def moralize(self):
        """
        Removes all the immoralities in the Network and creates a moral
        graph (UndirectedGraph).

        A v-structure X->Z<-Y is an immorality if there is no directed edge
        between X and Y.

        Examples
        --------
        >>> from pgmpy.models import DynamicBayesianNetwork as DBN
        >>> dbn = DBN([(('D',0), ('G',0)), (('I',0), ('G',0))])
        >>> moral_graph = dbn.moralize()
        >>> moral_graph.edges()
        [(('G', 0), ('I', 0)),
        (('G', 0), ('D', 0)),
        (('D', 1), ('I', 1)),
        (('D', 1), ('G', 1)),
        (('I', 0), ('D', 0)),
        (('G', 1), ('I', 1))]
        """
        moral_graph = UndirectedGraph(self.to_undirected().edges())

        for node in super().nodes():
            moral_graph.add_edges_from(itertools.combinations(
                self.get_parents(node), 2))

        return moral_graph
示例#2
0
class TestUndirectedGraphCreation(unittest.TestCase):
    def setUp(self):
        self.graph = UndirectedGraph()

    def test_class_init_without_data(self):
        self.assertIsInstance(self.graph, UndirectedGraph)

    def test_class_init_with_data_string(self):
        self.G = UndirectedGraph([("a", "b"), ("b", "c")])
        self.assertListEqual(sorted(self.G.nodes()), ["a", "b", "c"])
        self.assertListEqual(hf.recursive_sorted(self.G.edges()), [["a", "b"], ["b", "c"]])

    def test_add_node_string(self):
        self.graph.add_node("a")
        self.assertListEqual(self.graph.nodes(), ["a"])

    def test_add_node_nonstring(self):
        self.graph.add_node(1)
        self.assertListEqual(self.graph.nodes(), [1])

    def test_add_nodes_from_string(self):
        self.graph.add_nodes_from(["a", "b", "c", "d"])
        self.assertListEqual(sorted(self.graph.nodes()), ["a", "b", "c", "d"])

    def test_add_nodes_from_non_string(self):
        self.graph.add_nodes_from([1, 2, 3, 4])

    def test_add_edge_string(self):
        self.graph.add_edge("d", "e")
        self.assertListEqual(sorted(self.graph.nodes()), ["d", "e"])
        self.assertListEqual(hf.recursive_sorted(self.graph.edges()), [["d", "e"]])
        self.graph.add_nodes_from(["a", "b", "c"])
        self.graph.add_edge("a", "b")
        self.assertListEqual(hf.recursive_sorted(self.graph.edges()), [["a", "b"], ["d", "e"]])

    def test_add_edge_nonstring(self):
        self.graph.add_edge(1, 2)

    def test_add_edges_from_string(self):
        self.graph.add_edges_from([("a", "b"), ("b", "c")])
        self.assertListEqual(sorted(self.graph.nodes()), ["a", "b", "c"])
        self.assertListEqual(hf.recursive_sorted(self.graph.edges()), [["a", "b"], ["b", "c"]])
        self.graph.add_nodes_from(["d", "e", "f"])
        self.graph.add_edges_from([("d", "e"), ("e", "f")])
        self.assertListEqual(sorted(self.graph.nodes()), ["a", "b", "c", "d", "e", "f"])
        self.assertListEqual(
            hf.recursive_sorted(self.graph.edges()),
            hf.recursive_sorted([("a", "b"), ("b", "c"), ("d", "e"), ("e", "f")]),
        )

    def test_add_edges_from_nonstring(self):
        self.graph.add_edges_from([(1, 2), (2, 3)])

    def test_number_of_neighbors(self):
        self.graph.add_edges_from([("a", "b"), ("b", "c")])
        self.assertEqual(len(self.graph.neighbors("b")), 2)

    def tearDown(self):
        del self.graph
    def moralize(self):
        """
        Removes all the immoralities in the DirectedGraph and creates a moral
        graph (UndirectedGraph).

        A v-structure X->Z<-Y is an immorality if there is no directed edge
        between X and Y.

