class TestUndirectedGraphCreation(unittest.TestCase): def setUp(self): self.graph = UndirectedGraph() def test_class_init_without_data(self): self.assertIsInstance(self.graph, UndirectedGraph) def test_class_init_with_data_string(self): self.G = UndirectedGraph([("a", "b"), ("b", "c")]) self.assertListEqual(sorted(self.G.nodes()), ["a", "b", "c"]) self.assertListEqual(hf.recursive_sorted(self.G.edges()), [["a", "b"], ["b", "c"]]) def test_add_node_string(self): self.graph.add_node("a") self.assertListEqual(self.graph.nodes(), ["a"]) def test_add_node_nonstring(self): self.graph.add_node(1) self.assertListEqual(self.graph.nodes(), [1]) def test_add_nodes_from_string(self): self.graph.add_nodes_from(["a", "b", "c", "d"]) self.assertListEqual(sorted(self.graph.nodes()), ["a", "b", "c", "d"]) def test_add_nodes_from_non_string(self): self.graph.add_nodes_from([1, 2, 3, 4]) def test_add_edge_string(self): self.graph.add_edge("d", "e") self.assertListEqual(sorted(self.graph.nodes()), ["d", "e"]) self.assertListEqual(hf.recursive_sorted(self.graph.edges()), [["d", "e"]]) self.graph.add_nodes_from(["a", "b", "c"]) self.graph.add_edge("a", "b") self.assertListEqual(hf.recursive_sorted(self.graph.edges()), [["a", "b"], ["d", "e"]]) def test_add_edge_nonstring(self): self.graph.add_edge(1, 2) def test_add_edges_from_string(self): self.graph.add_edges_from([("a", "b"), ("b", "c")]) self.assertListEqual(sorted(self.graph.nodes()), ["a", "b", "c"]) self.assertListEqual(hf.recursive_sorted(self.graph.edges()), [["a", "b"], ["b", "c"]]) self.graph.add_nodes_from(["d", "e", "f"]) self.graph.add_edges_from([("d", "e"), ("e", "f")]) self.assertListEqual(sorted(self.graph.nodes()), ["a", "b", "c", "d", "e", "f"]) self.assertListEqual( hf.recursive_sorted(self.graph.edges()), hf.recursive_sorted([("a", "b"), ("b", "c"), ("d", "e"), ("e", "f")]), ) def test_add_edges_from_nonstring(self): self.graph.add_edges_from([(1, 2), (2, 3)]) def test_number_of_neighbors(self): self.graph.add_edges_from([("a", "b"), ("b", "c")]) self.assertEqual(len(self.graph.neighbors("b")), 2) def tearDown(self): del self.graph
def to_junction_tree(self): """ Creates a junction tree (or clique tree) for a given markov model. For a given markov model (H) a junction tree (G) is a graph 1. where each node in G corresponds to a maximal clique in H 2. each sepset in G separates the variables strictly on one side of the edge to other. Examples -------- >>> from pgmpy.models import MarkovModel >>> from pgmpy.factors import Factor >>> mm = MarkovModel() >>> mm.add_nodes_from(['x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7']) >>> mm.add_edges_from([('x1', 'x3'), ('x1', 'x4'), ('x2', 'x4'), ... ('x2', 'x5'), ('x3', 'x6'), ('x4', 'x6'), ... ('x4', 'x7'), ('x5', 'x7')]) >>> phi = [Factor(edge, [2, 2], np.random.rand(4)) for edge in mm.edges()] >>> mm.add_factors(*phi) >>> junction_tree = mm.to_junction_tree() """ from pgmpy.models import JunctionTree # Check whether the model is valid or not self.check_model() # Triangulate the graph to make it chordal triangulated_graph = self.triangulate() # Find maximal cliques in the chordal graph cliques = list(map(tuple, nx.find_cliques(triangulated_graph))) # If there is only 1 clique, then the junction tree formed is just a # clique tree with that single clique as the node if len(cliques) == 1: clique_trees = JunctionTree() clique_trees.add_node(cliques[0]) # Else if the number of cliques is more than 1 then create a complete # graph with all the cliques as nodes and weight of the edges being # the length of sepset between two cliques elif len(cliques) >= 2: complete_graph = UndirectedGraph() edges = list(itertools.combinations(cliques, 2)) weights = list(map(lambda x: len(set(x[0]).intersection(set(x[1]))), edges)) for edge, weight in zip(edges, weights): complete_graph.add_edge(*edge, weight=-weight) # Create clique trees by minimum (or maximum) spanning tree method clique_trees = JunctionTree(nx.minimum_spanning_tree(complete_graph).edges()) # Check whether the factors are defined for all the random variables or not all_vars = itertools.chain(*[factor.scope() for