value=100)
                     })

        om = self.get_om()

        # one of the two flows has to be active
        solph.constraints.limit_active_flow_count_by_keyword(om,
                                                             "emission_factor",
                                                             lower_limit=1,
                                                             upper_limit=2)

        self.compare_lp_files('flow_count_limit.lp', my_om=om)
示例#2
0
def test_offsettransformer__too_many_input_flows():
    """Too many Input Flows defined."""
    with tools.assert_raises_regexp(
            ValueError, 'OffsetTransformer` must not have more than 1'):
        bgas = solph.Bus(label='GasBus')
        bcoal = solph.Bus(label='CoalBus')
        solph.components.OffsetTransformer(
            label='ostf_2_in',
            inputs={
                bgas: solph.Flow(
                    nominal_value=60, min=0.5, max=1.0,
                    nonconvex=solph.NonConvex()),
                bcoal: solph.Flow(
                    nominal_value=30, min=0.3, max=1.0,
                    nonconvex=solph.NonConvex())
            },
            coefficients=(20, 0.5))
示例#3
0
def test_flow_classes():
    with assert_raises(ValueError):
        solph.Flow(fixed=True)
    with assert_raises(ValueError):
        solph.Flow(investment=solph.Investment(), nominal_value=4)
    with assert_raises(ValueError):
        solph.Flow(investment=solph.Investment(), nonconvex=solph.NonConvex())
    with assert_raises(AttributeError):
        solph.Flow(fixed_costs=34)
示例#4
0
def add_heatpipes_exist(pipes, labels, gd, q, b_in, b_out, nodes):
    """
    Adds *HeatPipeline* objects with fix capacity for existing pipes
    to the list of oemof.solph components.

    Parameters
    ----------
    pipes
    labels : dict
        Dictonary containing specifications for label-tuple.
    gd : dict
        Settings of the investment optimisation of the ThermalNetwork
    q : pd.Series
        Specific *Pipe* of ThermalNetwork
    b_in : oemof.solph.Bus
        Bus of Inflow
    b_out : oemof.solph.Bus
        Bus of Outflow
    nodes : list
        All oemof.solph components are added to the list

    Returns
    -------
    list : Updated list of nodes.
    """

    # get index of existing pipe label of pipe data
    ind_pipe = pipes[pipes['label_3'] == q['hp_type']].index[0]
    t = pipes.loc[ind_pipe]
    # get label of pipe
    labels['l_3'] = t['label_3']

    hlf = t['l_factor'] * q['length']
    hlff = t['l_factor_fix'] * q['length']

    flow_bi_args = {
        'bidirectional': True, 'min': -1} \
        if gd['bidirectional_pipes'] else {}

    outflow_args = {'nonconvex': solph.NonConvex()} if t['nonconvex'] else {}

    nodes.append(oh.HeatPipeline(
        label=oh.Label(labels['l_1'], labels['l_2'],
                       labels['l_3'], labels['l_4']),
        inputs={b_in: solph.Flow(**flow_bi_args)},
        outputs={b_out: solph.Flow(
            nominal_value=q['capacity'],
            **flow_bi_args,
            **outflow_args,
        )},
        heat_loss_factor=hlf,
        heat_loss_factor_fix=hlff,
    ))

    return nodes
示例#5
0
 def test_maximum_shutdowns(self):
     """Testing maximum_shutdowns attribute for nonconvex flows."""
     bus_t = solph.Bus(label='Bus_C')
     solph.Source(label='cheap_plant_maximum_shutdowns',
                  outputs={
                      bus_t:
                      solph.Flow(
                          nominal_value=10,
                          min=0.5,
                          max=1.0,
                          variable_costs=10,
                          nonconvex=solph.NonConvex(maximum_shutdowns=2))
                  })
     self.compare_lp_files('maximum_shutdowns.lp')
示例#6
0
def test_offsettransformer_too_many_output_flows():
    """Too many Output Flows defined."""
    with tools.assert_raises_regexp(
            ValueError, 'OffsetTransformer` must not have more than 1'):
        bm1 = solph.Bus(label='my_offset_Bus1')
        bm2 = solph.Bus(label='my_offset_Bus2')

        solph.components.OffsetTransformer(
            label='ostf_2_out',
            inputs={
                bm1: solph.Flow(
                    nominal_value=60, min=0.5, max=1.0,
                    nonconvex=solph.NonConvex())
            },
            outputs={bm1: solph.Flow(),
                     bm2: solph.Flow()},
            coefficients=(20, 0.5))
示例#7
0
 def test_min_max_runtime(self):
     """Testing min and max runtimes for nonconvex flows."""
     bus_t = solph.Bus(label='Bus_T')
     solph.Source(label='cheap_plant_min_down_constraints',
                  outputs={
                      bus_t:
                      solph.Flow(nominal_value=10,
                                 min=0.5,
                                 max=1.0,
                                 variable_costs=10,
                                 nonconvex=solph.NonConvex(
                                     minimum_downtime=4,
                                     minimum_uptime=2,
                                     initial_status=2,
                                     startup_costs=5,
                                     shutdown_costs=7))
                  })
     self.compare_lp_files('min_max_runtime.lp')
示例#8
0
    def test_offsettransformer(self):
        """Constraint test of a OffsetTransformer.
        """
        bgas = solph.Bus(label='gasBus')
        bth = solph.Bus(label='thermalBus')

        solph.components.OffsetTransformer(label='gasboiler',
                                           inputs={
                                               bgas:
                                               solph.Flow(
                                                   nonconvex=solph.NonConvex(),
                                                   nominal_value=100,
                                                   min=0.32,
                                               )
                                           },
                                           outputs={bth: solph.Flow()},
                                           coefficients=[-17, 0.9])

        self.compare_lp_files('offsettransformer.lp')
示例#9
0
                           solph.Flow(fixed=True,
                                      actual_value=data['demand_el'],
                                      nominal_value=10)
                       })

dummy_el = solph.Sink(label='dummy_el',
                      inputs={bel: solph.Flow(variable_costs=10)})

pp1 = solph.Source(label='plant_min_down_constraints',
                   outputs={
                       bel:
                       solph.Flow(nominal_value=10,
                                  min=0.5,
                                  max=1.0,
                                  variable_costs=10,
                                  nonconvex=solph.NonConvex(minimum_downtime=4,
                                                            initial_status=0))
                   })

pp2 = solph.Source(label='plant_min_up_constraints',
                   outputs={
                       bel:
                       solph.Flow(nominal_value=10,
                                  min=0.5,
                                  max=1.0,
                                  variable_costs=10,
                                  nonconvex=solph.NonConvex(minimum_uptime=2,
                                                            initial_status=1))
                   })