        Examples
        --------
        >>> from pgmpy.base import DirectedGraph
        >>> G = DirectedGraph(ebunch=[('diff', 'grade'), ('intel', 'grade')])
        >>> moral_graph = G.moralize()
        >>> moral_graph.edges()
        [('intel', 'grade'), ('intel', 'diff'), ('grade', 'diff')]
        """
        moral_graph = UndirectedGraph(self.to_undirected().edges())

        for node in self.nodes():
            moral_graph.add_edges_from(
                itertools.combinations(self.get_parents(node), 2))

        return moral_graph
    def moralize(self):
        """
        Removes all the immoralities in the DirectedGraph and creates a moral
        graph (UndirectedGraph).

        A v-structure X->Z<-Y is an immorality if there is no directed edge
        between X and Y.

        Examples
        --------
        >>> from pgmpy.base import DirectedGraph
        >>> G = DirectedGraph(ebunch=[('diff', 'grade'), ('intel', 'grade')])
        >>> moral_graph = G.moralize()
        >>> moral_graph.edges()
        [('intel', 'grade'), ('intel', 'diff'), ('grade', 'diff')]
        """
        moral_graph = UndirectedGraph(self.to_undirected().edges())

        for node in self.nodes():
            moral_graph.add_edges_from(
                itertools.combinations(self.get_parents(node), 2))

        return moral_graph
示例#5
0
文件: MMPC.py 项目: brainliu/DT_BN
    def mmpc(self, significance_level=0.01):
        nodes = self.state_names.keys()

        def assoc(X, Y, Zs):
            """Measure for (conditional) association between variables. Use negative
            p-value of independence test.
            """
            return 1 - chi_square(X, Y, Zs, self.data)[1]

        def min_assoc(X, Y, Zs):
            "Minimal association of X, Y given any subset of Zs."
            return min(assoc(X, Y, Zs_subset) for Zs_subset in powerset(Zs))

        def max_min_heuristic(X, Zs):
            "Finds variable that maximizes min_assoc with `node` relative to `neighbors`."
            max_min_assoc = 0
            best_Y = None

            for Y in set(nodes) - set(Zs + [X]):
                min_assoc_val = min_assoc(X, Y, Zs)
                if min_assoc_val >= max_min_assoc:
                    best_Y = Y
                    max_min_assoc = min_assoc_val

            return (best_Y, max_min_assoc)

        # Find parents and children for each node
        neighbors = dict()
        for node in nodes:
            neighbors[node] = []

            # Forward Phase
            while True:
                new_neighbor, new_neighbor_min_assoc = max_min_heuristic(
                    node, neighbors[node])
                if new_neighbor_min_assoc > 0:
                    neighbors[node].append(new_neighbor)
                else:
                    break

            # Backward Phase
            for neigh in neighbors[node]:
                other_neighbors = [n for n in neighbors[node] if n != neigh]
                for sep_set in powerset(other_neighbors):
                    if self.test_conditional_independence(
                            node, neigh, sep_set):
                        neighbors[node].remove(neigh)
                        break

        # correct for false positives
        for node in nodes:
            print(node, ":", neighbors[node])
            print(neighbors[node])
            for neigh in neighbors[node]:
                if node not in neighbors[neigh]:
                    print("node-%s is removed" % neigh)
                    neighbors[node].remove(neigh)

        skel = UndirectedGraph()
        skel.add_nodes_from(nodes)
        for node in nodes:
            print(node, "->", neighbors[node])
            skel.add_edges_from([(node, neigh) for neigh in neighbors[node]])

        return skel
class TestUndirectedGraphCreation(unittest.TestCase):
    def setUp(self):
        self.graph = UndirectedGraph()

    def test_class_init_without_data(self):
        self.assertIsInstance(self.graph, UndirectedGraph)

    def test_class_init_with_data_string(self):
        self.G = UndirectedGraph([('a', 'b'), ('b', 'c')])
        self.assertListEqual(sorted(self.G.nodes()), ['a', 'b', 'c'])
        self.assertListEqual(hf.recursive_sorted(self.G.edges()),
                             [['a', 'b'], ['b', 'c']])

    def test_add_node_string(self):
        self.graph.add_node('a')
        self.assertListEqual(self.graph.nodes(), ['a'])

    def test_add_node_nonstring(self):
        self.graph.add_node(1)
        self.assertListEqual(self.graph.nodes(), [1])

    def test_add_nodes_from_string(self):
        self.graph.add_nodes_from(['a', 'b', 'c', 'd'])
        self.assertListEqual(sorted(self.graph.nodes()),
                             ['a', 'b', 'c', 'd'])

