def test_data_by_param(self): data = get_data() data1 = data_by_param(7, '25') data2 = [ [ '12191/001', 'Burnsall Grange', 'CTIL (Vodafone/O2/T Mobile) Cornerstone Telecommunications Infrastructure Ltd', 'Burnsall Grange', 'LS12 3LG', '26-Jul-07', '25-Jul-32', '25', '25-Jul-12', '12000', 'Antenna' ], [ '06084/001', 'Queenswood Heights', 'CTIL (Vodafone/O2/T Mobile) Cornerstone Telecommunications Infrastructure Ltd', 'Queenswood Heights', 'LS6 3EE', '08-Nov-04', '07-Nov-29', '25', '08-Nov-14', '9500', 'Antenna' ], [ '14148/001', 'Seacroft Gate (Chase) block 2', 'CTIL (Vodafone/O2/T Mobile) Cornerstone Telecommunications Infrastructure Ltd', 'Seacroft Gate (Chase) - Block 2', 'LS14', '30-Jan-04', '29-Jan-29', '25', '30-Jan-14', '12250', 'Antenna' ], [ '14148/002', 'Seacroft Gate (Chase) - Block 2', 'Everything Everywhere Ltd & Hutchinson 3G UK (MBNL)', 'Seacroft Gate (Chase) - Block 2', 'LS14', '21-Aug-07', '20-Aug-32', '25', '21-Aug-17', '12750', 'Antenna' ] ] self.assertCountEqual(data1, data2)
def main(start, destination, file, delai_correspondance, delai_stations): """The Main Controller of the program, the functions are called here""" #Opening the file data = get_data(file) if not data: print('Fichier de description introuvable !') exit() #Building the linking map for each stations corresp = get_corresp(data, start, destination) if not corresp: return'Format du fichier de description invalide !' inexistant = 0 if clean_name(start) not in corresp: inexistant = start elif clean_name(destination) not in corresp: inexistant = destination if inexistant: return 'Station "%s" introuvable dans ce fichier de description' % inexistant #Finding the shortest path path_done = path(start, destination, corresp, delai_correspondance, delai_stations) #Show results return display(path_done)
def main(argv): #default cache configuration - in bits n_way = int(math.log(0x10, 0x2)) #16-way line_sz = int(math.log(0x40, 0x2)) #64B #cache_sz = int(math.log(0x400, 0x2)); #1KB #cache_sz = int(math.log(0x8000, 0x2)); #32KB #cache_sz = int(math.log(0x40000, 0x2)); #256KB cache_sz = int(math.log(0x100000, 0x2)) #1MB #cache_sz = int(math.log(0x400000, 0x2)); #4MB user_policy = "LRU" if len(argv) > 2: #change defaults to user supplied arguements line_sz = int(math.log(int(argv[2]), 2)) if argv[3] == "1KB": cache_sz = int(math.log(0x400, 0x2)) elif argv[3] == "32KB": cache_sz = int(math.log(0x8000, 0x2)) elif argv[3] == "256KB": cache_sz = int(math.log(0x40000, 0x2)) elif argv[3] == "1MB": cache_sz = int(math.log(0x100000, 0x2)) elif argv[3] == "4MB": cache_sz = int(math.log(0x400000, 0x2)) n_way = int(math.log(int(argv[4]), 0x2)) user_policy = argv[5] print(line_sz, cache_sz, n_way, user_policy) miss = 0 access = 0 cache = [] for i in range((2**(cache_sz - line_sz - n_way))): cache.append(cache_set(user_policy, 2**n_way)) for pc, md, va in get_data(argv[1]): offset = va & ((1 << line_sz) - 1) #only offset bits are unmasked va = va >> line_sz #remove offset bits index = va & ((1 << (cache_sz - line_sz - n_way)) - 1) #set index va = va >> (cache_sz - line_sz - n_way) #remove index bits tag = va #only tag bits remain if cache[index].search(tag) == False: miss += 1 access += 1 # print("Miss : ", miss); # print("Access : ", access); print("Cache miss rate: ", round((miss / access) * 100, 2), "%", sep='')
def command_country(message): if message.text in countries: data = get_data(message.text) msg = f"Всего случаев: {data['total_cases']}\n" \ f"Новых случаев: {data['new_cases']}\n" \ f"Всего смертей: {data['total_deaths']}\n" \ f"Динамика смертей: {data['new_deaths']}\n" \ f"Всего вылечившихся: {data['total_recovered']}\n" bot.send_message(message.chat.id, msg) else: bot.send_message(message.chat.id, 'Выберите странну из списка:')
def main() -> None: vk_session = vk_api.VkApi(token=config.VK_TOKEN) longpoll = VkBotLongPoll(vk_session, config.VK_GROUP_ID) for event in longpoll.listen(): if event.type == VkBotEventType.MESSAGE_NEW: peer_id = event.object.message['peer_id'] nickname = event.object.message['text'] stats_message = get_data(nickname) vk_session.method( "messages.send", { "peer_id": peer_id, "random_id": get_random_id(), "message": stats_message })