# create an optimization problem and solve it
om = solph.Model(es)
示例#10
0
demand_el = solph.Sink(label='demand_el', inputs={bel: solph.Flow(
                       variable_costs=data['price_el'])})

# combined cycle extraction turbine
ccet = solph.components.GenericCHP(
    label='combined_cycle_extraction_turbine',
    fuel_input={bgas: solph.Flow(
        H_L_FG_share_max=[0.19 for p in range(0, periods)])},
    electrical_output={bel: solph.Flow(
        nominal_value=200, min= 80/200,
        P_max_woDH=[200 for p in range(0, periods)],
        P_min_woDH=[80 for p in range(0, periods)],
        Eta_el_max_woDH=[0.53 for p in range(0, periods)],
        Eta_el_min_woDH=[0.43 for p in range(0, periods)],
        nonconvex=solph.NonConvex(startup_costs=5, shutdown_costs=5))},
    heat_output={bth: solph.Flow(
        Q_CW_min=[30 for p in range(0, periods)])},
    Beta=[0.19 for p in range(0, periods)],
    back_pressure=False)

# create an optimization problem and solve it
om = solph.Model(es)

# debugging
# om.write('generic_chp.lp', io_options={'symbolic_solver_labels': True})

# solve model
om.solve(solver='cplex', solve_kwargs={'tee': True})

# create result object
def test_wrong_combination_of_options():
    msg = "Investment flows cannot be combined with nonconvex flows!"
    with pytest.raises(ValueError, match=msg):
        solph.Flow(investment=solph.Investment(), nonconvex=solph.NonConvex())
示例#12
0
def test_gen_ostf():
    # read sequence data
    full_filename = os.path.join(os.path.dirname(__file__), 'ostf.csv')
    data = pd.read_csv(full_filename)

    # select periods
    periods = len(data) - 1

    # create an energy system
    idx = pd.date_range('1/1/2017', periods=periods, freq='H')
    es = solph.EnergySystem(timeindex=idx)
    Node.registry = es

    # resources
    bgas = solph.Bus(label='bgas')

    solph.Source(label='rgas', outputs={bgas: solph.Flow()})

    # heat
    bth = solph.Bus(label='bth')

    solph.Source(label='source_th',
                 outputs={bth: solph.Flow(variable_costs=1000)})

    solph.Sink(label='demand_th',
               inputs={
                   bth:
                   solph.Flow(fixed=True,
                              actual_value=data['demand_th'],
                              nominal_value=200)
               })

    # power
    bel = solph.Bus(label='bel')

    solph.Source(label='source_el',
                 outputs={bel: solph.Flow(variable_costs=data['price_el'])})

    # generic chp
    hp = solph.custom.OffsetTransformer(
        label='heat_pump',
        inputs={
            bel:
            solph.Flow(nominal_value=100,
                       max=[1 for i in range(0, periods)],
                       min=[0.25 for i in range(0, periods)],
                       nonconvex=solph.NonConvex())
        },
        outputs={bth: solph.Flow()},
        coefficients=[[0 for i in range(0, periods)],
                      [2 for i in range(0, periods)]])

    # create an optimization problem and solve it
    om = solph.Model(es)

    # solve model
    om.solve(solver='cbc')

    # create result object
    results = processing.results(om)

    data = views.node(results, 'bth')['sequences'].sum(axis=0).to_dict()

    test_dict = {
        (('heat_pump', 'bth'), 'flow'): 18800.0,
        (('source_th', 'bth'), 'flow'): 1200.0,
        (('bth', 'demand_th'), 'flow'): 20000.0
    }

    for key in test_dict.keys():
        eq_(int(round(data[key])), int(round(test_dict[key])))
示例#13
0
        conversion_factors={bel: 0.5}))

energysystem.add(
    Transformer(label='pp_gas',
                inputs={bgas: Flow()},
                outputs={bel: Flow(nominal_value=41, variable_costs=40)},
                conversion_factors={bel: 0.50}))

energysystem.add(
    solph.custom.OffsetTransformer(label='ostf',
                                   inputs={
                                       bgas:
                                       solph.Flow(nominal_value=60,
                                                  min=0.5,
                                                  max=1.0,
                                                  nonconvex=solph.NonConvex())
                                   },
                                   outputs={bel: solph.Flow()},
                                   coefficients={(bgas, bel): [20, 0.5]}))

# create the model
optimization_model = Model(energysystem)

# solve problem
optimization_model.solve(solver=solver,
                         solve_kwargs={
                             'tee': False,
                             'keepfiles': False
                         })

meta_results = outputlib.processing.meta_results(optimization_model)
示例#14
0
        back_pressure=True)

    es_ref.add(bpt)

# 30% m-Teillast bei 65-114°C und 50% m-Teillast bei 115-124°C
if param.loc[('HP', 'active'), 'value'] == 1:
    hp = solph.components.OffsetTransformer(
        label='Wärmepumpe',
        inputs={
            enw:
            solph.Flow(nominal_value=1,
                       max=data['P_max_hp'],
                       min=data['P_min_hp'],
                       variable_costs=param.loc[('HP', 'op_cost_var'),
                                                'value'],
                       nonconvex=solph.NonConvex())
        },
        outputs={wnw: solph.Flow()},
        coefficients=[data['c_0_hp'], data['c_1_hp']])

    es_ref.add(hp)

    # %% Speicher

# Saisonaler Speicher
if param.loc[('TES', 'active'), 'value'] == 1:
    tes = solph.components.GenericStorage(
        label='Wärmespeicher',
        nominal_storage_capacity=param.loc[('TES', 'Q'), 'value'],
        inputs={
            wnw:
示例#15
0
def main():
    """Execute main script."""
    def invest_sol(A, col_type=''):
        """Pehnt et al. 2017, Markus [38].

