示例#1
0
def make_optimizer(model, config):
    # =========================lr_scheduler=========================
    lr_config = config["lr_scheduler"]
    warmup_steps = lr_config["warmup_steps"]
    peak_learning_rate = lr_config["peak_learning_rate"]
    lr_scheduler = dg.NoamDecay(1 / (warmup_steps * (peak_learning_rate)**2),
                                warmup_steps)

    # =========================optimizer=========================
    optim_config = config["optimizer"]
    optim = fluid.optimizer.Adam(
        lr_scheduler,
        beta1=optim_config["beta1"],
        beta2=optim_config["beta2"],
        epsilon=optim_config["epsilon"],
        parameter_list=model.parameters(),
        grad_clip=fluid.clip.GradientClipByGlobalNorm(0.1))
    return optim
示例#2
0
def main(args):
    local_rank = dg.parallel.Env().local_rank
    nranks = dg.parallel.Env().nranks
    parallel = nranks > 1

    with open(args.config) as f:
        cfg = yaml.load(f, Loader=yaml.Loader)

    global_step = 0
    place = fluid.CUDAPlace(local_rank) if args.use_gpu else fluid.CPUPlace()

    if not os.path.exists(args.output):
        os.mkdir(args.output)

    writer = LogWriter(os.path.join(args.output,
                                    'log')) if local_rank == 0 else None

    fluid.enable_dygraph(place)
    model = Vocoder(cfg['train']['batch_size'], cfg['vocoder']['hidden_size'],
                    cfg['audio']['num_mels'], cfg['audio']['n_fft'])

    model.train()
    optimizer = fluid.optimizer.AdamOptimizer(
        learning_rate=dg.NoamDecay(
            1 / (cfg['train']['warm_up_step'] *
                 (cfg['train']['learning_rate']**2)),
            cfg['train']['warm_up_step']),
        parameter_list=model.parameters(),
        grad_clip=fluid.clip.GradientClipByGlobalNorm(
            cfg['train']['grad_clip_thresh']))

    # Load parameters.
    global_step = io.load_parameters(model=model,
                                     optimizer=optimizer,
                                     checkpoint_dir=os.path.join(
                                         args.output, 'checkpoints'),
                                     iteration=args.iteration,
                                     checkpoint_path=args.checkpoint)
    print("Rank {}: checkpoint loaded.".format(local_rank))

    if parallel:
        strategy = dg.parallel.prepare_context()
        model = fluid.dygraph.parallel.DataParallel(model, strategy)

    reader = LJSpeechLoader(cfg['audio'],
                            place,
                            args.data,
                            cfg['train']['batch_size'],
                            nranks,
                            local_rank,
                            is_vocoder=True).reader()

    for epoch in range(cfg['train']['max_iteration']):
        pbar = tqdm(reader)
        for i, data in enumerate(pbar):
            pbar.set_description('Processing at epoch %d' % epoch)
            mel, mag = data
            mag = dg.to_variable(mag.numpy())
            mel = dg.to_variable(mel.numpy())
            global_step += 1

            mag_pred = model(mel)
            loss = layers.mean(
                layers.abs(layers.elementwise_sub(mag_pred, mag)))

            if parallel:
                loss = model.scale_loss(loss)
                loss.backward()
                model.apply_collective_grads()
            else:
                loss.backward()
            optimizer.minimize(loss)
            model.clear_gradients()

            if local_rank == 0:
                writer.add_scalar('training_loss/loss', loss.numpy(),
                                  global_step)

            # save checkpoint
            if local_rank == 0 and global_step % cfg['train'][
                    'checkpoint_interval'] == 0:
                io.save_parameters(os.path.join(args.output, 'checkpoints'),
                                   global_step, model, optimizer)

    if local_rank == 0:
        writer.close()
示例#3
0
def main(args):
    local_rank = dg.parallel.Env().local_rank
    nranks = dg.parallel.Env().nranks
    parallel = nranks > 1

    with open(args.config) as f:
        cfg = yaml.load(f, Loader=yaml.Loader)

    global_step = 0
    place = fluid.CUDAPlace(dg.parallel.Env()
                            .dev_id) if args.use_gpu else fluid.CPUPlace()
    fluid.enable_dygraph(place)

    if not os.path.exists(args.output):
        os.mkdir(args.output)

