def restore_old(self, policy, val_func, scaler, restore_path): #mypath = self.checkpoints_dir+"/"+restore_path mypath = restore_path print("restoring checkpoint from:", mypath) from policy import Policy from value_function import NNValueFunction policy = Policy(policy.obs_dim, policy.act_dim, policy.kl_targ, restore_flag=True) with policy.g.as_default(): print("0000000A") Checkpoint.dump_vars(policy.g) tf.saved_model.loader.load(policy.sess, [tf.saved_model.tag_constants.TRAINING], mypath + ".policy") print("1111111A") Checkpoint.dump_vars(policy.g) policy._placeholders() print("YYYY:", policy.obs_ph) val_func = NNValueFunction(val_func.obs_dim, restore_flag=True) with val_func.g.as_default(): print("2222222A") Checkpoint.dump_vars(val_func.g) tf.saved_model.loader.load(val_func.sess, [tf.saved_model.tag_constants.TRAINING], mypath + ".val_func") print("3333333A") Checkpoint.dump_vars(val_func.g) val_func._placeholders() print("YYYY:", val_func.obs_ph) # unpickle and restore scaler with open(mypath + ".scaler", 'rb') as f: (scaler, episode) = pickle.load(f) print("FINISHED RESTORE") return (policy, val_func, scaler, episode)