        A:                Kollektorfläche der Solarthermie
        col_type:         Kollektortyp der Solarthermie
        specific_coasts:  Spezifische Kosten
        invest:           Investitionskosten
        """
        if col_type == 'flat':
            specific_costs = -34.06 * np.log(A) + 592.48
            invest = A * specific_costs
            return invest
        elif col_type == 'vacuum':
            specific_costs = -40.63 * np.log(A) + 726.64
            invest = A * specific_costs
            return invest
        else:
            raise ValueError(
                "Choose a valid collector type: 'flat' or 'vacuum'")

    def liste(parameter):
        """Get timeseries list of parameter for solph components."""
        return [parameter for p in range(0, periods)]

    def result_labelling(dataframe):
        for col in dataframe.columns:
            if col in labeldict:
                dataframe.rename(columns={col: labeldict[col]}, inplace=True)
            else:
                print(col, ' not in labeldict')

    # %% Preprocessing

    # %% Daten einlesen

    dirpath = path.abspath(path.join(__file__, "../.."))
    filename = path.join(dirpath, 'Eingangsdaten\\simulation_data.csv')
    data = pd.read_csv(filename, sep=";")
    # filename = path.join(dirpath, 'Eingangsdaten\\All_parameters.csv')
    # param = pd.read_csv(filename, sep=";", index_col=['plant', 'parameter'])

    filepath = path.join(dirpath, 'Eingangsdaten\\parameter_v2b.json')
    with open(filepath, 'r') as file:
        param = json.load(file)

    # TODO
    cop_lt = 4.9501
    A = param['Sol']['A']

    invest_solar = invest_sol(A, col_type="flat")

    # %% Zeitreihe

    periods = len(data)
    date_time_index = pd.date_range('1/1/2016 00:00:00',
                                    periods=periods,
                                    freq='h')

    # %% Energiesystem erstellen

    es_ref = solph.EnergySystem(timeindex=date_time_index)

    # %% Wärmebedarf
    # rel_demand ist die Variable, die den Wärmebedarf der Region
    # prozentual von FL angibt.

    heat_demand_FL = data['heat_demand']
    rel_heat_demand = 1
    heat_demand_local = heat_demand_FL * rel_heat_demand
    total_heat_demand = float(heat_demand_local.sum())

    # %% Energiesystem

    # %% LT-WNW Plausibilität prüfen
    if (param['LT-HP']['active'] and not param['Sol']['active']
            and not param['TES']['active']):
        print("WARNING: You can't have the low temp heat pump active without ",
              "using either the TES or solar heat.")
        exit()
    elif (not param['LT-HP']['active']
          and (param['Sol']['active'] or param['TES']['active'])):
        print(
            "WARNING: You can't use TES or solar heat without using the low ",
            "temp heat pump.")
        exit()

        # %% Busses

    gnw = solph.Bus(label='Gasnetzwerk')
    enw = solph.Bus(label='Elektrizitätsnetzwerk')
    wnw = solph.Bus(label='Wärmenetzwerk')
    lt_wnw = solph.Bus(label='LT-Wärmenetzwerk')

    es_ref.add(gnw, enw, wnw, lt_wnw)

    # %% Soruces

    gas_source = solph.Source(
        label='Gasquelle',
        outputs={
            gnw:
            solph.Flow(variable_costs=(param['param']['gas_price'] +
                                       param['param']['co2_certificate']))
        })

    elec_source = solph.Source(
        label='Stromquelle',
        outputs={
            enw:
            solph.Flow(
                variable_costs=(param['param']['elec_consumer_charges'] +
                                data['el_spot_price']))
        })

    es_ref.add(gas_source, elec_source)

    if param['Sol']['active']:
        solar_source = solph.Source(
            label='Solarthermie',
            outputs={
                lt_wnw:
                solph.Flow(variable_costs=(0.01 * invest_solar) /
                           (A * data['solar_data'].sum()),
                           nominal_value=(max(data['solar_data']) * A),
                           actual_value=(data['solar_data']) /
                           (max(data['solar_data'])),
                           fixed=True)
            })

        es_ref.add(solar_source)

    if param['MR']['active']:
        mr_source = solph.Source(label='Mustrun',
                                 outputs={
                                     wnw:
                                     solph.Flow(variable_costs=0,
                                                nominal_value=float(
                                                    param['MR']['Q_N']),
                                                actual_value=1)
                                 })

        es_ref.add(mr_source)

        # %% Sinks

    elec_sink = solph.Sink(
        label='Spotmarkt',
        inputs={enw: solph.Flow(variable_costs=-data['el_spot_price'])})

    heat_sink = solph.Sink(
        label='Wärmebedarf',
        inputs={
            wnw:
            solph.Flow(variable_costs=-param['param']['heat_price'],
                       nominal_value=max(heat_demand_local),
                       actual_value=heat_demand_local / max(heat_demand_local),
                       fixed=True)
        })

    es_ref.add(elec_sink, heat_sink)

    if param['EC']['active']:
        ec_sink = solph.Sink(label='Emergency-cooling',
                             inputs={wnw: solph.Flow(variable_costs=0)})

        es_ref.add(ec_sink)