def main(): graph = True if 'graph' in argv else False if not graph: print('pro tip: you can display graphs with "graph" argument') data = parser.get_data('data.csv') km = parser.normalize(data.km, min(data.km), max(data.km)) price = parser.normalize(data.price, min(data.price), max(data.price)) try: theta, record = gradient_descent(km, price, float(len(data))) if graph is True: display(data, theta[0], theta[1], record) except (KeyboardInterrupt, SystemExit): exit('\nInterrupted') parser.store_theta('theta.csv', theta) print("training done! t0: {} and t1: {} are stored in theta.csv".format( theta[0], theta[1]))
def __init__(self, fns=None, start_time=10, end_time=15, efficiency=0.95): super(DataSource, self).__init__() # defaults to northeast ohio if no other data provided if fns == None: fns = [ "data/cleveland.csv", "data/akron.csv", "data/mansfield.csv" ] self.data = get_data(fns) # create array of corresponding dates next_year = datetime.datetime.now().year + 1 start = datetime.datetime(next_year, 1, 1) h = datetime.timedelta(hours=1) self.dates = [start + i * h for i in range(self.data.shape[0])] self.weekdays = np.array([i.weekday() for i in self.dates]) # set efficiency from input self.efficiency = efficiency # usable PV power only between specified start and end times idx = np.where(self.data[:, 2] < start_time) self.data[idx, power_idx] = 0.0 idx = np.where(self.data[:, 2] > end_time) self.data[idx, power_idx] = 0.0 # length of time series self.n = self.data.shape[0] # Variables that will be outputted self.add_output("cell_temperature", np.zeros(self.n), units="degC") self.add_output("ambient_temperature", np.zeros(self.n), units="degC") self.add_output("hour", np.zeros(self.n), units="h") self.add_output("day", np.zeros(self.n), units="d") self.add_output("weekday", self.weekdays) self.add_output("month", np.zeros(self.n), units="mo") self.add_output("P_base", np.zeros(self.n), units="W") self.add_output("wind", np.zeros(self.n), units="m/s") self.add_output("irradiance", np.zeros(self.n))
def __init__(self, fns=None, start_time=10, end_time=15, efficiency=0.95): super(DataSource, self).__init__() # defaults to northeast ohio if no other data provided if fns == None: fns = ["data/cleveland.csv", "data/akron.csv", "data/mansfield.csv"] self.data = get_data(fns) # create array of corresponding dates next_year = datetime.datetime.now().year + 1 start = datetime.datetime(next_year, 1, 1) h = datetime.timedelta(hours=1) self.dates = [start + i*h for i in range(self.data.shape[0])] self.weekdays = np.array([i.weekday() for i in self.dates]) # set efficiency from input self.efficiency = efficiency # usable PV power only between specified start and end times idx = np.where(self.data[:, 2] < start_time) self.data[idx, power_idx] = 0.0 idx = np.where(self.data[:, 2] > end_time) self.data[idx, power_idx] = 0.0 # length of time series self.n = self.data.shape[0] # Variables that will be outputted self.add_output("cell_temperature", np.zeros(self.n), units="degC") self.add_output("ambient_temperature", np.zeros(self.n), units="degC") self.add_output("hour", np.zeros(self.n), units="h") self.add_output("day", np.zeros(self.n), units="d") self.add_output("weekday", self.weekdays) self.add_output("month", np.zeros(self.n), units="mo") self.add_output("P_base", np.zeros(self.n), units="W") self.add_output("wind", np.zeros(self.n), units="m/s") self.add_output("irradiance", np.zeros(self.n))
import csv import operator import datetime import re import argparse from parser import get_data, sort_data, data_by_param, total, \ count_items_in_col, format_date, list_rentals, option_one, \ option_two, option_three, option_four current_dir = '/home/seraphina/Documents/TRAINING/training_2019/\ JOB_APPLICATIONS/bink/data-parser/' data_source_location = current_dir + 'Mobile_Phone_Masts_01_04_2019a.csv' data = get_data()[1:] class TestParser(unittest.TestCase): def test_get_data(self): orig_data = list(data) test_data = [ [ '14173/001', 'Baileys Towers, Bailey Lane ', 'CTIL (Vodafone/O2/T Mobile) Cornerstone Telecommunications Infrastructure Ltd', 'Bailey Lane', 'LS14 6PY', '31-Mar-15', 'n/a', '0', '31-Mar-20', '15000', 'Antenna' ], [ '14173/003', 'Baileys Towers Bailey Lane', 'The Office of Communications (Ofcom)', 'Bailey Lane',