factor in self.factors]) if set(all_vars) != set(self.nodes()): ValueError('Factor for all the random variables not specified') # Dictionary stating whether the factor is used to create clique # potential or not # If false, then it is not used to create any clique potential is_used = {factor: False for factor in self.factors} for node in clique_trees.nodes(): clique_factors = [] for factor in self.factors: # If the factor is not used in creating any clique potential as # well as has any variable of the given clique in its scope, # then use it in creating clique potential if not is_used[factor] and set(factor.scope()).issubset(node): clique_factors.append(factor) is_used[factor] = True # To compute clique potential, initially set it as unity factor var_card = [self.get_cardinality()[x] for x in node] clique_potential = Factor(node, var_card, np.ones(np.product(var_card))) # multiply it with the factors associated with the variables present # in the clique (or node) clique_potential *= factor_product(*clique_factors) clique_trees.add_factors(clique_potential) if not all(is_used.values()): raise ValueError('All the factors were not used to create Junction Tree.' 'Extra factors are defined.') return clique_trees
def test_is_triangulated(self): G = UndirectedGraph([('A', 'B'), ('A', 'C'), ('B', 'D'), ('C', 'D')]) self.assertFalse(G.is_triangulated()) G.add_edge('A', 'D') self.assertTrue(G.is_triangulated())
class TestUndirectedGraphCreation(unittest.TestCase): def setUp(self): self.graph = UndirectedGraph() def test_class_init_without_data(self): self.assertIsInstance(self.graph, UndirectedGraph) def test_class_init_with_data_string(self): self.G = UndirectedGraph([('a', 'b'), ('b', 'c')]) self.assertListEqual(sorted(self.G.nodes()), ['a', 'b', 'c']) self.assertListEqual(hf.recursive_sorted(self.G.edges()), [['a', 'b'], ['b', 'c']]) def test_add_node_string(self): self.graph.add_node('a') self.assertListEqual(self.graph.nodes(), ['a']) def test_add_node_nonstring(self): self.graph.add_node(1) self.assertListEqual(self.graph.nodes(), [1]) def test_add_nodes_from_string(self): self.graph.add_nodes_from(['a', 'b', 'c', 'd']) self.assertListEqual(sorted(self.graph.nodes()), ['a', 'b', 'c', 'd']) def test_add_node_with_weight(self): self.graph.add_node('a') self.graph.add_node('weight_a', weight=0.3) self.assertEqual(self.graph.node['weight_a']['weight'], 0.3) self.assertEqual(self.graph.node['a']['weight'], None) def test_add_nodes_from_with_weight(self): self.graph.add_node(1) self.graph.add_nodes_from(['weight_b', 'weight_c'], weights=[0.3, 0.5]) self.assertEqual(self.graph.node['weight_b']['weight'], 0.3) self.assertEqual(self.graph.node['weight_c']['weight'], 0.5) self.assertEqual(self.graph.node[1]['weight'], None) def test_add_nodes_from_non_string(self): self.graph.add_nodes_from([1, 2, 3, 4]) def test_add_edge_string(self): self.graph.add_edge('d', 'e') self.assertListEqual(sorted(self.graph.nodes()), ['d', 'e']) self.assertListEqual(hf.recursive_sorted(self.graph.edges()), [['d', 'e']]) self.graph.add_nodes_from(['a', 'b', 'c']) self.graph.add_edge('a', 'b') self.assertListEqual(hf.recursive_sorted(self.graph.edges()), [['a', 'b'], ['d', 'e']]) def test_add_edge_nonstring(self): self.graph.add_edge(1, 2) def test_add_edges_from_string(self): self.graph.add_edges_from([('a', 'b'), ('b', 'c')]) self.assertListEqual(sorted(self.graph.nodes()), ['a', 'b', 'c']) self.assertListEqual(hf.recursive_sorted(self.graph.edges()), [['a', 'b'], ['b', 'c']]) self.graph.add_nodes_from(['d', 'e', 'f']) self.graph.add_edges_from([('d', 'e'), ('e', 'f')]) self.assertListEqual(sorted(self.graph.nodes()), ['a', 'b', 'c', 'd', 'e', 'f']) self.assertListEqual(hf.recursive_sorted(self.graph.edges()), hf.recursive_sorted([('a', 'b'), ('b', 'c'), ('d', 'e'), ('e', 'f')])) def test_add_edges_from_nonstring(self): self.graph.add_edges_from([(1, 2), (2, 3)]) def test_number_of_neighbors(self): self.graph.add_edges_from([('a', 'b'), ('b', 'c')]) self.assertEqual(len(self.graph.neighbors('b')), 2) def tearDown(self): del self.graph