        # %% Transformer

    if param['EHK']['active']:
        for i in range(1, param['EHK']['amount'] + 1):
            ehk = solph.Transformer(
                label='Elektroheizkessel_' + str(i),
                inputs={enw: solph.Flow()},
                outputs={
                    wnw:
                    solph.Flow(nominal_value=param['EHK']['Q_N'],
                               max=1,
                               min=0,
                               variable_costs=param['EHK']['op_cost_var'])
                },
                conversion_factors={wnw: param['EHK']['eta']})

            es_ref.add(ehk)

    if param['SLK']['active']:
        for i in range(1, param['SLK']['amount'] + 1):
            slk = solph.Transformer(
                label='Spitzenlastkessel_' + str(i),
                inputs={gnw: solph.Flow()},
                outputs={
                    wnw:
                    solph.Flow(nominal_value=param['SLK']['Q_N'],
                               max=1,
                               min=0,
                               variable_costs=(param['SLK']['op_cost_var'] +
                                               param['param']['energy_tax']))
                },
                conversion_factors={wnw: param['SLK']['eta']})

            es_ref.add(slk)

    if param['BHKW']['active']:
        for i in range(1, param['BHKW']['amount'] + 1):
            bhkw = solph.components.GenericCHP(
                label='BHKW_' + str(i),
                fuel_input={
                    gnw:
                    solph.Flow(H_L_FG_share_max=liste(
                        param['BHKW']['H_L_FG_share_max']),
                               H_L_FG_share_min=liste(
                                   param['BHKW']['H_L_FG_share_min']),
                               nominal_value=param['BHKW']['Q_in'])
                },
                electrical_output={
                    enw:
                    solph.Flow(variable_costs=param['BHKW']['op_cost_var'],
                               P_max_woDH=liste(param['BHKW']['P_max_woDH']),
                               P_min_woDH=liste(param['BHKW']['P_min_woDH']),
                               Eta_el_max_woDH=liste(
                                   param['BHKW']['Eta_el_max_woDH']),
                               Eta_el_min_woDH=liste(
                                   param['BHKW']['Eta_el_min_woDH']))
                },
                heat_output={
                    wnw: solph.Flow(Q_CW_min=liste(0), Q_CW_max=liste(0))
                },
                Beta=liste(0),
                back_pressure=False)

            es_ref.add(bhkw)

    if param['GuD']['active']:
        for i in range(1, param['GuD']['amount'] + 1):
            gud = solph.components.GenericCHP(
                label='GuD_' + str(i),
                fuel_input={
                    gnw:
                    solph.Flow(H_L_FG_share_max=liste(
                        param['GuD']['H_L_FG_share_max']),
                               nominal_value=param['GuD']['Q_in'])
                },
                electrical_output={
                    enw:
                    solph.Flow(
                        variable_costs=param['GuD']['op_cost_var'],
                        P_max_woDH=liste(param['GuD']['P_max_woDH']),
                        P_min_woDH=liste(param['GuD']['P_min_woDH']),
                        Eta_el_max_woDH=liste(param['GuD']['Eta_el_max_woDH']),
                        Eta_el_min_woDH=liste(param['GuD']['Eta_el_min_woDH']))
                },
                heat_output={
                    wnw:
                    solph.Flow(Q_CW_min=liste(param['GuD']['Q_CW_min']),
                               Q_CW_max=liste(0))
                },
                Beta=liste(param['GuD']['beta']),
                back_pressure=False)

            es_ref.add(gud)

    if param['BPT']['active']:
        for i in range(1, param['BPT']['amount'] + 1):
            bpt = solph.components.GenericCHP(
                label='bpt' + str(i),
                fuel_input={
                    gnw:
                    solph.Flow(H_L_FG_share_max=liste(
                        param['bpt']['H_L_FG_share_max']),
                               nominal_value=param['bpt']['Q_in'])
                },
                electrical_output={
                    enw:
                    solph.Flow(
                        variable_costs=param['bpt']['op_cost_var'],
                        P_max_woDH=liste(param['bpt']['P_max_woDH']),
                        P_min_woDH=liste(param['bpt']['P_min_woDH']),
                        Eta_el_max_woDH=liste(param['bpt']['Eta_el_max_woDH']),
                        Eta_el_min_woDH=liste(param['bpt']['Eta_el_min_woDH']))
                },
                heat_output={
                    wnw: solph.Flow(Q_CW_min=liste(0), Q_CW_max=liste(0))
                },
                Beta=liste(0),
                back_pressure=True)

            es_ref.add(bpt)

    # 30% m-Teillast bei 65-114°C und 50% m-Teillast bei 115-124°C
    if param['HP']['active']:
        for i in range(1, param['HP']['amount'] + 1):
            hp = solph.components.OffsetTransformer(
                label='HP_' + str(i),
                inputs={
                    enw:
                    solph.Flow(nominal_value=1,
                               max=data['P_max_hp'],
                               min=data['P_min_hp'],
                               variable_costs=param['HP']['op_cost_var'],
                               nonconvex=solph.NonConvex())
                },
                outputs={wnw: solph.Flow()},
                coefficients=[data['c_0_hp'], data['c_1_hp']])

            es_ref.add(hp)