    writer = SummaryWriter(os.path.join(args.output,
                                        'log')) if local_rank == 0 else None

    model = FastSpeech(cfg['network'], num_mels=cfg['audio']['num_mels'])
    model.train()
    optimizer = fluid.optimizer.AdamOptimizer(
        learning_rate=dg.NoamDecay(1 / (cfg['train']['warm_up_step'] *
                                        (cfg['train']['learning_rate']**2)),
                                   cfg['train']['warm_up_step']),
        parameter_list=model.parameters(),
        grad_clip=fluid.clip.GradientClipByGlobalNorm(cfg['train'][
            'grad_clip_thresh']))
    reader = LJSpeechLoader(
        cfg['audio'],
        place,
        args.data,
        args.alignments_path,
        cfg['train']['batch_size'],
        nranks,
        local_rank,
        shuffle=True).reader
    iterator = iter(tqdm(reader))

    # Load parameters.
    global_step = io.load_parameters(
        model=model,
        optimizer=optimizer,
        checkpoint_dir=os.path.join(args.output, 'checkpoints'),
        iteration=args.iteration,
        checkpoint_path=args.checkpoint)
    print("Rank {}: checkpoint loaded.".format(local_rank))

    if parallel:
        strategy = dg.parallel.prepare_context()
        model = fluid.dygraph.parallel.DataParallel(model, strategy)

    while global_step <= cfg['train']['max_iteration']:
        try:
            batch = next(iterator)
        except StopIteration as e:
            iterator = iter(tqdm(reader))
            batch = next(iterator)

        (character, mel, pos_text, pos_mel, alignment) = batch

        global_step += 1

        #Forward
        result = model(
            character, pos_text, mel_pos=pos_mel, length_target=alignment)
        mel_output, mel_output_postnet, duration_predictor_output, _, _ = result
        mel_loss = layers.mse_loss(mel_output, mel)
        mel_postnet_loss = layers.mse_loss(mel_output_postnet, mel)
        duration_loss = layers.mean(
            layers.abs(
                layers.elementwise_sub(duration_predictor_output, alignment)))
        total_loss = mel_loss + mel_postnet_loss + duration_loss

        if local_rank == 0:
            writer.add_scalar('mel_loss', mel_loss.numpy(), global_step)
            writer.add_scalar('post_mel_loss',
                              mel_postnet_loss.numpy(), global_step)
            writer.add_scalar('duration_loss',
                              duration_loss.numpy(), global_step)
            writer.add_scalar('learning_rate',
                              optimizer._learning_rate.step().numpy(),
                              global_step)

        if parallel:
            total_loss = model.scale_loss(total_loss)
            total_loss.backward()
            model.apply_collective_grads()
        else:
            total_loss.backward()
        optimizer.minimize(total_loss)
        model.clear_gradients()

        # save checkpoint
        if local_rank == 0 and global_step % cfg['train'][
                'checkpoint_interval'] == 0:
            io.save_parameters(
                os.path.join(args.output, 'checkpoints'), global_step, model,
                optimizer)

    if local_rank == 0:
        writer.close()
示例#4
0
def noam_learning_rate_decay(init_lr, warmup_steps=4000):
    # Noam scheme from tensor2tensor:
    warmup_steps = float(warmup_steps)
    return dg.NoamDecay(1 / (warmup_steps * (init_lr**2)), warmup_steps)
示例#5
0
        binary_divergence_weight = loss_config["binary_divergence_weight"]
        guided_attention_sigma = loss_config["guided_attention_sigma"]
        criterion = TTSLoss(
            masked_weight=masked_weight,
            priority_bin=priority_bin,
            priority_weight=priority_freq_weight,
            binary_divergence_weight=binary_divergence_weight,
            guided_attention_sigma=guided_attention_sigma,
            downsample_factor=downsample_factor,
            r=r)

        # =========================lr_scheduler=========================
        lr_config = config["lr_scheduler"]
        warmup_steps = lr_config["warmup_steps"]
        peak_learning_rate = lr_config["peak_learning_rate"]
        lr_scheduler = dg.NoamDecay(
            1 / (warmup_steps * (peak_learning_rate)**2), warmup_steps)