def to_junction_tree(self): """ Creates a junction tree (or clique tree) for a given markov model. For a given markov model (H) a junction tree (G) is a graph 1. where each node in G corresponds to a maximal clique in H 2. each sepset in G separates the variables strictly on one side of the edge to other. Examples -------- >>> from pgmpy.models import MarkovModel >>> from pgmpy.factors.discrete import DiscreteFactor >>> mm = MarkovModel() >>> mm.add_nodes_from(['x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7']) >>> mm.add_edges_from([('x1', 'x3'), ('x1', 'x4'), ('x2', 'x4'), ... ('x2', 'x5'), ('x3', 'x6'), ('x4', 'x6'), ... ('x4', 'x7'), ('x5', 'x7')]) >>> phi = [DiscreteFactor(edge, [2, 2], np.random.rand(4)) for edge in mm.edges()] >>> mm.add_factors(*phi) >>> junction_tree = mm.to_junction_tree() """ from pgmpy.models import JunctionTree # Check whether the model is valid or not self.check_model() # Triangulate the graph to make it chordal triangulated_graph = self.triangulate() # Find maximal cliques in the chordal graph cliques = list(map(tuple, nx.find_cliques(triangulated_graph))) # If there is only 1 clique, then the junction tree formed is just a # clique tree with that single clique as the node if len(cliques) == 1: clique_trees = JunctionTree() clique_trees.add_node(cliques[0]) # Else if the number of cliques is more than 1 then create a complete # graph with all the cliques as nodes and weight of the edges being # the length of sepset between two cliques elif len(cliques) >= 2: complete_graph = UndirectedGraph() edges = list(itertools.combinations(cliques, 2)) weights = list(map(lambda x: len(set(x[0]).intersection(set(x[1]))), edges)) for edge, weight in zip(edges, weights): complete_graph.add_edge(*edge, weight=-weight) # Create clique trees by minimum (or maximum) spanning tree method clique_trees = JunctionTree(nx.minimum_spanning_tree(complete_graph).edges()) # Check whether the factors are defined for all the random variables or not all_vars = itertools.chain(*[factor.scope() for factor in self.factors]) if set(all_vars) != set(self.nodes()): ValueError('DiscreteFactor for all the random variables not specified') # Dictionary stating whether the factor is used to create clique # potential or not # If false, then it is not used to create any clique potential is_used = {factor: False for factor in self.factors} for node in clique_trees.nodes(): clique_factors = [] for factor in self.factors: # If the factor is not used in creating any clique potential as # well as has any variable of the given clique in its scope, # then use it in creating clique potential if not is_used[factor] and set(factor.scope()).issubset(node): clique_factors.append(factor) is_used[factor] = True # To compute clique potential, initially set it as unity factor var_card = [self.get_cardinality()[x] for x in node] clique_potential = DiscreteFactor(node, var_card, np.ones(np.product(var_card))) # multiply it with the factors associated with the variables present # in the clique (or node) clique_potential *= factor_product(*clique_factors) clique_trees.add_factors(clique_potential) if not all(is_used.values()): raise ValueError('All the factors were not used to create Junction Tree.' 'Extra factors are defined.') return clique_trees
class TestUndirectedGraphCreation(unittest.TestCase): def setUp(self): self.graph = UndirectedGraph() def test_class_init_without_data(self): self.assertIsInstance(self.graph, UndirectedGraph) def test_class_init_with_data_string(self): self.G = UndirectedGraph([('a', 'b'), ('b', 'c')]) self.assertListEqual(sorted(self.G.nodes()), ['a', 'b', 'c']) self.assertListEqual(hf.recursive_sorted(self.G.edges()), [['a', 'b'], ['b', 'c']]) def test_add_node_string(self): self.graph.add_node('a') self.assertListEqual(self.graph.nodes(), ['a']) def test_add_node_nonstring(self): self.graph.add_node(1) self.assertListEqual(self.graph.nodes(), [1]) def test_add_nodes_from_string(self): self.graph.add_nodes_from(['a', 'b', 'c', 'd']) self.assertListEqual(sorted(self.graph.nodes()), ['a', 'b', 'c', 'd']) def test_add_nodes_from_non_string(self): self.graph.add_nodes_from([1, 