        # %% Speicher

    # Saisonaler Speicher
    if param['TES']['active']:
        for i in range(1, param['TES']['amount'] + 1):
            tes = solph.components.GenericStorage(
                label='TES_' + str(i),
                nominal_storage_capacity=param['TES']['Q'],
                inputs={
                    wnw:
                    solph.Flow(
                        storageflowlimit=True,
                        nominal_value=param['TES']['Q_N_in'],
                        max=param['TES']['Q_rel_in_max'],
                        min=param['TES']['Q_rel_in_min'],
                        variable_costs=param['TES']['op_cost_var'],
                        nonconvex=solph.NonConvex(
                            minimum_uptime=int(param['TES']['min_uptime']),
                            initial_status=int(param['TES']['init_status'])))
                },
                outputs={
                    lt_wnw:
                    solph.Flow(
                        storageflowlimit=True,
                        nominal_value=param['TES']['Q_N_out'],
                        max=param['TES']['Q_rel_out_max'],
                        min=param['TES']['Q_rel_out_min'],
                        nonconvex=solph.NonConvex(
                            minimum_uptime=int(param['TES']['min_uptime'])))
                },
                initial_storage_level=param['TES']['init_storage'],
                loss_rate=param['TES']['Q_rel_loss'],
                inflow_conversion_factor=param['TES']['inflow_conv'],
                outflow_conversion_factor=param['TES']['outflow_conv'])

            es_ref.add(tes)

    # Low temperature heat pump

    if param['LT-HP']['active']:
        for i in range(1, param['LT-HP']['amount'] + 1):
            lthp = solph.Transformer(
                label="LT-HP_" + str(i),
                inputs={
                    lt_wnw: solph.Flow(),
                    enw: solph.Flow(variable_costs=param['HP']['op_cost_var'])
                },
                outputs={wnw: solph.Flow()},
                conversion_factors={
                    enw: 1 / data['cop_lthp'],
                    lt_wnw: (data['cop_lthp'] - 1) / data['cop_lthp']
                }
                # conversion_factors={enw: 1/cop_lt,
                #                     lt_wnw: (cop_lt-1)/cop_lt}
            )

            es_ref.add(lthp)

    # %% Processing

    # %% Solve

    # Was bedeutet tee?
    model = solph.Model(es_ref)
    solph.constraints.limit_active_flow_count_by_keyword(model,
                                                         'storageflowlimit',
                                                         lower_limit=0,
                                                         upper_limit=1)
    # model.write('my_model.lp', io_options={'symbolic_solver_labels': True})
    model.solve(solver='gurobi',
                solve_kwargs={'tee': True},
                cmdline_options={"mipgap": "0.05"})

    # %% Ergebnisse Energiesystem

    # Ergebnisse in results
    results = solph.processing.results(model)

    # Main- und Metaergebnisse
    es_ref.results['main'] = solph.processing.results(model)
    es_ref.results['meta'] = solph.processing.meta_results(model)

    invest_ges = 0
    cost_Anlagen = 0
    labeldict = {}

    # Busses
    data_gnw = views.node(results, 'Gasnetzwerk')['sequences']
    data_enw = views.node(results, 'Elektrizitätsnetzwerk')['sequences']
    data_wnw = views.node(results, 'Wärmenetzwerk')['sequences']
    data_lt_wnw = views.node(results, 'LT-Wärmenetzwerk')['sequences']

    labeldict[(('Gasquelle', 'Gasnetzwerk'), 'flow')] = 'H_source'
    labeldict[(('Elektrizitätsnetzwerk', 'Spotmarkt'),
               'flow')] = 'P_spot_market'
    labeldict[(('Stromquelle', 'Elektrizitätsnetzwerk'), 'flow')] = 'P_source'
    labeldict[(('Wärmenetzwerk', 'Wärmebedarf'), 'flow')] = 'Q_demand'

    # Sources
    data_gas_source = views.node(results, 'Gasquelle')['sequences']
    data_elec_source = views.node(results, 'Stromquelle')['sequences']

    if param['Sol']['active']:
        data_solar_source = views.node(results, 'Solarthermie')['sequences']
        invest_ges += invest_solar
        cost_Anlagen += (data_solar_source[(
            ('Solarthermie', 'LT-Wärmenetzwerk'), 'flow')].sum() *
                         (0.01 * invest_solar) /
                         (A * data['solar_data'].sum()))
        labeldict[(('Solarthermie', 'LT-Wärmenetzwerk'), 'flow')] = 'Q_Sol'

    if param['MR']['active']:
        data_mr_source = views.node(results, 'Mustrun')['sequences']
        labeldict[(('Mustrun', 'Wärmenetzwerk'), 'flow')] = 'Q_MR'

    # Sinks
    data_elec_sink = views.node(results, 'Spotmarkt')['sequences']
    data_heat_sink = views.node(results, 'Wärmebedarf')['sequences']

    if param['EC']['active']:
        data_ec = views.node(results, 'Emergency-cooling')['sequences']
        labeldict[(('Wärmenetzwerk', 'Emergency-cooling'), 'flow')] = 'Q_EC'

    # Transformer
    if param['EHK']['active']:
        invest_ges += (param['EHK']['inv_spez'] * param['EHK']['Q_N'] *
                       param['EHK']['amount'])

        for i in range(1, param['EHK']['amount'] + 1):
            label_id = 'Elektroheizkessel_' + str(i)
            data_ehk = views.node(results, label_id)['sequences']

            cost_Anlagen += (
                data_ehk[((label_id, 'Wärmenetzwerk'), 'flow')].sum() *
                param['EHK']['op_cost_var'] +
                (param['EHK']['op_cost_fix'] * param['EHK']['Q_N']))

            labeldict[((label_id, 'Wärmenetzwerk'),
                       'flow')] = 'Q_EHK_' + str(i)
            labeldict[(('Elektrizitätsnetzwerk', label_id),
                       'flow')] = 'P_zu_EHK_' + str(i)

    if param['SLK']['active']:
        invest_ges += (param['SLK']['inv_spez'] * param['SLK']['Q_N'] *
                       param['SLK']['amount'])

        for i in range(1, param['SLK']['amount'] + 1):
            label_id = 'Spitzenlastkessel_' + str(i)
            data_slk = views.node(results, label_id)['sequences']