        # =========================optimizer=========================
        optim_config = config["optimizer"]
        beta1 = optim_config["beta1"]
        beta2 = optim_config["beta2"]
        epsilon = optim_config["epsilon"]
        optim = fluid.optimizer.Adam(
            lr_scheduler,
            beta1,
            beta2,
            epsilon=epsilon,
            parameter_list=dv3.parameters())
        gradient_clipper = fluid.dygraph_grad_clip.GradClipByGlobalNorm(0.1)

        # generation
示例#6
0
def main(args):
    local_rank = dg.parallel.Env().local_rank if args.use_data_parallel else 0
    nranks = dg.parallel.Env().nranks if args.use_data_parallel else 1

    with open(args.config_path) as f:
        cfg = yaml.load(f, Loader=yaml.Loader)

    global_step = 0
    place = (fluid.CUDAPlace(dg.parallel.Env().dev_id)
             if args.use_data_parallel else fluid.CUDAPlace(0)
             if args.use_gpu else fluid.CPUPlace())

    if not os.path.exists(args.log_dir):
        os.mkdir(args.log_dir)
    path = os.path.join(args.log_dir, 'fastspeech')

    writer = SummaryWriter(path) if local_rank == 0 else None

    with dg.guard(place):
        with fluid.unique_name.guard():
            transformer_tts = TransformerTTS(cfg)
            model_dict, _ = load_checkpoint(
                str(args.transformer_step),
                os.path.join(args.transtts_path, "transformer"))
            transformer_tts.set_dict(model_dict)
            transformer_tts.eval()

        model = FastSpeech(cfg)
        model.train()
        optimizer = fluid.optimizer.AdamOptimizer(
            learning_rate=dg.NoamDecay(1 / (
                cfg['warm_up_step'] * (args.lr**2)), cfg['warm_up_step']),
            parameter_list=model.parameters())
        reader = LJSpeechLoader(
            cfg, args, nranks, local_rank, shuffle=True).reader()

        if args.checkpoint_path is not None:
            model_dict, opti_dict = load_checkpoint(
                str(args.fastspeech_step),
                os.path.join(args.checkpoint_path, "fastspeech"))
            model.set_dict(model_dict)
            optimizer.set_dict(opti_dict)
            global_step = args.fastspeech_step
            print("load checkpoint!!!")

        if args.use_data_parallel:
            strategy = dg.parallel.prepare_context()
            model = fluid.dygraph.parallel.DataParallel(model, strategy)

        for epoch in range(args.epochs):
            pbar = tqdm(reader)

            for i, data in enumerate(pbar):
                pbar.set_description('Processing at epoch %d' % epoch)
                (character, mel, mel_input, pos_text, pos_mel, text_length,
                 mel_lens, enc_slf_mask, enc_query_mask, dec_slf_mask,
                 enc_dec_mask, dec_query_slf_mask, dec_query_mask) = data

                _, _, attn_probs, _, _, _ = transformer_tts(
                    character,
                    mel_input,
                    pos_text,
                    pos_mel,
                    dec_slf_mask=dec_slf_mask,
                    enc_slf_mask=enc_slf_mask,
                    enc_query_mask=enc_query_mask,
                    enc_dec_mask=enc_dec_mask,
                    dec_query_slf_mask=dec_query_slf_mask,
                    dec_query_mask=dec_query_mask)
                alignment, max_attn = get_alignment(attn_probs, mel_lens,
                                                    cfg['transformer_head'])
                alignment = dg.to_variable(alignment).astype(np.float32)

                if local_rank == 0 and global_step % 5 == 1:
                    x = np.uint8(
                        cm.viridis(max_attn[8, :mel_lens.numpy()[8]]) * 255)
                    writer.add_image(
                        'Attention_%d_0' % global_step,
                        x,
                        0,
                        dataformats="HWC")

                global_step += 1

                #Forward
                result = model(
                    character,
                    pos_text,
                    mel_pos=pos_mel,
                    length_target=alignment,
                    enc_non_pad_mask=enc_query_mask,
                    enc_slf_attn_mask=enc_slf_mask,
                    dec_non_pad_mask=dec_query_slf_mask,
                    dec_slf_attn_mask=dec_slf_mask)
                mel_output, mel_output_postnet, duration_predictor_output, _, _ = result
                mel_loss = layers.mse_loss(mel_output, mel)
                mel_postnet_loss = layers.mse_loss(mel_output_postnet, mel)
                duration_loss = layers.mean(
                    layers.abs(
                        layers.elementwise_sub(duration_predictor_output,
                                               alignment)))
                total_loss = mel_loss + mel_postnet_loss + duration_loss