def method_one(): typer.echo(tabulate(get_data()))
def main(): dir_path = "../data/semeval2013-Task7-2and3way/training/2way/beetle" data = parser.get_data(dir_path) data = correct_student_answers(data)
import parser import pandas as pd a, columns = parser.get_data() data = pd.DataFrame(data=a).transpose() data.columns = columns print(data) data.to_excel("keymap.xls")
fixed_d.append(data[i]) else: others_l.append(labels[i]) others_d.append(data[i]) return fixed_l, fixed_d, others_l, others_d def main(labels, data): acc = 0 params = () for max_depth in [None] + [i for i in range(1, 50)]: for max_features in range(1, len(data[0]) + 1): for min_samples_leaf in range(1, 50): tmp_acc = cross_validation(data, labels, max_depth, max_features, min_samples_leaf) if tmp_acc > acc: acc = tmp_acc params = (max_depth, max_features, min_samples_leaf) print(acc) print(params[0], params[1], params[2]) if __name__ == '__main__': labels, data = parser.get_data() labels, data, not_teached_labels, not_teached_data = fix_data_set(data, labels) print(len(not_teached_labels)) for md, mf, msl in ((None, 22, 3), (45, 33, 2)): _ = cross_validation(data, labels, md, mf, msl, not_teached_data, not_teached_labels) # 45, 33, 2; 44, 3, 3, 42, 13, 2, 41, 21, 3, 38, 29, 3, 38, 26, 3, 38, 22, 2, 33, 30, 3, 32, 28, 2, None 22, 3
def main(): data = parser.get_data('data.csv') theta = parser.get_theta('theta.csv') price = estimate_price(data, theta) print('This car is worth %d$' % price)
def push_to_server(): raw_data = get_binary_data(ORIGIN) data = get_data(raw_data) return json.dumps(data)
import parser model = Model() optimizer = optim.Adam(model.parameters(), eps=10**-4) save_file = "saves/model.state" if os.path.isfile(save_file): state = torch.load(save_file) model.load_state_dict(state) test_accuracy_file = "saves/test_accuracy.state" test_accuracy = [] if os.path.isfile(test_accuracy_file): test_accuracy = torch.load(test_accuracy_file)["test_accuracy"] train_data = np.array(parser.get_data("data/sign_mnist_train.csv"), dtype=object) test_data = np.array(parser.get_data("data/sign_mnist_test.csv"), dtype=object) def train(): prev_accuracy = 0 if len(test_accuracy) > 0: prev_accuracy = test_accuracy[-1] * 100 for i in range(1): sub_data = train_data[np.random.randint(0, len(train_data), 16)] data, target = np.stack(sub_data[:, 1]), np.array(sub_data[:, 0], dtype=np.int32) data = np.expand_dims(data, axis=1) data, target = Variable(torch.Tensor(data)), Variable( torch.LongTensor(target))
def xz_rotate_all(verts, angle): out = [] for vert in verts: new = xz_rotation(vert, angle) out.append(new) return out start = time.time() # Load data source_file = "../../models/simplified/simplified_900/simplified_900.obj" verts, faces = parser.get_data(source_file) print(len(verts), len(faces)) # Make source point source = (30, 30, 50) # Translate all points to make source origin verts = translate_all(verts, invert(source)) # Save original locations before rotation og_verts = verts[:] og_sets = parser.make_sets(verts, faces) # Rotate on xy plane to center model print("XY ROTATION") center = center_of_mass(verts) angle = xy_angle(center)
import math import parser import operations from warehouse import Warehouse nb_octet = 0 instructions = [] data = parser.get_data() nb_order = data['orders']['number'] nb_warehouse = data['warehouses']['number'] class Drone: def __init__(self, id): self.id = id self.item_list = {} self.at_warehouse = True self.position_id = 0 self.payload = 0 self.tick = 0 def go_to_delivery(self, order_id): if len(self.item_list) > 0: if self.at_warehouse: for item_id, nb_item in self.item_list.iteritems(): self.tick = self.tick + 1 if self.tick < data['turns']: instructions.append('{} L {} {} {}'.format(self.id, self.position_id, item_id, nb_item)) self.at_warehouse = False self.tick += warehouse_distance_mat[order_id][self.position_id] self.position_id = order_id