            cost_Anlagen += (
                data_slk[((label_id, 'Wärmenetzwerk'), 'flow')].sum() *
                (param['SLK']['op_cost_var'] + param['param']['energy_tax']) +
                (param['SLK']['op_cost_fix'] * param['SLK']['Q_N']))

            labeldict[((label_id, 'Wärmenetzwerk'),
                       'flow')] = 'Q_SLK_' + str(i)
            labeldict[(('Gasnetzwerk', label_id), 'flow')] = 'H_SLK_' + str(i)

    if param['BHKW']['active']:
        invest_ges += (param['BHKW']['P_max_woDH'] *
                       param['BHKW']['inv_spez'] * param['BHKW']['amount'])

        for i in range(1, param['BHKW']['amount'] + 1):
            label_id = 'BHKW_' + str(i)
            data_bhkw = views.node(results, label_id)['sequences']

            cost_Anlagen += (
                data_bhkw[(
                    (label_id, 'Elektrizitätsnetzwerk'), 'flow')].sum() *
                param['BHKW']['op_cost_var'] +
                (param['BHKW']['op_cost_fix'] * param['BHKW']['P_max_woDH']))

            labeldict[((label_id, 'Wärmenetzwerk'), 'flow')] = 'Q_' + label_id
            labeldict[((label_id, 'Elektrizitätsnetzwerk'),
                       'flow')] = 'P_' + label_id
            labeldict[(('Gasnetzwerk', label_id), 'flow')] = 'H_' + label_id

    if param['GuD']['active']:
        invest_ges += (param['GuD']['P_max_woDH'] * param['GuD']['inv_spez'] *
                       param['GuD']['amount'])

        for i in range(1, param['GuD']['amount'] + 1):
            label_id = 'GuD_' + str(i)
            data_gud = views.node(results, label_id)['sequences']

            cost_Anlagen += (
                data_gud[((label_id, 'Elektrizitätsnetzwerk'), 'flow')].sum() *
                param['GuD']['op_cost_var'] +
                (param['GuD']['op_cost_fix'] * param['GuD']['P_max_woDH']))

            labeldict[((label_id, 'Wärmenetzwerk'), 'flow')] = 'Q_' + label_id
            labeldict[((label_id, 'Elektrizitätsnetzwerk'),
                       'flow')] = 'P_' + label_id
            labeldict[(('Gasnetzwerk', label_id), 'flow')] = 'H_' + label_id

    if param['HP']['active']:
        invest_ges += (param['HP']['inv_spez'] * data['P_max_hp'].max() *
                       param['HP']['amount'])

        for i in range(1, param['HP']['amount'] + 1):
            label_id = 'HP_' + str(i)
            data_hp = views.node(results, label_id)['sequences']

            cost_Anlagen += (
                data_hp[(('Elektrizitätsnetzwerk', label_id), 'flow')].sum() *
                param['HP']['op_cost_var'] +
                (param['HP']['op_cost_fix'] * data['P_max_hp'].max()))

            labeldict[((label_id, 'Wärmenetzwerk'),
                       'flow')] = 'Q_ab_' + label_id
            labeldict[(('Elektrizitätsnetzwerk', label_id),
                       'flow')] = 'P_zu_' + label_id
            labeldict[(('Elektrizitätsnetzwerk', label_id),
                       'status')] = 'Status_' + label_id

    if param['LT-HP']['active']:
        for i in range(1, param['LT-HP']['amount'] + 1):
            label_id = 'LT-HP_' + str(i)
            data_lt_hp = views.node(results, label_id)['sequences']

            invest_ges += (param['HP']['inv_spez'] * data_wnw[(
                (label_id, 'Wärmenetzwerk'), 'flow')].max() /
                           data['cop_lthp'].mean())

            cost_Anlagen += (data_lt_hp[(
                ('Elektrizitätsnetzwerk', label_id), 'flow')].sum() *
                             param['HP']['op_cost_var'] +
                             (param['HP']['op_cost_fix'] * data_wnw[(
                                 (label_id, 'Wärmenetzwerk'), 'flow')].max() /
                              data['cop_lthp'].mean()))

            labeldict[((label_id, 'Wärmenetzwerk'),
                       'flow')] = 'Q_ab_' + label_id
            labeldict[(('Elektrizitätsnetzwerk', label_id),
                       'flow')] = 'P_zu_' + label_id
            labeldict[(('LT-Wärmenetzwerk', label_id),
                       'flow')] = 'Q_zu_' + label_id

    # Speicher
    if param['TES']['active']:
        invest_ges += (param['TES']['inv_spez'] * param['TES']['Q'] *
                       param['TES']['amount'])

        for i in range(1, param['TES']['amount'] + 1):
            label_id = 'TES_' + str(i)
            data_tes = views.node(results, label_id)['sequences']

            cost_Anlagen += (data_tes[(
                ('Wärmenetzwerk', label_id), 'flow')].sum() *
                             param['TES']['op_cost_var'] +
                             (param['TES']['op_cost_fix'] * param['TES']['Q']))

            labeldict[((label_id, 'LT-Wärmenetzwerk'),
                       'flow')] = 'Q_ab_' + label_id
            labeldict[((label_id, 'LT-Wärmenetzwerk'),
                       'status')] = 'Status_ab_' + label_id
            labeldict[(('Wärmenetzwerk', label_id),
                       'flow')] = 'Q_zu_' + label_id
            labeldict[(('Wärmenetzwerk', label_id),
                       'status')] = 'Status_zu_' + label_id
            labeldict[((label_id, 'None'),
                       'storage_content')] = 'Speicherstand_' + label_id

        # %% Zahlungsströme Ergebnis

    objective = abs(es_ref.results['meta']['objective'])