                if local_rank == 0:
                    writer.add_scalar('mel_loss',
                                      mel_loss.numpy(), global_step)
                    writer.add_scalar('post_mel_loss',
                                      mel_postnet_loss.numpy(), global_step)
                    writer.add_scalar('duration_loss',
                                      duration_loss.numpy(), global_step)
                    writer.add_scalar('learning_rate',
                                      optimizer._learning_rate.step().numpy(),
                                      global_step)

                if args.use_data_parallel:
                    total_loss = model.scale_loss(total_loss)
                    total_loss.backward()
                    model.apply_collective_grads()
                else:
                    total_loss.backward()
                optimizer.minimize(
                    total_loss,
                    grad_clip=fluid.dygraph_grad_clip.GradClipByGlobalNorm(cfg[
                        'grad_clip_thresh']))
                model.clear_gradients()

                # save checkpoint
                if local_rank == 0 and global_step % args.save_step == 0:
                    if not os.path.exists(args.save_path):
                        os.mkdir(args.save_path)
                    save_path = os.path.join(args.save_path,
                                             'fastspeech/%d' % global_step)
                    dg.save_dygraph(model.state_dict(), save_path)
                    dg.save_dygraph(optimizer.state_dict(), save_path)
        if local_rank == 0:
            writer.close()
示例#7
0
def main(args):
    local_rank = dg.parallel.Env().local_rank
    nranks = dg.parallel.Env().nranks
    parallel = nranks > 1

    with open(args.config) as f:
        cfg = yaml.load(f, Loader=yaml.Loader)

    global_step = 0
    place = fluid.CUDAPlace(local_rank) if args.use_gpu else fluid.CPUPlace()

    if not os.path.exists(args.output):
        os.mkdir(args.output)

    writer = LogWriter(os.path.join(args.output,
                                    'log')) if local_rank == 0 else None

    fluid.enable_dygraph(place)
    network_cfg = cfg['network']
    model = TransformerTTS(
        network_cfg['embedding_size'], network_cfg['hidden_size'],
        network_cfg['encoder_num_head'], network_cfg['encoder_n_layers'],
        cfg['audio']['num_mels'], network_cfg['outputs_per_step'],
        network_cfg['decoder_num_head'], network_cfg['decoder_n_layers'])

    model.train()
    optimizer = fluid.optimizer.AdamOptimizer(
        learning_rate=dg.NoamDecay(1 / (cfg['train']['warm_up_step'] *
                                        (cfg['train']['learning_rate']**2)),
                                   cfg['train']['warm_up_step']),
        parameter_list=model.parameters(),
        grad_clip=fluid.clip.GradientClipByGlobalNorm(cfg['train'][
            'grad_clip_thresh']))

    # Load parameters.
    global_step = io.load_parameters(
        model=model,
        optimizer=optimizer,
        checkpoint_dir=os.path.join(args.output, 'checkpoints'),
        iteration=args.iteration,
        checkpoint_path=args.checkpoint)
    print("Rank {}: checkpoint loaded.".format(local_rank))

    if parallel:
        strategy = dg.parallel.prepare_context()
        model = fluid.dygraph.parallel.DataParallel(model, strategy)

    reader = LJSpeechLoader(
        cfg['audio'],
        place,
        args.data,
        cfg['train']['batch_size'],
        nranks,
        local_rank,
        shuffle=True).reader

    iterator = iter(tqdm(reader))

    global_step += 1

    while global_step <= cfg['train']['max_iteration']:
        try:
            batch = next(iterator)
        except StopIteration as e:
            iterator = iter(tqdm(reader))
            batch = next(iterator)

        character, mel, mel_input, pos_text, pos_mel, stop_tokens = batch

        mel_pred, postnet_pred, attn_probs, stop_preds, attn_enc, attn_dec = model(
            character, mel_input, pos_text, pos_mel)

        mel_loss = layers.mean(
            layers.abs(layers.elementwise_sub(mel_pred, mel)))
        post_mel_loss = layers.mean(
            layers.abs(layers.elementwise_sub(postnet_pred, mel)))
        loss = mel_loss + post_mel_loss

        stop_loss = cross_entropy(
            stop_preds, stop_tokens, weight=cfg['network']['stop_loss_weight'])
        loss = loss + stop_loss