    def test_add_node_with_weight(self):
        self.graph.add_node('a')
        self.graph.add_node('weight_a', weight=0.3)
        self.assertEqual(self.graph.node['weight_a']['weight'], 0.3)
        self.assertEqual(self.graph.node['a']['weight'], None)

    def test_add_nodes_from_with_weight(self):
        self.graph.add_node(1)
        self.graph.add_nodes_from(['weight_b', 'weight_c'], weights=[0.3, 0.5])
        self.assertEqual(self.graph.node['weight_b']['weight'], 0.3)
        self.assertEqual(self.graph.node['weight_c']['weight'], 0.5)
        self.assertEqual(self.graph.node[1]['weight'], None)

    def test_add_nodes_from_non_string(self):
        self.graph.add_nodes_from([1, 2, 3, 4])

    def test_add_edge_string(self):
        self.graph.add_edge('d', 'e')
        self.assertListEqual(sorted(self.graph.nodes()), ['d', 'e'])
        self.assertListEqual(hf.recursive_sorted(self.graph.edges()),
                             [['d', 'e']])
        self.graph.add_nodes_from(['a', 'b', 'c'])
        self.graph.add_edge('a', 'b')
        self.assertListEqual(hf.recursive_sorted(self.graph.edges()),
                             [['a', 'b'], ['d', 'e']])

    def test_add_edge_nonstring(self):
        self.graph.add_edge(1, 2)

    def test_add_edges_from_string(self):
        self.graph.add_edges_from([('a', 'b'), ('b', 'c')])
        self.assertListEqual(sorted(self.graph.nodes()), ['a', 'b', 'c'])
        self.assertListEqual(hf.recursive_sorted(self.graph.edges()),
                             [['a', 'b'], ['b', 'c']])
        self.graph.add_nodes_from(['d', 'e', 'f'])
        self.graph.add_edges_from([('d', 'e'), ('e', 'f')])
        self.assertListEqual(sorted(self.graph.nodes()),
                             ['a', 'b', 'c', 'd', 'e', 'f'])
        self.assertListEqual(hf.recursive_sorted(self.graph.edges()),
                             hf.recursive_sorted([('a', 'b'), ('b', 'c'),
                                                  ('d', 'e'), ('e', 'f')]))

    def test_add_edges_from_nonstring(self):
        self.graph.add_edges_from([(1, 2), (2, 3)])

    def test_number_of_neighbors(self):
        self.graph.add_edges_from([('a', 'b'), ('b', 'c')])
        self.assertEqual(len(self.graph.neighbors('b')), 2)

    def tearDown(self):
        del self.graph
示例#7
0
class TestUndirectedGraphCreation(unittest.TestCase):
    def setUp(self):
        self.graph = UndirectedGraph()

    def test_class_init_without_data(self):
        self.assertIsInstance(self.graph, UndirectedGraph)

    def test_class_init_with_data_string(self):
        self.G = UndirectedGraph([('a', 'b'), ('b', 'c')])
        self.assertListEqual(sorted(self.G.nodes()), ['a', 'b', 'c'])
        self.assertListEqual(hf.recursive_sorted(self.G.edges()),
                             [['a', 'b'], ['b', 'c']])

    def test_add_node_string(self):
        self.graph.add_node('a')
        self.assertListEqual(self.graph.nodes(), ['a'])

    def test_add_node_nonstring(self):
        self.graph.add_node(1)
        self.assertListEqual(self.graph.nodes(), [1])

    def test_add_nodes_from_string(self):
        self.graph.add_nodes_from(['a', 'b', 'c', 'd'])
        self.assertListEqual(sorted(self.graph.nodes()),
                             ['a', 'b', 'c', 'd'])

    def test_add_nodes_from_non_string(self):
        self.graph.add_nodes_from([1, 2, 3, 4])

    def test_add_edge_string(self):
        self.graph.add_edge('d', 'e')
        self.assertListEqual(sorted(self.graph.nodes()), ['d', 'e'])
        self.assertListEqual(hf.recursive_sorted(self.graph.edges()),
                             [['d', 'e']])
        self.graph.add_nodes_from(['a', 'b', 'c'])
        self.graph.add_edge('a', 'b')
        self.assertListEqual(hf.recursive_sorted(self.graph.edges()),
                             [['a', 'b'], ['d', 'e']])

    def test_add_edge_nonstring(self):
        self.graph.add_edge(1, 2)