    # %% Geldflüsse

    # # Primärenergiebezugskoste
    cost_gas = (
        data_gnw[(('Gasquelle', 'Gasnetzwerk'), 'flow')].sum() *
        (param['param']['gas_price'] + param['param']['co2_certificate']))

    el_flow = np.array(data_enw[(('Stromquelle', 'Elektrizitätsnetzwerk'),
                                 'flow')])
    cost_el_timeseries = np.array(data['el_price'])
    cost_el_array = el_flow * cost_el_timeseries
    cost_el = cost_el_array.sum()

    # Erlöse
    revenues_spotmarkt_timeseries = (np.array(data_enw[(
        ('Elektrizitätsnetzwerk', 'Spotmarkt'), 'flow')]) *
                                     np.array(data['el_spot_price']))
    revenues_spotmarkt = revenues_spotmarkt_timeseries.sum()

    revenues_heatdemand = (data_wnw[(
        ('Wärmenetzwerk', 'Wärmebedarf'), 'flow')].sum() *
                           param['param']['heat_price'])
    # Summe der Geldströme
    Gesamtbetrag = (revenues_spotmarkt + revenues_heatdemand - cost_Anlagen -
                    cost_gas - cost_el)

    # %% Output Ergebnisse

    # Umbenennen der Spaltennamen der Ergebnisdataframes
    result_dfs = [data_wnw, data_lt_wnw, data_tes, data_enw, data_gnw]

    for df in result_dfs:
        result_labelling(df)

    # Daten zum Plotten der Wärmeversorgung
    df1 = pd.concat([data_wnw, data_lt_wnw, data_tes, data_enw], axis=1)
    df1.to_csv(path.join(dirpath, 'Ergebnisse\\Vorarbeit\\Vor_wnw.csv'),
               sep=";")

    # Daten zum Plotten der Investitionsrechnung
    df2 = pd.DataFrame(
        data={
            'invest_ges': [invest_ges],
            'Q_tes': [param['TES']['Q']],
            'total_heat_demand': [total_heat_demand],
            'Gesamtbetrag': [Gesamtbetrag]
        })
    df2.to_csv(path.join(dirpath, 'Ergebnisse\\Vorarbeit\\Vor_Invest.csv'),
               sep=";")

    # Daten für die ökologische Bewertung
    df3 = pd.concat(
        [data_gnw[['H_source']], data_enw[['P_spot_market', 'P_source']]],
        axis=1)
    df3.to_csv(path.join(dirpath, 'Ergebnisse\\Vorarbeit\\Vor_CO2.csv'),
               sep=";")
示例#16
0
es_ref.add(ehk, slk, bhkw)

# %% Speicher
# Saisonaler Speicher

tes = solph.components.GenericStorage(
    label='Wärmespeicher',
    nominal_storage_capacity=Q_tes,
    inputs={
        wnw:
        solph.Flow(nominal_value=nom_heat_demand_local / 4,
                   max=1,
                   min=0.1,
                   variable_costs=op_cost_tes,
                   nonconvex=solph.NonConvex(minimum_uptime=3,
                                             initial_status=0))
    },
    outputs={
        wnw:
        solph.Flow(nominal_value=nom_heat_demand_local / 4,
                   max=1,
                   min=0.1,
                   nonconvex=solph.NonConvex(minimum_uptime=3,
                                             initial_status=0))
    },
    initial_storage_level=0.7,
    inflow_conversion_factor=1,
    outflow_conversion_factor=0.75)

es_ref.add(tes)
示例#17
0
es = solph.EnergySystem(timeindex=time)

b_heat = solph.Bus(label='b_heat')

es.add(b_heat)

sink_heat = solph.Sink(
    label='demand',
    inputs={b_heat: solph.Flow(fix=demand_heat, nominal_value=1)})

fireplace = solph.Source(
    label='fireplace',
    outputs={b_heat: solph.Flow(nominal_value=3,
                                variable_costs=0,
                                nonconvex=solph.NonConvex(
                                    activity_costs=activity_costs))})

boiler = solph.Source(
    label='boiler',
    outputs={b_heat: solph.Flow(nominal_value=10,
                                variable_costs=1)})

es.add(sink_heat, fireplace, boiler)

##########################################################################
# Optimise the energy system
##########################################################################

# create an optimization problem and solve it
om = solph.Model(es)
示例#18
0
def ht_heat_pump(param, data, busses):
    r"""
    Get high temperature heat pump for Generic Model energy system.

    Parameters
    ----------
    param : dict
        JSON parameter file of user defined constants.

    data : pandas.DataFrame
        csv file of user defined time dependent parameters.

    busses : dict of solph.Bus
        Busses of the energy system.

    Note
    ----
    High temperature heat pump uses the following parameters:
    - 'active' is a binary parameter wether is used or not
    - 'type' defines wether it is used constant or time dependent
    - 'amount' is the amount of this components installed

    - 'P_max' is the constant maximum output power in MW
    - 'P_min' is the constant minimum output power in MW
    - 'c_1' is the linear coefficicient 1 (slope)
    - 'c_0' is the linear coefficicient 0 (y-intersection)

    - 'P_max_hp' is the time series of maximum output power in MW
    - 'P_min_hp' is the time series minimum output power in MW

    - 'elec_consumer_charges_self' are the constant consumer charges for
       internal electricity usage in €/MWh
    - 'op_cost_var' are the variable operational costs in €/MWh

    Topology
    --------
    Input: Electricity network (enw)