        if local_rank == 0:
            writer.add_scalar('training_loss/mel_loss',
                              mel_loss.numpy(),
                              global_step)
            writer.add_scalar('training_loss/post_mel_loss',
                              post_mel_loss.numpy(),
                              global_step)
            writer.add_scalar('stop_loss', stop_loss.numpy(), global_step)

            if parallel:
                writer.add_scalar('alphas/encoder_alpha',
                                   model._layers.encoder.alpha.numpy(),
                                   global_step)
                writer.add_scalar('alphas/decoder_alpha',
                                   model._layers.decoder.alpha.numpy(),
                                   global_step)
            else:
                writer.add_scalar('alphas/encoder_alpha',
                                   model.encoder.alpha.numpy(),
                                   global_step)
                writer.add_scalar('alphas/decoder_alpha',
                                   model.decoder.alpha.numpy(),
                                   global_step)

            writer.add_scalar('learning_rate',
                              optimizer._learning_rate.step().numpy(),
                              global_step)

            if global_step % cfg['train']['image_interval'] == 1:
                for i, prob in enumerate(attn_probs):
                    for j in range(cfg['network']['decoder_num_head']):
                        x = np.uint8(
                            cm.viridis(prob.numpy()[j * cfg['train'][
                                'batch_size'] // nranks]) * 255)
                        writer.add_image(
                            'Attention_%d_0' % global_step,
                            x,
                            i * 4 + j)

                for i, prob in enumerate(attn_enc):
                    for j in range(cfg['network']['encoder_num_head']):
                        x = np.uint8(
                            cm.viridis(prob.numpy()[j * cfg['train'][
                                'batch_size'] // nranks]) * 255)
                        writer.add_image(
                            'Attention_enc_%d_0' % global_step,
                            x,
                            i * 4 + j)

                for i, prob in enumerate(attn_dec):
                    for j in range(cfg['network']['decoder_num_head']):
                        x = np.uint8(
                            cm.viridis(prob.numpy()[j * cfg['train'][
                                'batch_size'] // nranks]) * 255)
                        writer.add_image(
                            'Attention_dec_%d_0' % global_step,
                            x,
                            i * 4 + j)

        if parallel:
            loss = model.scale_loss(loss)
            loss.backward()
            model.apply_collective_grads()
        else:
            loss.backward()
        optimizer.minimize(loss)
        model.clear_gradients()

        # save checkpoint
        if local_rank == 0 and global_step % cfg['train'][
                'checkpoint_interval'] == 0:
            io.save_parameters(
                os.path.join(args.output, 'checkpoints'), global_step, model,
                optimizer)
        global_step += 1

    if local_rank == 0:
        writer.close()
示例#8
0
def main(args):
    local_rank = dg.parallel.Env().local_rank
    nranks = dg.parallel.Env().nranks
    parallel = nranks > 1

    with open(args.config) as f:
        cfg = yaml.load(f, Loader=yaml.Loader)

    global_step = 0
    place = fluid.CUDAPlace(local_rank) if args.use_gpu else fluid.CPUPlace()

    if not os.path.exists(args.output):
        os.mkdir(args.output)

    writer = SummaryWriter(os.path.join(args.output,
                                        'log')) if local_rank == 0 else None

    fluid.enable_dygraph(place)
    network_cfg = cfg['network']
    model = TransformerTTS(
        network_cfg['embedding_size'], network_cfg['hidden_size'],
        network_cfg['encoder_num_head'], network_cfg['encoder_n_layers'],
        cfg['audio']['num_mels'], network_cfg['outputs_per_step'],
        network_cfg['decoder_num_head'], network_cfg['decoder_n_layers'])

    model.train()
    optimizer = fluid.optimizer.AdamOptimizer(
        learning_rate=dg.NoamDecay(
            1 / (cfg['train']['warm_up_step'] *
                 (cfg['train']['learning_rate']**2)),
            cfg['train']['warm_up_step']),
        parameter_list=model.parameters(),
        grad_clip=fluid.clip.GradientClipByGlobalNorm(
            cfg['train']['grad_clip_thresh']))