    def test_add_edges_from_string(self):
        self.graph.add_edges_from([('a', 'b'), ('b', 'c')])
        self.assertListEqual(sorted(self.graph.nodes()), ['a', 'b', 'c'])
        self.assertListEqual(hf.recursive_sorted(self.graph.edges()),
                             [['a', 'b'], ['b', 'c']])
        self.graph.add_nodes_from(['d', 'e', 'f'])
        self.graph.add_edges_from([('d', 'e'), ('e', 'f')])
        self.assertListEqual(sorted(self.graph.nodes()),
                             ['a', 'b', 'c', 'd', 'e', 'f'])
        self.assertListEqual(hf.recursive_sorted(self.graph.edges()),
                             hf.recursive_sorted([('a', 'b'), ('b', 'c'),
                                                  ('d', 'e'), ('e', 'f')]))

    def test_add_edges_from_nonstring(self):
        self.graph.add_edges_from([(1, 2), (2, 3)])

    def test_number_of_neighbors(self):
        self.graph.add_edges_from([('a', 'b'), ('b', 'c')])
        self.assertEqual(len(self.graph.neighbors('b')), 2)

    def tearDown(self):
        del self.graph
class TestUndirectedGraphCreation(unittest.TestCase):
    def setUp(self):
        self.graph = UndirectedGraph()

    def test_class_init_without_data(self):
        self.assertIsInstance(self.graph, UndirectedGraph)

    def test_class_init_with_data_string(self):
        self.G = UndirectedGraph([("a", "b"), ("b", "c")])
        self.assertListEqual(sorted(self.G.nodes()), ["a", "b", "c"])
        self.assertListEqual(hf.recursive_sorted(self.G.edges()),
                             [["a", "b"], ["b", "c"]])

    def test_add_node_string(self):
        self.graph.add_node("a")
        self.assertListEqual(list(self.graph.nodes()), ["a"])

    def test_add_node_nonstring(self):
        self.graph.add_node(1)
        self.assertListEqual(list(self.graph.nodes()), [1])

    def test_add_nodes_from_string(self):
        self.graph.add_nodes_from(["a", "b", "c", "d"])
        self.assertListEqual(sorted(self.graph.nodes()), ["a", "b", "c", "d"])

    def test_add_node_with_weight(self):
        self.graph.add_node("a")
        self.graph.add_node("weight_a", weight=0.3)
        self.assertEqual(self.graph.nodes["weight_a"]["weight"], 0.3)
        self.assertEqual(self.graph.nodes["a"]["weight"], None)

    def test_add_nodes_from_with_weight(self):
        self.graph.add_node(1)
        self.graph.add_nodes_from(["weight_b", "weight_c"], weights=[0.3, 0.5])
        self.assertEqual(self.graph.nodes["weight_b"]["weight"], 0.3)
        self.assertEqual(self.graph.nodes["weight_c"]["weight"], 0.5)
        self.assertEqual(self.graph.nodes[1]["weight"], None)

    def test_add_nodes_from_non_string(self):
        self.graph.add_nodes_from([1, 2, 3, 4])

    def test_add_edge_string(self):
        self.graph.add_edge("d", "e")
        self.assertListEqual(sorted(self.graph.nodes()), ["d", "e"])
        self.assertListEqual(hf.recursive_sorted(self.graph.edges()),
                             [["d", "e"]])
        self.graph.add_nodes_from(["a", "b", "c"])
        self.graph.add_edge("a", "b")
        self.assertListEqual(hf.recursive_sorted(self.graph.edges()),
                             [["a", "b"], ["d", "e"]])

    def test_add_edge_nonstring(self):
        self.graph.add_edge(1, 2)

    def test_add_edges_from_string(self):
        self.graph.add_edges_from([("a", "b"), ("b", "c")])
        self.assertListEqual(sorted(self.graph.nodes()), ["a", "b", "c"])
        self.assertListEqual(hf.recursive_sorted(self.graph.edges()),
                             [["a", "b"], ["b", "c"]])
        self.graph.add_nodes_from(["d", "e", "f"])
        self.graph.add_edges_from([("d", "e"), ("e", "f")])
        self.assertListEqual(sorted(self.graph.nodes()),
                             ["a", "b", "c", "d", "e", "f"])
        self.assertListEqual(
            hf.recursive_sorted(self.graph.edges()),
            hf.recursive_sorted([("a", "b"), ("b", "c"), ("d", "e"),
                                 ("e", "f")]),
        )