    Output: High temperature heat network (wnw)
    """
    if param['HP']['active']:
        if param['HP']['type'] == 'constant':
            for i in range(1, param['HP']['amount'] + 1):
                ht_hp = solph.components.OffsetTransformer(
                    label='HP_' + str(i),
                    inputs={
                        busses['enw']:
                        solph.Flow(
                            nominal_value=param['HP']['P_max'],
                            max=1,
                            min=param['HP']['P_min'] / param['HP']['P_max'],
                            variable_costs=(
                                param['param']['elec_consumer_charges_self']),
                            nonconvex=solph.NonConvex())
                    },
                    outputs={
                        busses['wnw']:
                        solph.Flow(variable_costs=param['HP']['op_cost_var'])
                    },
                    coefficients=[param['HP']['c_0'], param['HP']['c_1']])
                return ht_hp
        elif param['HP']['type'] == 'time series':
            for i in range(1, param['HP']['amount'] + 1):
                ht_hp = solph.components.OffsetTransformer(
                    label='HP_' + str(i),
                    inputs={
                        busses['enw']:
                        solph.Flow(
                            nominal_value=1,
                            max=data['P_max_hp'],
                            min=data['P_min_hp'],
                            variable_costs=(
                                param['param']['elec_consumer_charges_self']),
                            nonconvex=solph.NonConvex())
                    },
                    outputs={
                        busses['wnw']:
                        solph.Flow(variable_costs=param['HP']['op_cost_var'])
                    },
                    coefficients=[data['c_0_hp'], data['c_1_hp']])
                return ht_hp
        else:
            raise ComponentTypeError(param['HP']['type'], 'HP')
示例#19
0
def short_term_thermal_energy_storage(param, busses):
    r"""
    Get short term thermal energy storage for Generic Model energy system.

    Parameters
    ----------
    param : dict
        JSON parameter file of user defined constants.

    busses : dict of solph.Bus
        Busses of the energy system.

    Note
    ----
    Short term thermal energy storage uses the following parameters:
    - 'active' is a binary parameter wether is used or not
    - 'amount' is the amount of this components installed

    - 'Q_N_in' is the constant nominal input value in MWh
    - 'Q_N_out' is the constant nominal output value in MWh
    - 'Q_rel_in_max' is a scaling factor for maximal heat input
    - 'Q_rel_in_min' is a scaling factor for minimal heat input
    - 'Q_rel_out_max' is a scaling factor for maximal heat output
    - 'Q_rel_out_min' is a scaling factor for minimal heat output
    - 'min_uptime' is the amount of time steps the storage has to be on during
      operation
    - 'init_status' is the value wheter the state of charge is active at the
      beginning
    - 'init_storage' is the start value of the state of charge
    - 'balanced' is the condition whether the state of charge at the end of
      the optimiziation period is the same as at the beginning
    - 'Q_rel_loss' is the constant loss rate to environment
    - 'inflow_conv' is the constant inflow conversion factor
    - 'outflow_conv' is the constant outflow conversion factor

    - 'op_cost_var' are the variable operational costs in €/MWh

    Topology
    --------
    Input: High temperature heat network (wnw)

    Output: High temperature heat network (wnw)
    """
    if param['ST-TES']['active']:
        for i in range(1, param['ST-TES']['amount'] + 1):
            st_tes = solph.components.GenericStorage(
                label='ST-TES_' + str(i),
                nominal_storage_capacity=param['ST-TES']['Q'],
                inputs={
                    busses['wnw']:
                    solph.Flow(storageflowlimit=True,
                               nominal_value=param['ST-TES']['Q_N_in'],
                               max=param['ST-TES']['Q_rel_in_max'],
                               min=param['ST-TES']['Q_rel_in_min'],
                               variable_costs=param['ST-TES']['op_cost_var'],
                               nonconvex=solph.NonConvex(initial_status=int(
                                   param['ST-TES']['init_status'])))
                },
                outputs={
                    busses['wnw']:
                    solph.Flow(storageflowlimit=True,
                               nominal_value=param['ST-TES']['Q_N_out'],
                               max=param['ST-TES']['Q_rel_out_max'],
                               min=param['ST-TES']['Q_rel_out_min'],
                               nonconvex=solph.NonConvex())
                },
                initial_storage_level=param['ST-TES']['init_storage'],
                loss_rate=param['ST-TES']['Q_rel_loss'],
                inflow_conversion_factor=param['ST-TES']['inflow_conv'],
                outflow_conversion_factor=param['ST-TES']['outflow_conv'])
    return st_tes
示例#20
0
                                        actual_value=[
                                            heat_demand(day)
                                            for day in range(0, periods)
                                        ],
                                        nominal_value=10)
                         })

fireplace = solph.Source(label='fireplace',
                         outputs={
                             b_heat:
                             solph.Flow(
                                 nominal_value=10,
                                 min=0.4,
                                 max=1.0,
                                 variable_costs=0.1,
                                 nonconvex=solph.NonConvex(minimum_uptime=2,
                                                           initial_status=1))
                         })

boiler = solph.Source(
    label='boiler',
    outputs={b_heat: solph.Flow(nominal_value=10, variable_costs=0.2)})


# basic model for solar thermal yield, solely based on the day of the year
def solar_thermal(d):
    return 0.5 - 0.5 * np.cos(2 * np.pi * d / 356)


# For one year, the equivalent periodical costs (epc) of an
# investment are equal to the annuity.
epc = economics.annuity(5000, 20, 0.05)
bel = solph.Bus(label='bel')

# There are a sink and a source, both creating a revenue (negative cost),
# so it would be optimal to use both at the same time. To suppress this,
# the constraint "limit_active_flow_count" is used.
# You might define any keyword (here "my_keyword") like:
# > Flow(nonconvex=solph.NonConvex(),
# >      my_keyword=True,
#        ...)
# But also any existing one (e.g. "emission_factor") can be used.

solph.Source(label='source1',
             outputs={
                 bel:
                 solph.Flow(nonconvex=solph.NonConvex(),
                            nominal_value=210,
                            variable_costs=[-1, -5, -1, -1],
                            max=[1, 1, 1, 0],
                            my_keyword=True)
             })

# Note: The keyword is also defined when set to False.
solph.Sink(label='sink1',
           inputs={
               bel:
               solph.Flow(nonconvex=solph.NonConvex(),
                          variable_costs=[-2, -1, -2, -2],
                          nominal_value=250,
                          max=[1, 1, 1, 0],
                          my_keyword=False)