2, 3, 4]) def test_add_edge_string(self): self.graph.add_edge('d', 'e') self.assertListEqual(sorted(self.graph.nodes()), ['d', 'e']) self.assertListEqual(hf.recursive_sorted(self.graph.edges()), [['d', 'e']]) self.graph.add_nodes_from(['a', 'b', 'c']) self.graph.add_edge('a', 'b') self.assertListEqual(hf.recursive_sorted(self.graph.edges()), [['a', 'b'], ['d', 'e']]) def test_add_edge_nonstring(self): self.graph.add_edge(1, 2) def test_add_edges_from_string(self): self.graph.add_edges_from([('a', 'b'), ('b', 'c')]) self.assertListEqual(sorted(self.graph.nodes()), ['a', 'b', 'c']) self.assertListEqual(hf.recursive_sorted(self.graph.edges()), [['a', 'b'], ['b', 'c']]) self.graph.add_nodes_from(['d', 'e', 'f']) self.graph.add_edges_from([('d', 'e'), ('e', 'f')]) self.assertListEqual(sorted(self.graph.nodes()), ['a', 'b', 'c', 'd', 'e', 'f']) self.assertListEqual(hf.recursive_sorted(self.graph.edges()), hf.recursive_sorted([('a', 'b'), ('b', 'c'), ('d', 'e'), ('e', 'f')])) def test_add_edges_from_nonstring(self): self.graph.add_edges_from([(1, 2), (2, 3)]) def test_number_of_neighbors(self): self.graph.add_edges_from([('a', 'b'), ('b', 'c')]) self.assertEqual(len(self.graph.neighbors('b')), 2) def tearDown(self): del self.graph
class TestUndirectedGraphCreation(unittest.TestCase): def setUp(self): self.graph = UndirectedGraph() def test_class_init_without_data(self): self.assertIsInstance(self.graph, UndirectedGraph) def test_class_init_with_data_string(self): self.G = UndirectedGraph([("a", "b"), ("b", "c")]) self.assertListEqual(sorted(self.G.nodes()), ["a", "b", "c"]) self.assertListEqual(hf.recursive_sorted(self.G.edges()), [["a", "b"], ["b", "c"]]) def test_add_node_string(self): self.graph.add_node("a") self.assertListEqual(list(self.graph.nodes()), ["a"]) def test_add_node_nonstring(self): self.graph.add_node(1) self.assertListEqual(list(self.graph.nodes()), [1]) def test_add_nodes_from_string(self): self.graph.add_nodes_from(["a", "b", "c", "d"]) self.assertListEqual(sorted(self.graph.nodes()), ["a", "b", "c", "d"]) def test_add_node_with_weight(self): self.graph.add_node("a") self.graph.add_node("weight_a", weight=0.3) self.assertEqual(self.graph.nodes["weight_a"]["weight"], 0.3) self.assertEqual(self.graph.nodes["a"]["weight"], None) def test_add_nodes_from_with_weight(self): self.graph.add_node(1) self.graph.add_nodes_from(["weight_b", "weight_c"], weights=[0.3, 0.5]) self.assertEqual(self.graph.nodes["weight_b"]["weight"], 0.3) self.assertEqual(self.graph.nodes["weight_c"]["weight"], 0.5) self.assertEqual(self.graph.nodes[1]["weight"], None) def test_add_nodes_from_non_string(self): self.graph.add_nodes_from([1, 2, 3, 4]) def test_add_edge_string(self): self.graph.add_edge("d", "e") self.assertListEqual(sorted(self.graph.nodes()), ["d", "e"]) self.assertListEqual(hf.recursive_sorted(self.graph.edges()), [["d", "e"]]) self.graph.add_nodes_from(["a", "b", "c"]) self.graph.add_edge("a", "b") self.assertListEqual(hf.recursive_sorted(self.graph.edges()), [["a", "b"], ["d", "e"]]) def test_add_edge_nonstring(self): self.graph.add_edge(1, 2) def test_add_edges_from_string(self): self.graph.add_edges_from([("a", "b"), ("b", "c")]) self.assertListEqual(sorted(self.graph.nodes()), ["a", "b", "c"]) self.assertListEqual(hf.recursive_sorted(self.graph.edges()), [["a", "b"], ["b", "c"]]) self.graph.add_nodes_from(["d", "e", "f"]) self.graph.add_edges_from([("d", "e"), ("e", "f")]) self.assertListEqual(sorted(self.graph.nodes()), ["a", "b", "c", "d", "e", "f"]) self.assertListEqual( hf.recursive_sorted(self.graph.edges()), hf.recursive_sorted([("a", "b"), ("b", "c"), ("d", "e"), ("e", "f")]), ) def test_add_edges_from_nonstring(self): self.graph.add_edges_from([(1, 2), (2, 3)]) def test_number_of_neighbors(self): self.graph.add_edges_from([("a", "b"), ("b", "c")]) self.assertEqual(len(list(self.graph.neighbors("b"))), 2) def tearDown(self): del self.graph
def test_is_triangulated(self): G = UndirectedGraph([("A", "B"), ("A", "C"), ("B", "D"), ("C", "D")]) self.assertFalse(G.is_triangulated()) G.add_edge("A", "D") self.assertTrue(G.is_triangulated())