    def test_add_edges_from_nonstring(self):
        self.graph.add_edges_from([(1, 2), (2, 3)])

    def test_number_of_neighbors(self):
        self.graph.add_edges_from([("a", "b"), ("b", "c")])
        self.assertEqual(len(list(self.graph.neighbors("b"))), 2)

    def tearDown(self):
        del self.graph
示例#9
0
    def mmpc(self, data, nodes):
        """
        Estimates a graph skeleton (UndirectedGraph) for the data set, using the MMPC (max-min parents-and-children) algorithm.
        :return: graph skeleton
        """
        def is_independent(X, Y, Zs, cb_estimator):
            """
            Returns result of hypothesis test for the null hypothesis that
            X _|_ Y | Zs, using a chi2 statistic and threshold `significance_level`.
            """
            if (tuple(sorted([X, Y])), tuple(sorted(Zs))) in self.p_val_cache:
                p_value, sufficient_data = self.p_val_cache.get(
                    (tuple(sorted([X, Y])), tuple(sorted(Zs))))
            else:
                chi2, p_value, sufficient_data = cb_estimator.test_conditional_independence(
                    X, Y, Zs)
                self.p_val_cache.update({
                    (tuple(sorted([X, Y])), tuple(sorted(Zs))):
                    (p_value, sufficient_data)
                })
            return p_value >= self.alpha and sufficient_data

        def assoc(X, Y, Zs, cb_estimator):
            """
            Measure for (conditional) association between variables. Use negative
            p-value of independence test.
            """
            if (tuple(sorted([X, Y])), tuple(sorted(Zs))) in self.p_val_cache:
                p_value, sufficient_data = self.p_val_cache.get(
                    (tuple(sorted([X, Y])), tuple(sorted(Zs))))
            else:
                chi2, p_value, sufficient_data = cb_estimator.test_conditional_independence(
                    X, Y, Zs)
                self.p_val_cache.update({
                    (tuple(sorted([X, Y])), tuple(sorted(Zs))):
                    (p_value, sufficient_data)
                })
            return 1 - p_value

        def min_assoc(X, Y, Zs, cb_estimator):
            """
            Minimal association of X, Y given any subset of Zs.
            """
            min_association = float('inf')
            for size in range(min(self.max_reach, len(Zs)) + 1):
                partial_min_association = min(
                    assoc(X, Y, Zs_subset, cb_estimator)
                    for Zs_subset in combinations(Zs, size))
                if partial_min_association < min_association:
                    min_association = partial_min_association
            return min_association

        def max_min_heuristic(X, Zs):
            """
            Finds variable that maximizes min_assoc with `node` relative to `neighbors`.
            """
            max_min_assoc = 0
            best_Y = None

            for Y in set(nodes) - set(Zs + [X]):
                min_assoc_val = min_assoc(X, Y, Zs, cb_estimator)
                if min_assoc_val >= max_min_assoc:
                    best_Y = Y
                    max_min_assoc = min_assoc_val

            return best_Y, max_min_assoc

        cb_estimator = BaseEstimator(data=data, complete_samples_only=False)

        # Find parents and children for each node
        neighbors = dict()
        for node in nodes:
            neighbors[node] = []

            # Forward Phase
            while True:
                new_neighbor, new_neighbor_min_assoc = max_min_heuristic(
                    node, neighbors[node])
                if new_neighbor_min_assoc > 0:
                    neighbors[node].append(new_neighbor)
                else:
                    break

            # Backward Phase
            for neigh in neighbors[node]:
                other_neighbors = [n for n in neighbors[node] if n != neigh]
                sep_sets = [
                    sep_set for sep_set_size in range(
                        min(self.max_reach, len(other_neighbors)) + 1)
                    for sep_set in combinations(other_neighbors, sep_set_size)
                ]
                for sep_set in sep_sets:
                    if is_independent(node, neigh, sep_set, cb_estimator):
                        neighbors[node].remove(neigh)
                        break

        # correct for false positives
        for node in nodes:
            for neigh in neighbors[node]:
                if node not in neighbors[neigh]:
                    neighbors[node].remove(neigh)

        skel = UndirectedGraph()
        skel.add_nodes_from(nodes)
        for node in nodes:
            skel.add_edges_from([(node, neigh) for neigh in neighbors[node]])

        return skel