    # Load parameters.
    global_step = io.load_parameters(model=model,
                                     optimizer=optimizer,
                                     checkpoint_dir=os.path.join(
                                         args.output, 'checkpoints'),
                                     iteration=args.iteration,
                                     checkpoint_path=args.checkpoint)
    print("Rank {}: checkpoint loaded.".format(local_rank))

    if parallel:
        strategy = dg.parallel.prepare_context()
        model = fluid.dygraph.parallel.DataParallel(model, strategy)

    reader = LJSpeechLoader(cfg['audio'],
                            place,
                            args.data,
                            cfg['train']['batch_size'],
                            nranks,
                            local_rank,
                            shuffle=True).reader()

    for epoch in range(cfg['train']['max_epochs']):
        pbar = tqdm(reader)
        for i, data in enumerate(pbar):
            pbar.set_description('Processing at epoch %d' % epoch)
            character, mel, mel_input, pos_text, pos_mel = data

            global_step += 1

            mel_pred, postnet_pred, attn_probs, stop_preds, attn_enc, attn_dec = model(
                character, mel_input, pos_text, pos_mel)

            mel_loss = layers.mean(
                layers.abs(layers.elementwise_sub(mel_pred, mel)))
            post_mel_loss = layers.mean(
                layers.abs(layers.elementwise_sub(postnet_pred, mel)))
            loss = mel_loss + post_mel_loss

            # Note: When used stop token loss the learning did not work.
            if cfg['network']['stop_token']:
                label = (pos_mel == 0).astype(np.float32)
                stop_loss = cross_entropy(stop_preds, label)
                loss = loss + stop_loss

            if local_rank == 0:
                writer.add_scalars(
                    'training_loss', {
                        'mel_loss': mel_loss.numpy(),
                        'post_mel_loss': post_mel_loss.numpy()
                    }, global_step)

                if cfg['network']['stop_token']:
                    writer.add_scalar('stop_loss', stop_loss.numpy(),
                                      global_step)

                if parallel:
                    writer.add_scalars(
                        'alphas', {
                            'encoder_alpha':
                            model._layers.encoder.alpha.numpy(),
                            'decoder_alpha':
                            model._layers.decoder.alpha.numpy(),
                        }, global_step)
                else:
                    writer.add_scalars(
                        'alphas', {
                            'encoder_alpha': model.encoder.alpha.numpy(),
                            'decoder_alpha': model.decoder.alpha.numpy(),
                        }, global_step)

                writer.add_scalar('learning_rate',
                                  optimizer._learning_rate.step().numpy(),
                                  global_step)

                if global_step % cfg['train']['image_interval'] == 1:
                    for i, prob in enumerate(attn_probs):
                        for j in range(cfg['network']['decoder_num_head']):
                            x = np.uint8(
                                cm.viridis(prob.numpy()[
                                    j * cfg['train']['batch_size'] // 2]) *
                                255)
                            writer.add_image('Attention_%d_0' % global_step,
                                             x,
                                             i * 4 + j,
                                             dataformats="HWC")

                    for i, prob in enumerate(attn_enc):
                        for j in range(cfg['network']['encoder_num_head']):
                            x = np.uint8(
                                cm.viridis(prob.numpy()[
                                    j * cfg['train']['batch_size'] // 2]) *
                                255)
                            writer.add_image('Attention_enc_%d_0' %
                                             global_step,
                                             x,
                                             i * 4 + j,
                                             dataformats="HWC")

                    for i, prob in enumerate(attn_dec):
                        for j in range(cfg['network']['decoder_num_head']):
                            x = np.uint8(
                                cm.viridis(prob.numpy()[
                                    j * cfg['train']['batch_size'] // 2]) *
                                255)
                            writer.add_image('Attention_dec_%d_0' %
                                             global_step,
                                             x,
                                             i * 4 + j,
                                             dataformats="HWC")

            if parallel:
                loss = model.scale_loss(loss)
                loss.backward()
                model.apply_collective_grads()
            else:
                loss.backward()
            optimizer.minimize(loss)
            model.clear_gradients()

            # save checkpoint
            if local_rank == 0 and global_step % cfg['train'][
                    'checkpoint_interval'] == 0:
                io.save_parameters(os.path.join(args.output, 'checkpoints'),
                                   global_step, model, optimizer)

    if local_rank == 0:
        writer.close()
示例#9
0
def main(args):

    local_rank = dg.parallel.Env().local_rank if args.use_data_parallel else 0
    nranks = dg.parallel.Env().nranks if args.use_data_parallel else 1

    with open(args.config_path) as f:
        cfg = yaml.load(f, Loader=yaml.Loader)

    global_step = 0
    place = (fluid.CUDAPlace(dg.parallel.Env().dev_id)
             if args.use_data_parallel else
             fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace())

    if not os.path.exists(args.log_dir):
        os.mkdir(args.log_dir)
    path = os.path.join(args.log_dir, 'vocoder')

    writer = SummaryWriter(path) if local_rank == 0 else None

    with dg.guard(place):
        model = Vocoder(cfg, args.batch_size)

        model.train()
        optimizer = fluid.optimizer.AdamOptimizer(
            learning_rate=dg.NoamDecay(
                1 / (cfg['warm_up_step'] * (args.lr**2)), cfg['warm_up_step']),
            parameter_list=model.parameters())

        if args.checkpoint_path is not None:
            model_dict, opti_dict = load_checkpoint(
                str(args.vocoder_step),
                os.path.join(args.checkpoint_path, "vocoder"))
            model.set_dict(model_dict)
            optimizer.set_dict(opti_dict)
            global_step = args.vocoder_step
            print("load checkpoint!!!")

        if args.use_data_parallel:
            strategy = dg.parallel.prepare_context()
            model = fluid.dygraph.parallel.DataParallel(model, strategy)

        reader = LJSpeechLoader(cfg, args, nranks, local_rank,
                                is_vocoder=True).reader()

        for epoch in range(args.epochs):
            pbar = tqdm(reader)
            for i, data in enumerate(pbar):
                pbar.set_description('Processing at epoch %d' % epoch)
                mel, mag = data
                mag = dg.to_variable(mag.numpy())
                mel = dg.to_variable(mel.numpy())
                global_step += 1

                mag_pred = model(mel)
                loss = layers.mean(
                    layers.abs(layers.elementwise_sub(mag_pred, mag)))

                if args.use_data_parallel:
                    loss = model.scale_loss(loss)
                    loss.backward()
                    model.apply_collective_grads()
                else:
                    loss.backward()
                optimizer.minimize(
                    loss,
                    grad_clip=fluid.dygraph_grad_clip.GradClipByGlobalNorm(
                        cfg['grad_clip_thresh']))
                model.clear_gradients()

                if local_rank == 0:
                    writer.add_scalars('training_loss', {
                        'loss': loss.numpy(),
                    }, global_step)

                    if global_step % args.save_step == 0:
                        if not os.path.exists(args.save_path):
                            os.mkdir(args.save_path)
                        save_path = os.path.join(args.save_path,
                                                 'vocoder/%d' % global_step)
                        dg.save_dygraph(model.state_dict(), save_path)
                        dg.save_dygraph(optimizer.state_dict(), save_path)

        if local_rank == 0:
            writer.close()
示例#10
0
def main(args):
    local_rank = dg.parallel.Env().local_rank if args.use_data_parallel else 0
    nranks = dg.parallel.Env().nranks if args.use_data_parallel else 1

    with open(args.config_path) as f:
        cfg = yaml.load(f, Loader=yaml.Loader)

    global_step = 0
    place = (fluid.CUDAPlace(dg.parallel.Env().dev_id)
             if args.use_data_parallel else
             fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace())

    if not os.path.exists(args.log_dir):
        os.mkdir(args.log_dir)
    path = os.path.join(args.log_dir, 'transformer')

    writer = SummaryWriter(path) if local_rank == 0 else None

    with dg.guard(place):
        model = TransformerTTS(cfg)

        model.train()
        optimizer = fluid.optimizer.AdamOptimizer(
            learning_rate=dg.NoamDecay(
                1 / (cfg['warm_up_step'] * (args.lr**2)), cfg['warm_up_step']),
            parameter_list=model.parameters())

        if args.checkpoint_path is not None:
            model_dict, opti_dict = load_checkpoint(
                str(args.transformer_step),
                os.path.join(args.checkpoint_path, "transformer"))
            model.set_dict(model_dict)
            optimizer.set_dict(opti_dict)
            global_step = args.transformer_step
            print("load checkpoint!!!")

        if args.use_data_parallel:
            strategy = dg.parallel.prepare_context()
            model = fluid.dygraph.parallel.DataParallel(model, strategy)

        reader = LJSpeechLoader(cfg, args, nranks, local_rank,
                                shuffle=True).reader()

        for epoch in range(args.epochs):
            pbar = tqdm(reader)
            for i, data in enumerate(pbar):
                pbar.set_description('Processing at epoch %d' % epoch)
                character, mel, mel_input, pos_text, pos_mel, text_length, _, enc_slf_mask, enc_query_mask, dec_slf_mask, enc_dec_mask, dec_query_slf_mask, dec_query_mask = data

                global_step += 1

                mel_pred, postnet_pred, attn_probs, stop_preds, attn_enc, attn_dec = model(
                    character,
                    mel_input,
                    pos_text,
                    pos_mel,
                    dec_slf_mask=dec_slf_mask,
                    enc_slf_mask=enc_slf_mask,
                    enc_query_mask=enc_query_mask,
                    enc_dec_mask=enc_dec_mask,
                    dec_query_slf_mask=dec_query_slf_mask,
                    dec_query_mask=dec_query_mask)

                mel_loss = layers.mean(
                    layers.abs(layers.elementwise_sub(mel_pred, mel)))
                post_mel_loss = layers.mean(
                    layers.abs(layers.elementwise_sub(postnet_pred, mel)))
                loss = mel_loss + post_mel_loss

                # Note: When used stop token loss the learning did not work.
                if args.stop_token:
                    label = (pos_mel == 0).astype(np.float32)
                    stop_loss = cross_entropy(stop_preds, label)
                    loss = loss + stop_loss

                if local_rank == 0:
                    writer.add_scalars(
                        'training_loss', {
                            'mel_loss': mel_loss.numpy(),
                            'post_mel_loss': post_mel_loss.numpy()
                        }, global_step)

                    if args.stop_token:
                        writer.add_scalar('stop_loss', stop_loss.numpy(),
                                          global_step)

                    if args.use_data_parallel:
                        writer.add_scalars(
                            'alphas', {
                                'encoder_alpha':
                                model._layers.encoder.alpha.numpy(),
                                'decoder_alpha':
                                model._layers.decoder.alpha.numpy(),
                            }, global_step)
                    else:
                        writer.add_scalars(
                            'alphas', {
                                'encoder_alpha': model.encoder.alpha.numpy(),
                                'decoder_alpha': model.decoder.alpha.numpy(),
                            }, global_step)

                    writer.add_scalar('learning_rate',
                                      optimizer._learning_rate.step().numpy(),
                                      global_step)

                    if global_step % args.image_step == 1:
                        for i, prob in enumerate(attn_probs):
                            for j in range(4):
                                x = np.uint8(
                                    cm.viridis(prob.numpy()[j * args.batch_size
                                                            // 2]) * 255)
                                writer.add_image('Attention_%d_0' %
                                                 global_step,
                                                 x,
                                                 i * 4 + j,
                                                 dataformats="HWC")

                        for i, prob in enumerate(attn_enc):
                            for j in range(4):
                                x = np.uint8(
                                    cm.viridis(prob.numpy()[j * args.batch_size
                                                            // 2]) * 255)
                                writer.add_image('Attention_enc_%d_0' %
                                                 global_step,
                                                 x,
                                                 i * 4 + j,
                                                 dataformats="HWC")

                        for i, prob in enumerate(attn_dec):
                            for j in range(4):
                                x = np.uint8(
                                    cm.viridis(prob.numpy()[j * args.batch_size
                                                            // 2]) * 255)
                                writer.add_image('Attention_dec_%d_0' %
                                                 global_step,
                                                 x,
                                                 i * 4 + j,
                                                 dataformats="HWC")

                if args.use_data_parallel:
                    loss = model.scale_loss(loss)
                    loss.backward()
                    model.apply_collective_grads()
                else:
                    loss.backward()
                optimizer.minimize(
                    loss,
                    grad_clip=fluid.dygraph_grad_clip.GradClipByGlobalNorm(
                        cfg['grad_clip_thresh']))
                model.clear_gradients()

                # save checkpoint
                if local_rank == 0 and global_step % args.save_step == 0:
                    if not os.path.exists(args.save_path):
                        os.mkdir(args.save_path)
                    save_path = os.path.join(args.save_path,
                                             'transformer/%d' % global_step)
                    dg.save_dygraph(model.state_dict(), save_path)
                    dg.save_dygraph(optimizer.state_dict(), save_path)
        if local_rank == 0:
            writer.close()